AUTODESK"
EAGLE

{\ AUTODESK.

EASYLY APPLICABLE GRAPHICAL LAYOUT EDITOR

User Language

Version 8.2.2

English Version

Copyright © 2017 Autodesk

All rights reserved

Table Of Contents

LT g I 1T) T N 14
WItING @ ULP....cooiiiiiinnnrrnn s asassse s s s s s e s s s 14
Executing a ULPcoooiiiiiiinnnininnnnnnssnnessnnnnn s sssssssssss s s s s s s ssss s 15
N 4112 . G N 15
B AT 1T 4T 15
L0 111 11T 1 16
) 16
31 1 U6 11 11 [17

Portability NOteccoceiiiiiiiiiiiiircrrcrrr e 17
3 0 111 17
LT N 17

5. €21 11) 1] (U 18
L L) 2] N 18
0410101 19
@0 1] 72) 1 1 19
Character COnSANLSccoiviiiiiiiiiiiiiiiiie s s s s s s s s s eeees 19
Integer CONSEANLS......ccciiiiiiiiiiieiiiiic e s s s s s s s e s s e s s e e e e e e ssnnns 20

. €21 11 1] (U 20
Real CONSLANLSccooviiiiiiiiiiiiiiiiiii s s s s s s s s s s s e s s e e e e e e ssnnns 20

. €21 11 1] (U 20
SEring CONSLANLS. ...ttt asass s e s s s s s s s s s s s s s sssnns 21
ESCAPE SEQUENCEScoiiiiiiinneeteiittce s s asasss e e s s s s s e s s s s 21

. €21 11 1] (U 22
g1 T 0 N 22
83 T N 22
Parenthesescccoiiiiiiiiiiiiiiiiiieii s eans 22
83 T N 22
L1 1 11T 23
T 11111 1) N 23
1) 1) 1 23

L] 1 P21 N 24
1 L 24
(| N 24
] 1 31 1 25
Implementation detailsccooeiiiiiiiiiiiiiiiiiiir s 25
B4 0T 00 1R) () 1L 26
0 LT L N 26
L0 1) 1T A 5 N 26
Object hierarchy of a Library: ... 27
Object hierarchy of a Schematic:.......cccoeiiiiiiiiiiiiiiiiiiic s 28
Change note from version 5 to version 6, compatibilityccccoevreieniiriiiniiiiine e, 29
Object hierarchy of a Board:ccccoiiiiiiiiiiiiiiiiiii s 29

L 0 O N 3N 29
@0 1] 11 30
0] 30
5. €21 11 1] (U 30
UL_AREA ... ccriiiiiiiiiiiiiitneecceeesssnsnns 30
5. €21 11) 1] (U 30
UL_ATTRIBUTEcoiireiiiiiiiiiiiiiiiiiriniiiiiiensessininesssssississssssssssssssssssssssssssssssssssssees 31
@0 1] 11 31
0] 31
5. €21 11) 1] (U 31
UL_BOARD ... iiiiiiiiiiiiiiieeeceeeeeesesessisisssnns 32
@0 1] 11 32
0] U 32
5. €21 11) 1] (U 33
UL _BUS e ciiniiiiiiiiiiinninsesessessssssssssssssssssssssssssssessnnnns 33
@0 1] 11 33
5. €21 11 1] (N 33

L 00 4 23 5] N 33
5. €21 11 1] (U 34
UL L_CLASS e ciiiiiiiiiiniiiinisneeeesenssssssssssssississsssesstsssesssnns 34
0] 34
5. €21 11 1] (U 34
UL_CONTAC T ... oiiiiiiiiiiiiiceeeeteeeeneeesssssisiisiiiissisiisssnns 34
@0 1] 11 35
0] 35
5. €211 1) 1] (U 35
UL_CONTACTREFcooiiiiiieeeeenneniiiiiiiisiiiiiiisiisssesssnns 35
@0 1] 11 35
0] 36

L8 D D) VA L TP 36

L0 1157 72 1 15 36
IO eueeieiieiireiieireireitettetteetetetesterestestessessessesasssssassnssnssassassassassestassessessessssssssesasssssassassnssnssnnns 37
€21 11 1] (U 37
UL_DEVICESET ... ieeiitiittiiieeiereeeesesstsssstssssssssssssssssssssssessssssssssssssssssssssssssssssenssssnses 38
L0 1157 72 1 15 38
IO euieiiiieiieeiieireireitettetteetetrestestestestestessessessesssssssassnssnssastassassassestassessessessssssssesasssssassassnssnssnnn 38
5. €21 11) 1] (U 39
UL_DIMENSION ..ottiiituiirteireestesierasisessssessssesssnsssenssssnses 39
L0 1157 72 1 15 39
IO eueeetiieiereiieiteireitettetteetetetestesrestestessessessesasssssassnssassassassassassestassessessessssssssesssssssassassnssnssnnns 40
5. €21 11) 1] (U 40
UL_ELEMENT ...ttt cteireeiteeernssesssesssnessassesssssssassenssssssasssassesssasssasssnssasssasssnns 40
L0 1157 72 1 15 40
IO eueeitiieiiereiieiieireiteitetteetetretestastestestessessessesssssssassnssassassassassassestassessessessssssssesssssssassassnssnssnnn 41
. €21 11 1] (U 41
L 8 D 0 2 20 41
L0 1157 72 1 15 42
IO eueuieiieiireiieereireitettetteetetetesterestestessessessesssssssassnssnssassassassassestassessessessssssssesssssssassassnssnssnnns 42
. €21 11 1] (U 42
UL_FRAME ... iteiiteireeiireeireenstessersssessssessssessssssssssssssessssssssssssssssssssssssssssssssssnsssensssannes 43
L0 1157 72 1 15 43
IO euieettieiireiieireireitettetteetettestesteerestestessessessesssssssassnssnssastassassassestassessessessssssssesssssssassassnssnssnnns 44
5. €21 11 1] (U 44
L) I 7. N 44
L0 1157 72 1 15 44
IO euieettieiireiieireireitettetteetettestesteerestestessessessesssssssassnssnssastassassassestassessessessssssssesssssssassassnssnssnnns 44
5. €21 11 1] (U 44
L) I3 20 1) 45
L0 1157 72 1 15 45
IO euiueeiieitereiieereireitettetteetetetestestestestessessessesssssssassnssnssastassassassastassessessessssssssesssssssassassnssnssnnns 45
5. €21 11 1] (U 45
L 81 P 5 0 2 5 45
IO euiuiiiieiireiieireireitettetteetetetestesrestestessessessesasssssassnssassassassassassestassessessessssssssesssssssassassnssnssnnns 45
5. €21 11 1] (U 46
UL_INSTANCE ..ot iiteirteiireestesiersseessssesssstssssssssssnsssessssssssssssssssssssssssssssssssssssssenssssnses 46
L0 1157 72 1 15 46
IO euiueeiieitreiieireireitettetteetetestesteetestestessessessesssssssassnssnssastassnssassestassessessessssssssesssssssassassnssassnnns 46
5. €21 11) 1] (U 47
UL_JUNCTION . ccuiteirieiirteireenstesserssssessssessnsssensssanses 47
5. €211 1) 1] (U 47
UL_LABEL ... iieiiitirieiiieeirseneiesiersssessssessssessssssssssssssessssssssssssssssssssssssssssssssssnsssensssannes 48
IO euieetiieitreiieeteireitettetteetetetesterestestessessessesasssssassnssnssastassassassastassessessessssssssesasssssassassnssnssnnns 48
5. €21 11) 1] (U 48
L) D 5% Y4] 48

L0 1157 72 1 15 49

UL_LIBRARY .coiiiiiiiiiiiiiiiiieeeeeeneessesssssiiiiiiiieiieiiissnns 50
COMNSEANLS ...oiiiiiiennniiiiieiiiiiiienuiieeetiitttesnssssseetittttsassssssssssteessssssssssssssesessssssssssssssssssnnssssssssssssssnnns 50
110 50
5. €21 11) 1] (N 51

UL_MODULE.....cciiiiiiiiiiiiiiiiiieeeenennenessssiiiiiiiieiiiiiettssnns 51
5. €211 1) 1] (U 51

UL_MODULEINST ... ciiiiiiiitititeneenenesssiiiiiiiiiiiiiiitissnns 51
L0 1 13 21 11 PPN 52
10 52
5. €21 11 1] (U 52

L 00 O N 53
00 1 13 21 11 PPN 53
110 53
5. €21 11 1] (N 53

UL_PACKAGE ... iiiiiiiiiiiiieeteetennnnnssssissisisssssnssesssssssssssnns 54
L0 1 13 21 11PN 54
110 54
5. €21 11) 1] (N 55

UL _PAD . cciiiiiiiiiiiniiiniseneeesesessnns 55
COMNSEANLES ...iiiiiiiennniiieiiiiiiienniieeetiittresnsssseetittttsansssssesssteessssssssssssssesesssssssssssssssessansssssssssssssssnns 56
10 56
5. €21 11 1] (U 57

UL _PART .. cccriiiiiiiniiiiiiteececeessssssesssssssssssssssessnnnns 57
COMNSEANLS ...oiiiiiiennniiiiiiiiiiiiieniiieeetiitetesssssseetittttsassssssssssteessssssssssssssesessssssssssssssssssanssssssssssssssnnns 57
10 57
. €21 11 1] (U 58

L 0 O 0 N 59
COMNSEANLS ...oiiiiiiennniiiiiiiiiiiiieniiieeetiitetesssssseetittttsassssssssssteessssssssssssssesessssssssssssssssssanssssssssssssssnnns 59
110 60
5. €21 11) 1] (U 61

L 00 I 02 0 N 61
5. €21 11 1] (N 61

UL_POLYGON ...oiiiiiiiiiiiiiineieeeeneesenesssiiiiiiiiiiiiiiiiisesssnns 61
COMNSEANLES ...oiiiiiiennniiiiiiiiiiiieniiieeetiittresnsssseetitettrassssssssssteessssssssssssssesessssssssssssssssssanssssssssssssssnnns 62
110 62
Polygon Widthcccooiiiiiiiiiii s 62
Partial Polygomnscccciiiiiiiiiiiiiiiiiiircrnnccnrr e 63
5. €21 11) 1] (U 63

UL_PORT ... ciiiiiiiiiiiiiiiiienecceeeeessssssssssssssssssssssssssasssnns 64
COMNSEANLS ...oiiiiiiennniiiiiiiiiiiiieniiieeetiitetesssssseetittttsassssssssssteessssssssssssssesessssssssssssssssssanssssssssssssssnnns 64
10 64
5. €21 11) 1] (U 64

UL_PORTREFiititiiiiiiiiiieiiieenenneeniisiiiiieiieiisssnns 65
5. €21 11) 1] (U 65

UL_SCHEMATIC ... ieeiiteirieiiieeieteeiseseisessssessssssssssssssssssssssessssssssssssssssssssssssssnsssenssssnses 66
L0 1157 72 1 15 66
IO euieieieiieeiieireireitettetteetetetestestestestessessessesasssssassnssnssassassassassestassessessessssssssesssssssassassnssnssnnns 66

Virtual nets, a11NETS () LOOP couuiiiiiieiiiiieiiie ettt ettt e st e e sre e e sbe e e sbe e e sabee e sbeeeas 67
Virtual parts, @1 1PpartsS () LOOP cieciieiiiiieiiie et e 67
. €21 11 1] (U 67

UL_SEGMENT ... oiteiiiteiiiteiiteesiesiersssessssessssesssasssenssssnses 67
IO euieetiieiireiieiieireitettetteeteretesteerestestessessessesssssssassnssassassassnssassestassessessessssssssesssssssassassnssassnnns 67
5. €21 11) 1] (U 68

L 8 S 5 0 A 68
5. €21 11) 1] (U 68

UL _SIGNAL . cuiiiiiteirieireeetsenstesserssssssssessssessssssssssssssesssssssssssssssssssssssssssssnssssnsssensssannes 68
L0 1157 72 1 15 69
5. €21 11 1] (U 69

L 8 S 317) 69
L0 1157 72 1 15 69
IO eueeiiiieiieeiieireireitettetteetetetestesrestestessessessesasssssassnssnssassassastassestassessessessssssssesssssssassassnssnssnn 69
0. €21 11) 1] (U 70

UL_SYMBOL ... ccuiieiiieiieeireensteserssssessssessssessssssssssssssessssssssssssssssssssssssssssssssssnsssensssanses 70
L0 1157 72 1 15 71
IO euieettieiireiieireireitettetteetettestesteerestestessessessesssssssassnssnssastassassassestassessessessssssssesssssssassassnssnssnnns 71
5. €21 11 1] (U 71

L) I) U 71
L0 1157 72 1 15 72
IO eueeeeiieiteeiieireireitettetteetettetesteerestestessessessesssssssassnssassassassassassastassessessessssssssesssssssassassnssnssnnns 72
5. €21 11 1] (U 72

UL_VARIANTDEF ... oeeiiteiiteiiieeieieeistneiseesssessisssssssssssesssssssessssssssssssssssssssssssssnsssensssanses 72
5. €21 11) 1] (U 72

L 27 N 3 7 N0 73
5. €21 11 1] (U 73

L 8 2 1 N 73
L0 1157 72 1 15 74
IO euiueeiieitereiieereireitettetteetetetestestestestessessessesssssssassnssnssastassassassastassessessessssssssesssssssassassnssnssnnns 74
5. €21 11 1] (U 74

L) I A V2 1 20 74
L0 1157 72 1 15 75
WIEE SEYLE ..o s 75
ATYCS AL WIEE LEVEL. e eeiieiiiei ittt ettt eeeeeetreetaestasssessanssasssasesassenssesssasssasssnssanssasssnnens 75
5. €21 11) 1] (U 76

DELINILIONS eeuurieeirieeireeireeireeireetresteraseessssessssessesssssssnsssessssssssssssssssssssssssassssnssssnsssensssanses 76

ConStaANt DefiNitiONS. .. cveuiiieeiiieirieireniireesirensreeserssieesssssssssessssssssssssssssssssssesssssssssseassssnses 76

Variable DefiNItIONScvveiieeireeiiieeiereeiireeireesireesiesssissnssresssrsssersssssssssssssssssssssssssssssenssssnses 77
€21 11 1] (U 77

FUNCLION DO INItIONS . ..ccuiieieeireiieirnireeiteerneeesreeseseernsseesssesssssensssessssssssssssssessasssnsssessasasnne 77

The special function Main () .. srseessssssssssssssssssssssssns 78

5. €21 11 1] (U 78
L0 4T 0021 10) N 78
Bitwise OPeratorsccciiiiiiiieieeeemmnniiiiiiiiiiiiiiiiiiiiiiiiiteessessssssssssssssssssssssssssssssasssssssssssnns 79
LoZIical OPEratorscciiiiiiieeieeeemunnniiiiiiiiiiiiiiiiieiiiiieteeeesesssnns 79
CompariSOn OPETatorscccieiiiiiiiiieeeemenmmmeiiiiiiiiiiiiiriiiiiimeteeesssssssssssssssssssssssssssans 80
Evaluation OPerators.........ccuuueeeeeuemeiiiiiiiiiiiiiiiiiiiiiiiiieieseesmsssssssssssimimmssesssssen 80
ATIthmetic OPerators........ciuiiieeeeereueiiiiiiiiiiiiiiiiiiiiiiiiiiieeeseeemsssssssmmemieimeeeesssssnn 80
SErING OPETrAtOrsSiiiiiiiiiiiiiiiiiiiiiiieeeeieneesesiisiisssrtettettteesssssssssssssssssssssssssssssssssnnes 81
EXPIeSSIONScciiiiiiiiiiiiiiiiiiiiieiieenneseniiiiiiiiiieiieiitssesesesssssssssssssssssssssssssssssssasssssssssssnns 81
Arithmetic EXPreSsioncccceeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiieeeesmssssmssssssssssen 82

. €21 11 1] (U 82
Assignment EXPresSsionccceeeeeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiineeseeessssssssssesssssen. 82

€21 11 1] (U 82
SEring EXPreSSiOncccciiiiiiiiiiiiiiiiiiiieeieieeeenseiiiiiiititesssssssssssssssssssssssssssssssases 82

. €21 11 1] (U 82
Comma EXPreSSiOncccciiiiiiiiiiiiiiiieieimemmemmniiiiiieetssmsssssssssssssssssmmsnnenn 82

0. €21 11) 1] (U 83
Conditional EXPressionccuciiiiiiiiieeeeeemeemeeiiiiiiiiiiiiiiiiseessssssssssssssnnnnn 83

5. €21 11) 1] (U 83
J O s Ut () 4 W21 | PO 83

. €21 11 1] (U 83
N1 B1 1 1S) 11 1S) 11 83
Compound StatemMentceeeeiiiiiiiiiiiiiiiiirrr s s s sanas 84
EXpression Statement..........cccovvveeeiiiiiiiiiiiiiiieeerrrrrrn s 84
CONLIOL STATECIMEIILS ..euoveuieeireeireireireeiteeerntesesreserssesessassrssessssssssasessssssssasssssssessasssssssessasssnne 84
03 <Y 1 QN 84
(1) 1191 1 11 T 85
L (0 T 4 1 11 (SR 85

5. €21 11 1] (U 85
(1) o 85

5. €21 11 1] (U 86
T <) [T <SR 86
) 110 o 1 I 86
L0312 11+ 1 SO 87

5. €21 11) 1] (U 87
A0 111 (SR 88

BUIIIIIS coeuieeiieeiiiiieiieireireeereereeeraeernerensseeesssssnssessssessnsssessssssssssnssssssssssssssessssssnsssnsssensnsannne 88

Builtin ConsStants.........cciiiiiiieeeeiiememiiiiiiiiiiiiiiiiiiiiieeeesesssssssssssseeieirssessssssnns 88
Builtin Variablesccciiiiiiiiiiiiiieiieeiiiiiiiiiniiininsneesseesssssssssssssssssississssssssssssens 89
Builtin FUNCHIoNS......ccciiiiiiiiiiiiiiiiiinsssiininiinninnnssseseseessnns 90
Character FUNCLIONScccciiiiiiiiiiiiiiiiiiienieneiiiiiiiiiiiiiesiessesssssssssssssssssssssssssssssssanes 92
ESeee) ennnnnnnnnnriiiiiiiiiiiiiiieiiiiieteeeeerranna s s e seseaeeeseettettetttasnnannnaararrresraesaseeeseeteeetteesernnnnn 93
O 1 B2 16 7 o171 (L 93
5. €21 11) 1] (U 93
0 Y OO 94
File Handling FUNCHONS.........ccvvmeeiiiiiiiiiiiiiiinccenennerrnsncs s ssssssssses e s s s s 94
FILEEITON() «uueeeeeeeineceiiiiitieceieeeetenneeeeeeeeenanseeeeseennsssssesseensssssssssesnnnssssssssennnsssssssssnnnnsssesnnnnn 94
5. €21 11 1] (U 95
1 0 10 3 T PRSPPI 95
INoOte fOr WiNAOWS USEI'S ..uuuuiiiiiiiiiiimuniiiiiiiiiitimmmiiiieiiisemmsssssiisstimesmsssssssissttsssssssssssssssssssssssssssns 96
5. €21 11 1] (U 926
Filename FUNCHioNSccciiiiiiiieiimiiiiiiiiiiiiiiiiniiininnnessseesssnns 96
5. €21 11) 1] (U 926
Filedata FUNCHONS.......cccciiiiiiiiiiieiiiieiiiiiiiniiiiiniiinessssssssesssnns 96
5. €21 11 1] (N 97
File INPut FUNCHONSccociiiieneiinininninnnccsc et sassss s s 97
FIIEI@AA() ceeeeeeeeeenenieiiiiitiireiietieenneeeeeeeennnseeeeseennsssssesseenssssssssessnnnssssssssennnsssssssssnnnnsnnssnnnnn 97
. €21 11 1] (U 98
Mathematical FUNCLIONS........ccceueeuueeiiiiiiiiiiiiiiiiiiiiiiiinieeeeeeeeessssssssiiisnieeieeesseesssssnns 98
0 g 1) N ST T U 98
Absolute, Maximum and Minimum Functionscccceueeeeeeeeennnnnnniiiiiiiinnnineeeeeees. 99
5. €21 11 1] (N 29
Rounding FUNCHONScccociiieeiiiiiinin et asassse s s s s 99
5. €21 11) 1] (U 29
Trigonometric FUNCHONScovueeeiiiiiiiiiiiiiiiiineerrrrrrnn s 100
00 11 21 11 1PN 100
[0 Y 100
0. €21 11) 1] (U 100
Exponential FUNCLionScccovvumeiiiiiiiiiiiiiiiiinnnennrnrnn s 100
0. €21 11) 1] (U 101
Miscellaneous FUNCLIONScccceveeeeeeeennniiiiiiiiiiiiiiiiiiiiiiiiiiieeeesessssssssssssssssnmennnn 101
Configuration Parametersccooiviiiiiiiiiiiininnennnnniniinnnssssssssssesssssssssssssssssssssnes 101
0. €21 11) 1] (U 102
COUNETY()errrreernrrennnnsesnnmrensssssssninessssssssssmssnsssssssnnessssssssssssssssssssssssssnsssssssssessssssssssssnnnssssssns 102
€21 11) 1] (U 102
EXHE() vevvnnnnnnnnsssssssssssnisnnenneninnneeeeeessennssssssssssssssssssssssssssssseneseeesessssssnsssssssssssssssssssssssssnsnanans 103

B 1y T 103
€21 11) 1] (U 104
TOOKUP () cevveniiinrnnnnniiinnimennniiiiiinmemmiiiiimmemsesoiiimmemmsiisiimmsssssssstmsssssssssssmessssssssssssssnsssssnss 104
0. €21 11) 1] (U 105
022 L1 1 106
L G0 1] 11N 106
LT 0 (N 106
10 ot 1 () RN 107
Sorting a SiNELe ArTaYcccceeiviiiiiiiiiiiii e 107
Sorting a Set Of ArTAYScceeiiiiiiiiiiiii e 107
1 111 £ () RN 108
1 =) 111 108
Input/OQutput redireCtioncccceeiiiiiiiiiiiiiiiiciicc e 108
Background eXeCution........cccciiiiiiiiiiiiiiiiiiic e 109
€21 11) 1] (U 109
L0 1T O] 1N] (1) 1 109
0. €21 11) 1] (U 110
Network Functions........cccccciemmeieiiiiiiiiiiinnnnieeennnnnnrcn s 110
11 L1150 o o0 0) o () RN 110
0. €21 11) 1] (U 111
1T 111
IS DI O71) 11 Tt 0] TN 112
€211 1) 1] (U 112
11130 01 1 N 112
. €21 11) 1] (U 113
Printing FUNCLIONScccooiiiieiiiiiiicncnnnteeenrrrrn s 113
PUANEE() ceerneeiiiiieiiiiiiiiiiieiiiinereeceeceeeeaees s s s sssssssssssssesseaseseasssssnnssnssssssssssssssssssssnnnsnannns 114
Format Stringcccoiiiiiiiiiiiiiiiiniiinnccc e 114
Format Specifiersccccciiiiiiiiiiiiiiiiii e 114
Conversion type CHAracters.........cccvvvieiiiiiiiiiiiiiin e a s s aaaaaas 114
FIag Characters......viiiiuiiiiiiiiiiiiiiiniieeriiiss e s s s e s e e s s aaas s s s s s s e e s snnassns 115
Width SPeCifiersccccciiiiiiiiiiiiiiiin e 115
Precision SPecifiers......ccciiiiiiiiiiiiiiiiiiiiii e 115
Default precision Valuescccccciiiiiiiiiiiiiiiiiiiicc e 116
How precision specification (. n) affects CONVErsioncccoeviiiiereniiiiiiniinieininiee. 116
Binary zero Characters........ccccuciiiiiiiiiiiiiiiiiisis e 116
0. €21 11) 1] (U 116
] 11113 116
FOrmat StINE c.....uiiiiiiiiiiiiiiiiiiniiiiiiisieeetieeereanssseessesessassssssssssssesnssssssssssssssssnsssssssssssssssnnnssss 117
Binary zero Characters........cccciviiiiiiiiiiiiiiiiiisnn e 117
. €21 11) 1] (U 117

String FUNCHIONS ...ttt 117

1 ol 1 () RN 118

€21 11) 1] (U 118
] 1 g 0] 111 118
€2 111) 1] (U 119
11 (53 4 () RN 119
0. €21 11) 1] (U 119
11 A ()OS 119
. €21 11) 1] (U 119
1 o 1) o () FS RN 119
€21 11) 1] (U 120
1 51 1 () PSRN 120
€21 11) 1] (U 120
1] 1] 1L 120
0. €21 11) 1] (U 121
11] 1 o () IS 121
€21 11) 1] (U 121
1 0] 11 01 RN 121
0. €21 11) 1] (U 122
1 101 [RN 122
€21 11) 1] (U 122
1t 11 () RN 122
. €21 11) 1] (U 123
19 0011 0. o (] 123
€211 1) 1] (U 123
11 .1 1 of () 1SRN 123
. €21 11) 1] (U 124
Time FUNCLIONSccovviiiiiiiiieiintn s 124
12115 1< (1N 124
. €21 11) 1] (U 125
1811805 11 5 () RN 125
. €21 11) 1] (U 125
Time CONVEISIONSccceiiiiiiiiiinnnneniiriiiiiiensnse s s s s sasssass s e s s s s e s s ssesas 125
. €21 11) 1] (U 126
Object FUNCLIONS ...ttt sasssss s s s s s s sanas 126
L0 10 0111 127
. €21 11) 1] (U 127
11070 0 14T 127
Identifying the context menu ObJect.........cccoeiiiiiiiiiiiiiiiiiiii e 128
. €21 11) 1] (U 128
T 70 0111 128

€21 11) 1] (U 129

SEEVATIANL() ceeeeeenennieeriieiineieerreeennseeeeeeeennsseeereesnnsssseesssnnsssssssssssnnsssssesssennnsssssssssnnnnsnnnans 129

€21 11) 1] (U 130
VATFTAINE() cevveieieieninieieiitenencieereeennnseeeeeeeenssseeeseesnsssssssssssnsssssssssssnnsssssssssennnsssssssesnnnnsssans 130
€2 111) 1] (U 130
XML FUNCLIONSiiiiiiiiiiiiiiiiiieieeeeenennessessiiiiiiiiiesiiiiimmssanns 130
xmlattribute(), XmIattributes() ..cuueeeieiieemriiiiiiitercccrrrreeerec e errecne e e s e eennn e e e s e e nnnnneaeees 130
. €21 11) 1] (U 131
xmlelement(), XMIEIemMENtS() ..cccuuirreeniiiieniiiieeiirieniirreeiereennierenaseereensserenassesennssssenssesens 131
€21 11) 1] (U 132
D€ 101172 T (Y 133
0. €211 1) 1] (U 133
D4 111 14 () RN 134
0. €21 11) 1] (U 134
Builtin Statements.......cccciiiiiiiiiiiiieeieemiiiiiiiiieeieiiinreeeeesssesssssssssssssssssssssssaanns 134
[0 X0 1 o [RN 135
Check if there is @ hoardcccoiiiiiiimiiiiiiiiiiniiestieesssssssssesstsesssssssssssssasenns 135
Accessing board from a SChematic.........cccooeeiiiiiiiiiiiiiiiiiii . 136
0. €21 11) 1] (U 136
AEVICESEL() uuuureerrenunnieeerieennnneeeerieennsseeeeseennsssseeeseesnsssssseseesnsssssssssssnnsssssssssennnsssssssesnnnssssans 136
Check if there is @ deViCe Setcciiiiireuuriiiiiiiiiiiiuiiiiiiniiiiiieesiieeresssieetieessasssssssssenes 136
0. €21 11) 1] (U 137
110 17 1 4 OPOPPTRPTRN 137
Check if there is @ LIDFaryccccoovviiiiiiiiiiiiii s aaaaes 137
€21 11) 1] (U 137
11 LT L1 L RN 137
Check if there is @ MOAUIE.........ccoiiiiiiimiiiiiiiiiiii e rreeresssssssessssessssssssssssssaeenes 138
. €21 11) 1] (U 138
OULPUL() cevvrriirinrenneiiiniinensssiiinimeessssssssmmeenssssssstmmessssssssttessssssssssssssnsssssssssessssssssssssnsnsssssses 138
FIlE MOAES ..ccevuuneiiiiiiiiiiinniiiiiniitiiieansieeetiseetansssssssssissessasssnnsssss 139
Nested Output StAteMENtS......cccceeiiiiiiiiiiiiiiiiiiisirss s e e anaas 139
. €21 11) 1] (U 139
02T T 139
Check if there is @ PACKAGEcvviiiiiiiiiiiiic e 140
0. €21 11) 1] (U 140
SCREMALIC() ..eeeeeieeiiiiiiiiic i teeeere e e e e rrenn e e e e eeennns e e eeeennssssssessennsssssssseennnnsssssseennnnsnnnnns 140
Check if there is a SCHEMALIC......ccciiiiiemiiiiiiiiiiiiee e s e e ssasasssssssssasenns 140
Accessing schematic from a board..........cccoceeiiiiiiiiiiiiiiiiiiii . 141
AccesS the CUrrent SHEetcciiiiiieuiiiiiiiiiiiiiiiiereesrrreesasssssssssesssssssssssssssssssnsssses 141
Access the current Module.........ccoueuiiiiiiiiiiiiiniiiiniiiieisiiieemmsiiessmsssssssssses 141
. €21 11) 1] (U 141
1 1 1 1 (RN 141
Check if there is @ Sheetuueiiiiiiiiiiieiiiiiiiiiiirr et sssessssessasssssssssssasenes 142
€21 11) 1] (U 142

4111070 (Y 142

Check if there is @ SYMDOlueuiiiiiiiii e 142

€21 11) 1] (U 142
1)) P T 0 £ 143
Predefined Dialogscccooiuuimmiiiiiiiiiiiiiiniccenennnn s 143
L6 Fd D1 T 1 1)) 143

0. €21 11) 1] (U 144
digFileOpen(), dIGFIleSave()cccuuuuuueuriiiiiiiiiiiiiiiiiiiiiiiiiineeeeeeseenssssssssssnnenenn 144

. €21 11) 1] (U 144
(1 1oAY L T 8) () 145

€21 11) 1] (U 146
DiIAlog ODbjJeCtS...ccciiiiiiiiiiiiiiiiieeeerrrr e s s 146
L1 7 | 146

0. €21 11) 1] (U 147
AIZCHECKBOXuuiiiiiiiiiiiiiiiiiiiiiecceeer e s s s s s s s e s s e e e 147

. €21 11) 1] (U 147
dIZCOMDBOBOX.... oottt s 148

0. €21 11) 1] (U 148
L0 Fd D 148

€21 11 1] (U 149
AIZGridLAayoutccooviiiiiiieeenrrrrr e 149

0. €21 11) 1] (U 150
L1 75 (1 1 o 2 150

€21 11) 1] (U 150
(11 Fed 3 082004 2] L 150

0. €21 11) 1] (U 151
L0 Fd 0L L 151

€21 11) 1] (U 151
AIGLADEL ... s 151

. €21 11) 1] (U 152
L6 Fd 0 T 1 5. 152

. €21 11) 1] (U 153
L6 Fd 0 T VAT 153

. €21 11) 1] (U 154
dIGPUShBULLON......cciiiiiiiiiiiiiiiii e 154

. €21 11) 1] (U 155
dIZRAIOBULLONcccoiiiiiiiiteeeneer s 155

. €21 11) 1] (U 156
L0 Fd 2 U L 156

. €21 11) 1] (U 156
L1 F 07) 1 156

€21 11) 1] (U 157

AIESPINBOX ettt 157

€21 11) 1] (U 157
L0 1 157
€2 111) 1] (U 158
dIgString@Edit.......ccooiiiiiiii s 158
0. €21 11) 1] (U 158
L1 L F el 1 1.0) o 158
. €21 11) 1] (U 159
AIZTADWIAGELccoeiiiiiiiiiieerrrrr s asasas s s s s s s e e 159
€21 11 1] (U 160
L1 F o 4 L 160
€21 11) 1] (U 160
AIETEXEVIEW .ceeeiiiiiiiiiiiiiicteeerrr s aaasas s e s s s s s s e e as 161
0. €21 11) 1] (U 161
dIEVBOXLAYOULcoiiiiiiiiiiiiiiiiiiieeee e s s s e s s e 161
€21 11) 1] (U 162
Layout INformation........ccccocvivummemiiiiiiiiiiiiiiieeeerrrrrrr s 162
Grid Layout ConteXt.......cooeeiiiiiiiiiiiiiiiiiiiiiiisiisiisisesisssssessseesssasseassssssssssssssssssssssssssssasnes 162
Horizontal Layout Contextcccceiiiiiiiiiiiiiiiiiiiiiiiiiiissinssss s ssssasssssssssssssssasnes 162
Vertical Layout Context........cccociiiiiiiiiiiiiiiiiiiiiiiiiiiiisissssssss s sssssssssssssssssssasnes 163
Mixing Layout Contexts......ccceiiiiiiiiiiiiiiiiiiiiiiiisiiisiiisiissssssss s sssssssssssssssssssssannes 163
Dialog FUNCLIONS ...ccooviiiiiiieeeenentnnnc e ssssssss s s se s 163
L0 N 1 163
€21 11) 1] (U 164
L0 Ed T 1] 4 164
. €21 11) 1] (U 164
L1 1o 2] (Y 164
€21 11) 1] (U 165
L0 Fd 2] 1T 1 165
. €21 11) 1] (U 165
digSelectionChanged()cccovvvummmeiiiiiiiiiiiiiirerrrrr s 166
. €21 11) 1] (U 166
Escape Character........oeiiiiiiiiiiiieemiiisiniissiisn s nnnreesesssssssssssssssssssssssssssssenes 167
PN G111) LT D51 1101 1) (T 167

Supported HTIML tags......ccciiiiiiiiiiieiieememnniiiiiiiiiiiiiiiiiiiiiiiisessssssssssssssssssssssssssssessanns 168

User Language

The EAGLE User Language can be used to access the EAGLE data structures and
to create a wide variety of output files.

To use this feature you have to write a User Language Program (ULP), and
then execute it.

The following sections describe the EAGLE User Language in detail:

Syntax lists the rules a ULP file has to follow
Data Types defines the basic data types
Object Types defines the EAGLE objects

Definitions shows how to write a definition

Operators lists the valid operators

Expressions shows how to write expressions

Statements defines the valid statements

Builtins lists the builtin constants, functions etc.

Dialogs shows how to implement a graphical frontent to a ULP

Writing a ULP

A User Language Program is a plain text file which is written in a C-like syntax.
User Language Programs use the extension .ulp. You can create a ULP file with
any text editor (provided it does not insert any additional control characters into the
file) or you can use the builtin text editor.

A User Language Program consists of two major items, definitions and statements.

Definitions are used to define constants, variables and functions to be used
by statements.

A simple ULP could look like this:

#usage "Add the characters in the word 'Hello'\n"
"Usage: RUN sample.ulp"

// Definitions:

string hello = "Hello";

int count(string s)

{

int ¢ = 0;
for (int i = 0; s[i]; ++1i)
e +t= s[i];

return c;

}

// Statements:

output ("sample") {
printf ("Count is: %d\n", count (hello))
}

If the #usage directive is present, its value will be used in the Control Panel to
display a description of the program.

If the result of the ULP shall be a specific command that shall be executed in the
editor window, the exit() function can be used to send that command to the editor
window.

Executing a ULP

User Language Programs are executed by the RUN command from an editor
window's command line.

A ULP can return information on whether it has run successfully or not. You can
use the exit() function to terminate the program and set the return value.

A return value of 0 means the ULP has ended "normally" (i.e. successfully), while
any other value is considered as an abnormal program termination.

The default return value of any ULP is o.

When the RUN command is executed as part of a script file, the script is terminated
if the ULP has exited with a return value other than o.

A special variant of the exit() function can be used to send a command to the editor
window as a result of the ULP.

Syntax

The basic building blocks of a User Language Program are

o Whitespace
o Comments

o Directives
o Keywords
o Identifiers
o Constants
e Punctuators

All of these have to follow certain syntactical rules, which are described in their
respective sections.

Whitespace

Before a User Language Program can be executed, it has to be read in from a file.
During this read in process, the file contents is parsed into tokens and whitespace.

Any spaces (blanks), tabs, newline characters and comments are
considered whitespace and are discarded.

The only place where ASCII characters representing whitespace are not discarded
is within literal strings, like in

string s = "Hello World";
where the blank character between 'o' and 'w' remains part of the string.

If the final newline character of a line is preceded by a backslash (\), the backslash
and newline character are both discarded, and the two lines are treated as one line:

"Hello \
World"

18 parsed aS "Hello World"

Comments

When writing a User Language Program it is good practice to add some descriptive
text, giving the reader an idea about what this particular ULP does. You might also
want to add your name (and, if available, your email address) to the ULP file, so
that other people who use your program could contact you in case they have a
problem or would like to suggest an improvement.

There are two ways to define a comment. The first one uses the syntax

/* some comment text */
which marks any characters between (and including) the opening /+ and the

closing */ as comment. Such comments may expand over more than one lines, as in
/* This is a
multi line comment
Y
but they do not nest. The first «/ that follows any /*» will end the comment.

The second way to define a comment uses the syntax

int i; // some comment text
which marks any characters after (and including) the // and up to (but not
including) the newline character at the end of the line as comment.

Directives

The following directives are available:

#include
#frequire
#usage

#include

A User Language Program can reuse code in other ULP files through

the #include directive. The syntax is
#include "filename"

The file fi1ename is first looked for in the same directory as the current source file
(that is the file that contains the #inciude directive). If it is not found there, it is
searched for in the directories contained in the ULP directory path.

The maximum include depth is 10.

Each #inc1ude directive is processed only once. This makes sure that there are no
multiple definitions of the same variables or functions, which would cause errors.

Portability note

If filename contains a directory path, it is best to always use the forward slash as
directory separator (even under Windows!). Windows drive letters should be avoided.
This way a User Language Program will run on all platforms.

#require

Over time it may happen that newer versions of EAGLE implement new or
modified User Language features, which can cause error messages when such a
ULP is run from an older version of EAGLE. In order to give the user a dedicated
message that this ULP requires at least a certain version of EAGLE, a ULP can

contain the #require directive. The syntax is
#require version

The version must be given as a real constant of the form
V.RRrr

where v is the version number, &R is the release number and rr is the (optional)
revision number (both padded with leading zeros if they are less than 10). For
example, if a ULP requires at least EAGLE version 4.11r06 (which is the beta

version that first implemented the #require directive), it could use
#require 4.1106

The proper directive for version 5.1.2 would be
#require 5.0102

#usage

Every User Language Program should contain information about its function, how
to use it and maybe who wrote it.

The directive
#usage text [, text...]

implements a standard way to make this information available.

If the #usage directive is present, its text (which has to be a string constant) will be
used in the Control Panel to display a description of the program.

In case the ULP needs to use this information in, for example, a digMessageBox(),
the text is available to the program through the builtin constantusage.

Only the #usage directive of the main program file (that is the one started with
the RUN command) will take effect. Therefore pure include files can (and should!)
also have #usage directives of their own.

It is best to have the #usage directive at the beginning of the file, so that the Control
Panel doesn't have to parse all the rest of the text when looking for the information
to display.

If the usage information shall be made available in several langauges, the texts of
the individual languages have to be separated by commas. Each of these texts has
to start with the two letter code of the respective language (as delivered by

the language() function), followed by a colon and any number of blanks. If no
suitable text is found for the language used on the actual system, the first given text
will be used (this one should generally be English in order to make the program
accessible to the largest number of users).

Example

#usage "en: A sample ULP\n"

"Implements an example that shows how to use the EAGLE User
Language\n"

"Usage: RUN sample.ulp\n"

"Author: john@home.org",

"de: Beispiel eines ULPs\n"

"Implementiert ein Beispiel das zeigt, wie man die EAGLE User
Language benutzt\n"

"Aufruf: RUN sample.ulp\n"

"Author: john@home.org"

Keywords

The following keywords are reserved for special purposes and must not be used as

normal identifier names:
break

case

char

continue

default
do

else
enum
for

if

int
numeric
real
return
string
switch
void
while
In addition, the names of builtins and object types are also reserved and must not be

used as identifier names.

Identifiers

An identifier is a name that is used to introduce a user
defined constant, variable or function.

Identifiers consist of a sequence of letters (a b c...,a B c...),digits (1 2 3...) and
underscores (). The first character of an identifier must be a letter or an
underscore.

Identifiers are case-sensitive, which means that

int Number, number;
would define two different integer variables.

The maximum length of an identifier is 100 characters, and all of these are
significant.

Constants

Constants are literal data items written into a User Language Program. According
to the different data types, there are also different types of constants.

o Character constants
o Integer constants

o Real constants

o String constants

Character Constants

A character constant consists of a single character or an escape sequence enclosed

in single quotes, like
|l a |l

'\n'

The type of a character constant is char.

Integer Constants

Depending on the first (and possibly the second) character, an integer constant is
assumed to be expressed in different base values:
first second constant interpreted as

0 1-7 octal (base 8)
0 %, X hexadecimal (base 16)
1-9 decimal (base 10)

The type of an integer constant is int.

Examples
16 decimal
020 octal

0x10 hexadecimal

Real Constants

A real constant follows the general pattern
[-]lint.fracl[elE[1]exp]

which stands for

« optional sign

o decimal integer

o decimal point

o decimal fraction

o corkand a signed integer exponent

You can omit either the decimal integer or the decimal fraction (but not both). You
can omit either the decimal point or the letter e or £ and the signed integer exponent
(but not both).

The type of an real constant is real.

Examples

Constant Value

23.45e6 23.45x 1076

-0 0.0

0. 0.0

1. 1.0

-1.23 -1.23

2e-5 2.0x 1075
3E+10 3.0x 10”10

.09E34 0.09 x 10734

String Constants

A string constant consists of a sequence of characters or escape sequences enclosed

in double quotes, like
"Hello world\n"

The type of a string constant is string.

String constants can be of any length (provided there is enough free memory
available).

String constants can be concatenated by simply writing them next to each other to
form larger strings:

string s = "Hello" " world\n";
It is also possible to extend a string constant over more than one line by escaping

the newline character with a backslash (\):
string s = "Hello \
world\n";

Escape Sequences

An escape sequence consists of a backslash (1), followed by one or more special
characters:
Sequence Value

\a audible bell

\b backspace

\f form feed

\n new line

\r carriage return
\t horizontal tab
\v vertical tab

\\ backslash

\! single quote
\" double quote
\O 0 =up to 3 octal digits

\xH g = up to 2 hex digits

Any character following the initial backslash that is not mentioned in this list will
be treated as that character (without the backslash).

Escape sequences can be used in character constants and string constants.

Examples

'\n'
"A tab\tinside a text\n"
"Ring the bell\a\n"

Punctuators

The punctuators used in a User Language Program are
[] Brackets
0 Parentheses
{} Braces
, Comma
; Semicolon
Colon

= Equal sign

Other special characters are used as operators in a ULP.

Brackets

Brackets are used in array definitions
int ai[l;

in array subscripts

n = aifl2];

and in string subscripts to access the individual characters of a string
string s = "Hello world";
char ¢ = s[2];

Parentheses

Parentheses group expressions (possibly altering normal operator precedence),

isolate conditional expressions, and indicate function calls and function parameters:
d=c* (a + b);

if (d == z) ++x;
func () ;
void func2 (int n) { ... }

Braces

Braces indicate the start and end of a compound statement:

if (d == z) {
ks 2
func () ;

}

and are also used to group the values of an array initializer:
int ai[l = { 1, 2, 3 };

Comma

The comma separates the elements of a function argument list or the parameters of

a function call:

int func(int n, real r, string s) { ... }

int i = func(l, 3.14, "abc");

It also delimits the values of an array initializer:

int ai[]l = { 1, 2, 3 };

and it separates the elements of a variable definition:
int i, j, k;

Semicolon

The semicolon terminates a statement, as in
i =a + b;
and it also delimits the init, test and increment expressions of a for statement:
for (int n = 0; n < 3; ++n) {
func (n) ;

}

Colon

The colon indicates the end of a label in a switch statement:
switch (c) {

case 'a': printf ("It was an 'a'\n"); break;

case 'b': printf ("It was a 'b'\n"); break;

default: printf("none of them\n");

}

Equal Sign

The equal sign separates variable definitions from initialization lists:
int i = 10;

char c[] = { 'a', 'b', 'c' }:

It is also used as an assignment operator.

Data Types

A User Language Program can define variables of different types, representing the
different kinds of information available in the EAGLE data structures.

The four basic data types are

char for single characters
int for integral values
real for floating point values

string for textual information

Besides these basic data types there are also high level Object Types, which
represent the data structures stored in the EAGLE data files.

The special data type void is used only as a return type of a function, indicating that
this function does not return any value.

char

The data type char is used to store single characters, like the letters of the alphabet,
or small unsigned numbers.

A variable of type char has a size of 8 bit (one byte), and can store any value in the
range 0. .255.

See also Operators, Character Constants

int
The data type int is used to store signed integral values, like the coordinates of an

object.

A variable of type int has a size of 32 bit (four byte), and can store any value in the
range -2147483648..2147483647.

See also Integer Constants

real

The data type rea1 is used to store signed floating point values, like the grid
distance.

A variable of type real has a size of 64 bit (eight byte), and can store any value in
the range +2.2e-308..+1.7e+308 with a precision of 15 digits.

See also Real Constants

string

The data type string is used to store textual information, like the name of a part or
net.

A variable of type string 1s not limited in it's size (provided there is enough
memory available).

Variables of type string are defined without an explicit size. They grow
automatically as necessary during program execution.

The elements of a string variable are of type int and can be accessed individually
by using [index]. The first character of a string has the index o:

string s = "Layout";
printf ("Third char is: %c\n", s[2]);

This would print the character 'y'. Note that s 2] returns the third character of s!

A lossless conversion to char is possible for standard ASCII strings:

"Layout";

string s =
= s[2];

char c¢

See also Operators, Builtin Functions, String Constants

Implementation details

The data type string is actually implemented like native C-type zero terminated

strings. Looking at the following variable definition
string s = "abcde";

s[4] 1s the character 'e',and s(5] is the character '\o', or the integer value o0xoo0.
This fact may be used to determine the end of a string without using

the strlen() function, as in

for (int i = 0; s[i]; ++i) {
// do something with s[i]
}

It is also perfectly ok to "cut off" part of a string by "punching" a zero character
into it:

string s = "abcde";

s[3] = 0;

This will result in s having the value "abc". Note that everything following the zero
character will actually be gone, and it won't come back by restoring the original
character. The same applies to any other operation that sets a character to 0, for
instance --s[3].

Type Conversions

The result type of an arithmetic expression, such as a + b, where a and b are
different arithmetic types, is equal to the "larger" of the two operand types.

Arithmetic types are char, int and real (in that order). So if, e.g. a is of type int and b is
of type real, the result of the expression a + b would be real.

See also Typecast

Typecast

The result type of an arithmetic expression can be explicitly converted to a different
arithmetic type by applying a typecast to it.

The general syntax of a typecast is

type (expression)
where type 1S one of char, int OF real, and expression is any arithmetic expression.

When typecasting a real expression to int, the fractional part of the value is
truncated!

See also Type Conversions

Object Types

The EAGLE data structures are stored in XML files:

o Library (*.1br)
e Schematic (*.sch)
o Board (*.brd)

These data files contain a hierarchy of objects. In a User Language Program you

can access these hierarchies through their respective builtin access statements:
library (L) { ... }

schematic(S) { ... }

board(B) { ... }

These access statements set up a context within which you can access all of the
objects contained in the library, schematic or board.

The properties of these objects can be accessed through members.

There are two kinds of members:

o Data members
o Loop members

Data members immediately return the requested data from an object. For example,

mn
board (B) {
printf ("$s\n", B.name) ;

}
the data member name of the board object B returns the board's name.

Data members can also return other objects, as in
board(B) {
printf ("$f\n", B.grid.size);
}
where the board's grid data member returns a grid object, of which the size data

member then returns the grid's size.

Loop members are used to access multiple objects of the same kind, which are
contained in a higher level object:

board (B) {
B.elements (E) {
printf ("%$-8s %-8s\n", E.name, E.value);
}
}

This example uses the board's elements() loop member function to set up a loop
through all of the board's elements. The block following

the B.elements () statement is executed in turn for each element, and the current
element can be referenced inside the block through the name =.

Loop members process objects in alpha-numerical order, provided they have a
name.

A loop member function creates a variable of the type necessary to hold the
requested objects. You are free to use any valid name for such a variable, so the
above example might also be written as

board (MyBoard) {
MyBoard.elements (TheCurrentElement) {
printf ("$-8s %-8s\n", TheCurrentElement.name, TheCurrentElement.value);
}
}

and would do the exact same thing. The scope of the variable created by a loop
member function is limited to the statement (or block) immediately following the
loop function call.

Object hierarchy of a Library:

LIBRARY
GRID
LAYER
DEVICESET

DEVICE

GATE
PACKAGE
CONTACT
BAD
SMD
CIRCLE
HOLE
RECTANGLE
FRAME
DIMENSION
TEXT
WIRE
POLYGON
WIRE
SYMBOL
PIN
CIRCLE
RECTANGLE
FRAME
DIMENSION
TEXT
WIRE
POLYGON
WIRE

Object hierarchy of a Schematic:

SCHEMATIC
GRID
LAYER
LIBRARY
ATTRIBUTE
VARIANTDEF
PART
ATTRIBUTE
VARIANT
SHEET
CIRCLE
RECTANGLE
FRAME
DIMENSION
TEXT
WIRE
POLYGON
WIRE
INSTANCE
ATTRIBUTE
MODULEINST
BUS
SEGMENT
LABEL
TEXT
WIRE
WIRE
NET
SEGMENT
JUNCTION
PINREF
PORTREF
TEXT
WIRE

MODULE
PORT
PART
SHEET
(same as above)

Change note from version 5 to version 6, compatibility

« Since version 6 the instance is in the hierarchy no longer below the part but
below the sheet.
o The part is no longer below the sheet, but below the schematic.

For compatibility reasons the access by the according member functions is further
supported, but the behaviour of the Object Functions reflects the new hierarchy.

Object hierarchy of a Board:

BOARD
GRID
LAYER
LIBRARY
ATTRIBUTE
VARIANTDEF
CIRCLE
HOLE
RECTANGLE
FRAME
DIMENSION
TEXT
WIRE
POLYGON
WIRE
ELEMENT
ATTRIBUTE
VARIANT
SIGNAL
CONTACTREF
POLYGON
WIRE
VIA
WIRE

UL_ARC

Data members
anglel real (start angle, 0.0...359.9)
angle2 real (end angle, 0.0...719.9)

cap int (Cap_...)
layer int
radius int
width int

x1l, yl int (starting point)
x2, y2 int (end point)

xc, yc int (center point)

See also UL WIRE

Constants

CAP FLAT flat arc ends
CAP_ROUND round arc ends

Note

Start and end angles are defined mathematically positive (i.e. counterclockwise),
with anglel < angle2. In order to assure this condition, the start and end point of an
UL_ARC may be exchanged with respect to the UL_WIRE the arc has been
derived from.

Example

board (B) {
B.wires (W) {
if (W.arc)

printf ("Arc: (%f $f), (%f %f), (%f %f)\n",
uZ2mm (W.arc.xl), u2mm(W.arc.yl), u2mm(W.arc.x2),
u2mm (W.arc.y2), u2mm(W.arc.xc), uz2mm(W.arc.yc));

}
}

UL_AREA

Data members
x1, y1 int (lower left corner)
X2, y2 int (upper right corner)
See
also UL_BOARD, UL_DEVICE, UL_PACKAGE, UL_SHEET, UL_SYMBOL

A UL_AREA is an abstract object which gives information about the area covered
by an object. For a UL_PACKAGE or UL_SYMBOL in a UL_ELEMENT or
UL_INSTANCE context, respectively, the area is given in absolute drawing
coordinates, including the offset of the element or instance and including the area
of moved texts after SMASH.

Example
board (B) {
printf ("Area: (%f %f), (%f %f)\n",
u2mm (B.area.x1l), uZ2mm(B.area.yl), u2mm(B.area.x2),

u2mm (B.area.y2)) ;
}

UL_ATTRIBUTE

Data members

constant int (O=variable, i.e. allows overwriting, 1=constant - see note)
defaultvalue string (see note)

display int (ATTRIBUTE DISPLAY FLAG ...)

name string

text UL _TEXT (see note)

value string

See also UL_DEVICE, UL_PART, UL _INSTANCE, UL _ELEMENT

Constants

ATTRIBUTE DISPLAY FLAG OFF nothing is dlsplayed
ATTRIBUTE DISPLAY FLAG VALUE value is displayed
ATTRIBUTE DISPLAY FLAG NAME name 1is dlsplayed

A UL_ATTRIBUTE can be used to access the attributes that have been defined in
the library for a device, or assigned to a part in the schematic or board.

Note

display contains a bitwise or'ed value consisting

of aTTrRIBUTE DIsPLAY FLAG ... and defines which parts of the attribute are actually
drawn. This value is only valid if disp1ay is used in a UL_INSTANCE or
UL_ELEMENT context.

In a UL_ELEMENT context constant only returns an actual value if /b annotation
1s active, otherwise it returns 0.

The defaultvalue member returns the value as defined in the library (if different
from the actual value, otherwise the same as vaiue). In a UL_ELEMENT
context defaultvalue only returns an actual value if f/b annotation is active,
otherwise an empty string is returned.

The text member is only available in a UL_INSTANCE or UL_ELEMENT
context and returns a UL_TEXT object that contains all the text parameters. The
value of this text object is the string as it will be displayed according to the
UL_ATTRIBUTE's 'display' parameter. If called from a different context, the data
of the returned UL_TEXT object is undefined.

For global attributes only name and vaiue are defined.

Example

schematic (SCH) {

SCH.parts (P) {
P.attributes (A) {
printf ("%s = %s
}
}
}
schematic (SCH) {
SCH.attributes (A)
printf ("$s $s\n"
}
}

UL_BOARD

Data members
alwaysvectorfont
area
checked
description
grid
headline
name

verticaltext

Loop members
attributes ()
circles()
classes ()
dimensions ()
elements ()
errors ()
frames ()
holes ()
layers ()
libraries()
polygons ()
rectangles ()
signals ()
texts ()
variantdefs ()

wires ()

\l'l",

UL

A.name, A.value);

{ // global attributes
, A

.name, A.value);

int (ALWAYS VECTOR FONT ..
UL _AREA

int (see note)

string

UL_GRID

string

string (see note)

int (VERTICAL TEXT ..

., See note)

2

ATTRIBUTE (see note)

UL

CIRCLE

CLASS

UL
UL

DIMENSION

UL

ELEMENT

UL
UL

ERROR

FRAME

UL
UL

HOLE

LAYER

UL

LIBRARY

UL

POLYGON

UL

RECTANGLE

UL

UL_SIGNAL

UL

TEXT

UL

VARIANTDEF

UL

WIRE

See also UL_LIBRARY, UL _SCHEMATIC, variant()

Constants

ALWAYS VECTOR FONT GUI

ALWAYS VECTOR FONT PERSISTENT

VERTICAL TEXT UP
VERTICAL TEXT DOWN

Note

alwaysvectorfont is set in the user interface dialog
alwaysvectorfont is set persistent in this board

reading direction for vertical texts: up
reading direction for vertical texts: down

The value returned by alwaysvectorfont can be used in boolean context or can be
masked with the aLways vecTor roNT ... constants to determine the source of this
setting, as in
if (B.alwaysvectorfont) {

// alwaysvectorfont is set in general

}
if (B.alwaysvectorfont & ALWAYS VECTOR FONT GUI) {
// alwaysvectorfont is set in the user interface

}
The value returned by checked can be used in boolean context and is set only after a

recent 'Design Rule Check' (DRC).
The name member returns the full file name, including the directory.

The attributes () loop member loops through the global attributes.

Example

board (B) {
B.elements (E) printf ("Element: %s\n", E.name);
B.signals (S) printf("Signal: %$s\n", S.name) ;

}

UL_BUS

Data members

name string (BUS NAME LENGTH)
Loop members

segments () UL _SEGMENT
See also UL_SHEET

Constants

max. length of a bus name (obsolete - as from version 4 bus names can

BUS_NAME LENGTH
- - have any length)

Example

schematic (SCH) {
SCH.sheets (SH) {
SH.busses (B) printf ("Bus: %s\n", B.name) ;

}

UL_CIRCLE

Data members

layer int
radius int
width int
X, ¥ int (center point)

See also UL_BOARD, UL _PACKAGE, UL_SHEET, UL _SYMBOL

Example

board (B) {
B.circles (C) {
printf ("Circle: (%f %f), r=%d, w=%d\n",
u2mm (C.x), u2mm(C.y), u2mm(C.radius), u2mm(C.width)) ;
}
}

UL_CLASS

Data members

clearance [number] int (see note)
drill int

name string (see note)
number int

width int

See also Design Rules, UL NET, UL_SIGNAL, UL _SCHEMATIC, UL _BOARD

Note

The c1earance member returns the clearance value between this net class and the
net class with the given number. If the number (and the square brackets) is
ommitted, the net class's own clearance value is returned. If a number is given, it
must be between 0 and the number of this net class.

If the name member returns an empty string, the net class is not defined and
therefore not in use by any signal or net.

Example

board (B) {
B.signals (S) {
printf ("$-10s %d %$s\n", S.name, S.class.number, S.class.name);
}
}

UL_CONTACT

Data members
name string (CONTACT NAME LENGTH)

pad UL _PAD
signal string
smd UL_SMD
X, Y int (center point, see note)
Loop members
polygons () UL_POLYGON (of arbitrary pad shapes)
wires () UL_WIRE (of arbitrary pad shapes)

See
also UL PACKAGE, UL PAD, UL SMD, UL CONTACTREF, UL _PINREF

Constants

max. recommended length of a contact name (used in formatted

CONTACT NAME LENGTH
output only)

Note

The signal data member returns the signal this contact is connected to (only
available in a board context).

The coordinates (x, y) of the contact depend on the context in which it is called:

o 1if the contact i1s derived from a UL_LIBRARY context, the coordinates of
the contact will be the same as defined in the package drawing
 1n all other cases, they will have the actual values from the board

Example

library (L) {
L.packages (PAC) {
PAC.contacts (C) {
printf ("Contact: '%s', (%f %f)\n",
C.name, u2mm(C.x), u2mm(C.y));
}
}
}

UL_CONTACTREF

Data members
contact UL _CONTACT
element UL ELEMENT
route int (CONTACT ROUTE_...)
routetag string (see note)

See also UL_SIGNAL, UL _PINREF

Constants

CONTACT_ROUTE_ALL must explicitly route to all contacts
CONTACT_ROUTE_ANY may route to any contact

Note

If route has the value contact rouTE aNY, the routetag data member returns an
additional tag which describes a group of contactrefs belonging to the same pin.

Example

board (B) {
B.signals (S) {

printf ("Signal '%s'\n", S.name);
S.contactrefs (C) {
printf ("\t%s, %s\n", C.element.name, C.contact.name);

}
}
}

UL_DEVICE

Data members
activetechnology string (see note)

area UL AREA
description string
headline string
library §gigg
libraryurn string (see note)
libraryversion int (see note)
name string (DEVICE NAME LENGTH)
package UL PACKAGE (see note)
prefix string (DEVICE PREFIX LENGTH)
technologies string (see note)
value string ("On" or "Off")

Loop members
attributes () UL_ATTRIBUTE (see note)
gates () UL GATE

See also UL_DEVICESET, UL_LIBRARY, UL PART

Constants

DEVICE NAME LENGTH max. recommended length of a device name (used in formatted
- - output only)

DEVICE PREFIX LEngry Max. recommended length of a device prefix (used in formatted
- - output only)

All members of UL_DEVICE, except for name and technologies, return the same
values as the respective members of the UL_DEVICESET in which the

UL_DEVICE has been defined. The name member returns the name of the package
variant this device has been created for using the PACKAGE command. When
using the description text keep in mind that it may contain newline characters

("\n").
Note

The value returned by the activetechnology member depends on the context in
which it 1s called:

« if the device is derived from the deviceset that is currently edited in the
library editor window, the active technology, set by
the TECHNOLOGY command, will be returned

« if the device is derived from a UL_PART, the actual technology used by the
part will be returned

« otherwise an empty string will be returned.

The package data member returns the package that has been assigned to the device
through a PACKAGE command. It can be used as a boolean function to check
whether a package has been assigned to a device (see example below).

The value returned by the technologies member depends on the context in which it
18 called:

o if the device is derived from a UL_DEVICESET, technologies will return a
string containing all of the device's technologies, separated by blanks

« if the device is derived from a UL_PART, only the actual technology used
by the part will be returned.

The attributes () loop member takes an additional parameter that specifies for
which technology the attributes shall be delivered (see the second example below).

The 1ibraryurn and 1ibraryversion are only applicable if this UL_DEVICE comes
from a managed library. If not, 1ibraryurn will be the empty string
and libraryversion will be -1.

Examples

library (L) {
L.devicesets (S) {
S.devices (D) {
if (D.package)
printf ("Device: %s, Package: %$s\n", D.name, D.package.name);
D.gates (G) {
printf ("\t%s\n", G.name) ;
}
}
}
}

library (L) {

L.devicesets (D
DS.devices (D
string tI[]

int n = strsplit(t, D.technologies, ' ');

for (int i = 0; 1 < n; i++) {
D.attributes (A, t[i]) {

printf ("%$s = %$s\n", A.name, A.value);

S) H
) |

UL_DEVICESET

Data members

activedevice UL _DEVICE (see note)
area UL AREA
description string
headline string (see note)
library §gigg
libraryurn string (see note)
libraryversion int (see note)
name string (DEVICE NAME LENGTH)
prefix string (DEVICE PREFIX_LENGTH)
value string ("On" or "Off")
Loop members
devices () UL _DEVICE
gates () UL GATE

See also UL_DEVICE, UL_LIBRARY, UL PART

Constants

DEVICE NAME LENGTH max. recommended length of a device name (used in formatted
- - output only)

DEVICE PREFIX LENGTH MaX. recommended length of a device prefix (used in formatted
- - output only)

Note

If a deviceset is currently edited in a library editor window,

the activedevice member returns the active device, selected by

a PACKAGEcommand. It can be used as a boolean function to check the
availability of such an activedevice (see example below).

The description member returns the complete descriptive text as defined with
the DESCRIPTION command, while the head1ine member returns only the first

line of the description, without any HTML tags. When using the description text
keep in mind that it may contain newline characters (*\n").

The 1ibraryurn and 1ibraryversion are only applicable if this UL_DEVICESET
comes from a managed library. If not, 1ibraryurn will be the empty string
and libraryversion will be -1.

Example

library (L) {
L.devicesets (D) {
printf ("Device set: %s, Description: %$s\n", D.name, D.description);
D.gates (G) {
printf ("\t%s\n", G.name) ;
}
}
}
if (deviceset)
deviceset (DS) {
if (DS.activedevice)
printf ("Active Device: %$s\n", DS.activedevice.name) ;

}

UL_DIMENSION

Data members
dtype int (DIMENSION ...)
layer int
extlength int
extoffset iﬁ

extwidth int

precision iﬁ

ratio int

size iﬁ

unit int (GRID UNIT ...)

visible int (unit, O=off, 1=on)

width int

x1l, yl int (first reference point)

X2, y2 int (second reference point)

x3, y3 int (alignment reference point)
Loop members

texts () UL _TEXT

wires () UL _WIRE

See also UL_BOARD, UL_GRID, UL _PACKAGE, UL_SHEET, UL_SYMBOL

Constants

DIMENSION_PARALLEL linear dimension with parallel measurement line
DIMENSION_ HORIZONTAL linear dimension with horizontal measurement line
DIMENSION_ VERTICAL linear dimension with vertical measurement line

DIMENSION RADIUS radial dimension

DIMENSION_ DIAMETER diameter dimension
DIMENSION ANGLE angle dimension
DIMENSION_LEADER an arbitrary pointer

Note

The texts () and wires () loop members loop through all the texts and wires the
dimension consists of.

Example

board (B) {
B.dimensions (D) {
printf ("Dimension: (%f %f), (%f %f), (%f %f)\n",
u2mm (D.x1), u2mm(D.yl), uZ2mm(D.x2), uZ2mm(D.y2), u2mm(D.x3),
u2mm (D.y3)) ;
}
}

UL_ELEMENT

Data members

angle real (0.0...359.9)
attribute[] string (see note)
column string (see note)
locked int
mirror iﬁ
name string (ELEMENT NAME LENGTH)
package UL PACKAGE
populate int (O=do not populate, 1=populate)
row string (see note)
smashed int (see note)
spin int
value string (ELEMENT VALUE LENGTH)
X,y int (origin point)
Loop members
attributes () UL _ATTRIBUTE
texts () UL _TEXT (see note)

See also UL_BOARD, UL_CONTACTREF

Constants

max. recommended length of an element name (used in
formatted output only)
max. recommended length of an element value (used in
formatted output only)

ELEMENT NAME LENGTH

ELEMENT VALUE LENGTH

Note

The attribute[] member can be used to query a UL_ELEMENT for the value of a
given attribute (see the second example below). The returned string is empty if
there is no attribute by the given name, or if this attribute is explicitly empty.

The texts () member only loops through those texts of the element that have been

detached using SMASH, and through the visible texts of any attributes assigned to
this element. To process all texts of an element (e.g. when drawing it), you have to
loop through the element's own texts () member as well as the texts () member of
the element's package.

angle defines how many degrees the element is rotated counterclockwise around its
origin.

The column and row members return the column and row location within
the frame in the board drawing. If there is no frame in the drawing, or the element
is placed outside the frame, a '»' (question mark) is returned.

The smashed member tells whether the element is smashed. This function can also
be used to find out whether there is a detached text parameter by giving the name of
that parameter in square brackets, as in smashed["varLue"]. This is useful in case you
want to select such a text with the MOVEcommand by doing move rs>varue. Valid
parameter names are "NAME" and "VALUE", as well as the names of any user
defined attributes. They are treated case insensitive, and they may be preceded by

a '>' character.

Examples

board (B) {
B.elements (E) {
printf ("Element: %s, (%f %f), Package=%s\n",
E.name, u2mm(E.x), u2mm(E.y), E.package.name) ;
}
}
board (B) {
B.elements (E) {
if (E.attribute["REMARK"])
printf ("%$s: %$s\n", E.name, E.attribute["REMARK"]) ;
}
}

UL_ERROR

Data members
area UL _AREA
area2 UL_AREA (see note)
code int (identification number)

description
layer
modulename
sl
s2
s3
s4
sb5
s6
sheet
signature
state
type
X, Y

Loop members
contours ()

trin
nt
tr1
strin

E,V'E.

(see note)

©v X
Ni=f=]
==

tr1
tr1
strin

int (sheet number)
string (signature string)
int (ERROR_STATE ...)
int (ERROR TYPE ...)
int (center point)

©n
=}

w1
b.

:

UL_WIRE (see note)

See also UL_BOARD, UL_SCHEMATIC

Constants

ERROR STATE ACTIVE

ERROR_STATE APPROVED
ERROR _STATE PROCESSED

ERROR TYPE NONE
ERROR TYPE WARNING
ERROR TYPE ERROR

ERROR TYPE CONSISTENCY

Note

A UL_ERROR is an abstract object which gives informations about ERC/DRC

CITOIS.

The members 1ayer and contours () are only available in UL_BOARD context and
the members area2, modulename, s1..s6 and sheet are only available in

error has not yet been approved or processed
error has been approved
error has been processed

no error

warning

error

consistency error

UL_SCHEMATIC context.

The member area2 is a second area, only available on some ERC errors and refers
to the corresponding area in the board. The members s1. . seare string values, which
contain for ERC errors specific informations like names.

The contours () loop member loops through the contour wires of the DRC error

polygon.

Example

string sl;
string ErrLst|[
int ErrCnt = 0

18

string ErrLstHeader;
if (board) board(B) {

ErrLstHeader = "Code\tState\tDescription\tLayer\tSignature";

if (B.checked) {
B.errors (ER) {

if (ER.state == ERROR_STATE_ACTIVE)

sprintf (s1, "%d\t%d\t%s\t%d\t%s", ER.code, ER.state,

ER.description, ER.layer, ER.signature);
ErrLst [ErrCnt++] = sl;

}

}
}

if (schematic) schematic (SCH) {

ErrLstHeader =

{

"Code\tState\tDescription\tSheet\tModule\tsl\ts2\ts3\ts4\ts5\ts6";

if (SCH.checked) {
SCH.errors (ER) {

if (ER.state == ERROR STATE ACTIVE)

sprintf (sl

4

ER.code, ER.state, ER.description, ER.sheet,
ER.s3, ER.s4, ER.s5, ER.s6);
ErrLst [ErrCnt++] = sl;

}

}

}

dlgbialog ("Errors") {
int sel = -1;

dlgListView (ErrLstHeader, ErrLst, sel);
dlgPushButton ("+OK") dlgAccept()

}s

UL_FRAME

Data members

columns int(-127...127)

rows int (-26...26)

border int (FRAME_BORDER . ..)

layer int

x1l, yl int (lower left corner)

X2, y2 int (upper right corner)
Loop members

texts () UL_TEXT

wires () UL _WIRE

{

ER.modulename,

ER.sl1,

See also UL_BOARD, UL _PACKAGE, UL_SHEET, UL_SYMBOL

Constants

FRAME_BORDER BOTTOM
FRAME_BORDER RIGHT
FRAME _BORDER TOP
FRAME BORDER LEFT

bottom border is drawn
right border is drawn
top border is drawn
left border is drawn

"$A\Nt2d\t3s\tsd\tss\tss\t%ss\tss\tss\tss\tss",
ER.

s2,

Note

border contains a bitwise or'ed value consisting of Frave_BorDER ... and defines
which of the four borders are actually drawn.

The texts () and wires () loop members loop through all the texts and wires the
frame consists of.

Example

board (B) {
B.frames (F) {
printf ("Frame: (%f %f), (%f %f)\n",
uZ2mm (F.x1), u2mm(F.yl), u2mm(F.x2), u2mm(F.y2));
}

UL_GATE

Data members

addlevel int (GATE _ADDLEVEL ...)
name string (GATE NAME LENGTH)
swaplevel int

symbol UL SYMBOL

X,y int (origin point, see note)

See also UL DEVICE

Constants

GATE ADDLEVEL MUST must

GATE_ADDLEVEL_CAN can

GATE_ADDLEVEL NEXT next

GATE_ADDLEVEL_REQUEST request

GATE_ADDLEVEL ALWAYS always

GATE NAME LENGTH mz;x.)recommended length of a gate name (used in formatted output
only

Note

The coordinates of the origin point (X, y) are always those of the gate's position
within the device, even if the UL_GATE has been derived from a UL_INSTANCE.

Example

library (L) {
L.devices (D) {
printf ("Device: %s, Package: %$s\n", D.name, D.package.name) ;
D.gates (G) {

printf ("\t%s, swaplevel=%d, symbol=%s\n",
G.name, G.swaplevel, G.symbol.name) ;
}
}
}

UL_GRID

Data members
distance real

dots int (O=lines, 1=dots)
multiple int

on int (O=off, 1=on)
unit int (GRID UNIT ...)
unitdist int (GRID_UNIT ...)

See also UL_BOARD, UL_LIBRARY, UL_SCHEMATIC, Unit Conversions

Constants

GRID UNIT MIC microns
GRID UNIT MM millimeter
GRID UNIT MIL mil

GRID UNIT INCH inch

Note

unitdist returns the grid unit that was set to define the actual grid size (returned
by distance), while unit returns the grid unit that is used to display values or

interpret user input.

Example

board (B) {
printf ("Gridsize=%f\n", B.grid.distance);

}

UL_HOLE

Data members

diameter[layer] int (see note)
drill int

drillsymbol iﬁ

X,y int (center point)

See also UL_BOARD, UL_PACKAGE

Note

diameter[] 18 only defined vor layers 1ayer_tstop and ravyer Bstop and returns the
diameter of the solder stop mask in the given layer.

drillsymbol returns the number of the drill symbol that has been assigned to this
drill diameter (see the manual for a list of defined drill symbols). A value
of 0 means that no symbol has been assigned to this drill diameter.

Example

board (B) {
B.holes (H) {
printf ("Hole: (%f %f), drill=%f\n",
uzmm(H.x), u2mm(H.y), uZ2mm(H.drill));
}
}

UL_INSTANCE

Data members

angle real (0, 90, 180 and 270)
column string (see note)
gate UL GATE
mirror int
name string (INSTANCE NAME LENGTH)
part UL PART
row string (see note)
sheet int (O=unused, >0=sheet number)
smashed int (see note)
value string (PART VALUE_LENGTH)
X,y int (origin point)

Loop members
attributes () UL _ATTRIBUTE (see note)
texts () UL _TEXT (see note)
xrefs () UL _GATE (see note)

See also UL PINREF

Constants

max. recommended length of an instance name (used in
formatted output only)

max. recommended length of a part value (instances do not have
a value of their own!)

INSTANCE NAME LENGTH

PART VALUE LENGTH

Note

The attributes () member only loops through those attributes that have been
explicitly assigned to this instance (including smashed attributes).

The texts () member only loops through those texts of the instance that have been
detached using SMASH, and through the visible texts of any attributes assigned to
this instance. To process all texts of an instance, you have to loop through the
instance's own texts () member as well as the texts () member of the instance's
gate's symbol. If attributes have been assigned to an instance, texts () delivers their
texts in the form as they are currently visible.

The column and row members return the column and row location within

the frame on the sheet on which this instance is invoked. If there is no frame on that
sheet, or the instance is placed outside the frame, a '2' (question mark) is returned.
These members can only be used in a sheet context.

The smashed member tells whether the instance is smashed. This function can also
be used to find out whether there is a detached text parameter by giving the name of
that parameter in square brackets, as in smashed["varLue"]. This is useful in case you
want to select such a text with the MOVE command by doing move rs>varue. Valid
parameter names are "NAME", "VALUE", "PART" and "GATE", as well as the
names of any user defined attributes. They are treated case insensitive, and they
may be preceded by a '>' character.

The xrefs () member loops through the contact cross-reference gates of this
instance. These are only of importance if the ULP is going to create a drawing of
some sort (for instance a DXF file).

Example

schematic (S) {
S.parts (P) {

printf ("Part: %s\n", P.name);
P.instances (I) {
if (I.sheet != 0)
printf ("\t%s used on sheet %d\n", I.name, I.sheet);

}
}
}

UL_JUNCTION

Data members
diameter EE
X,y int (center point)

See also UL SEGMENT

Example

schematic (SCH) {
SCH.sheets (SH) {
SH.nets (N) {

N.segments (SEG) {
SEG.junctions (J) {
printf ("Junction: (%f %f)\n", u2mm(J.x), u2mm(J.y));

UL_LABEL

Data members

angle gggl(0.0.0359.9)

layer nt

mirror iﬁ

spin int

text UL _TEXT

X,y int (origin point)

xref int (O=plain, 1=cross-reference)
Loop members

wires () UL _WIRE (see note)

See also UL SEGMENT

Note

If xref returns a non-zero value, the wires () loop member loops through the wires
that form the flag of a cross-reference label. Otherwise it is an empty loop.

The angle, 1ayer, mirror and spin members always return the same values as those
of the UL_TEXT object returned by the text member. The xand y members of the
text return slightly offset values for cross-reference labels (non-zero xref),
otherwise they also return the same values as the UL_LABEL.

xref 1S only meaningful for net labels. For bus labels it always returns 0.

Example

sheet (SH) {
SH.nets (N) {
N.segments (S) {
S.labels (L) {
printf ("Label: (%f $f) '%$s'", uw2mm(L.x), u2mm(L.y), L.text.value);
}
}
}
}

UL_LAYER

Data members

color int

£i11 int

name string (LAYER NAME LENGTH)
number int

used int (O=unused, 1=used)

visible int (O=off, 1=on)
See also UL_BOARD, UL _LIBRARY, UL SCHEMATIC

Constants

LAYER NAME LENGTH max. recommended length of a layer name (used in formatted output
- - only)

LAYER TOP layer numbers

LAYER BOTTOM
LAYER PADS
LAYER VIAS
LAYER UNROUTED
LAYER DIMENSION
LAYER TPLACE
LAYER BPLACE
LAYER TORIGINS
LAYER BORIGINS
LAYER TNAMES
LAYER BNAMES
LAYER TVALUES
LAYER BVALUES
LAYER TSTOP
LAYER BSTOP
LAYER TCREAM
LAYER BCREAM
LAYER TFINISH
LAYER BFINISH
LAYER TGLUE
LAYER BGLUE
LAYER TTEST
LAYER BTEST
LAYER TKEEPOUT
LAYER BKEEPOUT
LAYER TRESTRICT
LAYER BRESTRICT
LAYER VRESTRICT
LAYER DRILLS
LAYER HOLES
LAYER MILLING
LAYER MEASURES
LAYER DOCUMENT
LAYER REFERENCE
LAYER_TDOCU
LAYER BDOCU
LAYER NETS

LAYER BUSSES
LAYER PINS
LAYER SYMBOLS
LAYER NAMES
LAYER VALUES
LAYER INFO
LAYER GUIDE

LAYER_USER lowest number for user defined layers (100)

Example

board (B) {
B.layers (L) printf ("Layer %3d %s\n", L.number, L.name);

}

UL_LIBRARY

Data members
description string (see note)

grid UL GRID

headline string

id string (see note)

name string (LIBRARY NAME_LENGTH, see note)
Loop members

devices () UL _DEVICE

devicesets () UL _DEVICESET

layers () UL LAYER

packages () UL PACKAGE

symbols () UL SYMBOL

See also UL_BOARD, UL_SCHEMATIC

Constants

max. recommended length of a library name (used in formatted

LIBRARY NAME LENGTH
output only)

The devices () member loops through all the package variants and technologies of
all UL_DEVICESETsS in the library, thus resulting in all the actual device
variations available. The devicesets () member only loops through the
UL_DEVICESETS, which in turn can be queried for their UL_DEVICE members.

Note

The description member returns the complete descriptive text as defined with
the DESCRIPTION command, while the head1ine member returns only the first
line of the description, without any HTML tags. When using the description text
keep in mind that it may contain newline characters (*\n").

The description and headline information is only available within a library
drawing, not if the library is derived form a UL_BOARD or UL_SCHEMATIC
context.

If the library is derived form a UL_BOARD or UL_SCHEMATIC
context, name returns the pure library name (without path or extension). Otherwise
it returns the full library file name.

The 14 member is only applicable if this UL_LIBRARY refers to a managed
library. If not, id will be the empty string.

Example

library (L) {
L.devices (D) printf ("Dev: %s\n", D.name) ;
L.devicesets (D) printf("Dev: %$s\n", D.name);
L.packages (P) printf ("Pac: %s\n", P.name);
L.symbols (S) printf ("Sym: %s\n", S.name);

}
schematic(S) {
S.libraries (L) printf ("Library: %s\n", L.name);

}

UL_MODULE

Data members

dx, dy 1_1’1‘[(SiZG)
description string
headline string
name string
prefix §gigg
Loop members
parts () UL _PART
ports () UL PORT
sheets () UL_SHEET
variantdefs () UL _VARIANTDEF

See also UL_PORT, UL_SCHEMATIC

Example

schematic (SCH) {
SCH.modules (M) {
M.parts (P) printf ("Part: %$s\n", P.name);
}
}

UL_MODULEINST

Data members

angle real (0, 90, 180 and 270)
column string (see note)
mirror EE
module UL MODULE
modulevariant string (selected variantdef of module)
name string (INSTANCE NAME LENGTH)
offset HE
row string (see note)
sheet int (sheet number)
smashed int (see note)
X,y int (origin point)
Loop members
texts () UL _TEXT (see note)
wires () UL _WIRE

See also UL_PORTREF, UL_VARIANTDEF

Constants

max. recommended length of an instance name (used in

INSTANCE_NAME LENGTH
- - formatted output only)

Note

The texts () member loops through all texts of the module instance, no matter
if smashed or not.

The column and row members return the column and row location within

the frame on the sheet on which this instance is invoked. If there is no frame on that
sheet, or the instance is placed outside the frame, a '2' (question mark) is returned.
These members can only be used in a sheet context.

The smashed member tells whether the instance is smashed. This function can also
be used to find out whether there is a detached text parameter by giving the name of
that parameter in square brackets, as in smashed["NaME"] . This is useful in case you
want to select such a text with the MOVE command by doing Move mop1>NAME.

Example

schematic (SCH) {
SCH.sheets (SH) {
SH.moduleinsts (MI) {
printf ("Module instance %s is located on sheet %d\n", MI.name,
MI.sheet);
}
}
}

UL_NET

Data members
class UL CLASS
column string (see note)

name string (NET NAME LENGTH)
row string (see note)
Loop members
portrefs () UL_PORTREF
pinrefs () UL_PINREF (see note)
segments () UL _SEGMENT (see note)

See also UL_SHEET, UL_SCHEMATIC

Constants

max. recommended length of a net name (used in formatted output

NET NAME LENGTH
only)

Note

The pinrefs () loop member can only be used if the net is in a schematic context.
The segments () loop member can only be used if the net is in a sheet context.

The co1umn and row members return the column and row locations within

the frame on the sheet on which this net is drawn. Since a net can extend over a
certain area, each of these functions returns two values, separated by a blank. In
case of column these are the left- and rightmost columns touched by the net, and in
case of row it's the top- and bottommost row.

When determining the column and row of a net on a sheet, first the column and
then the row within that column is taken into account. Here XREF labels take
precedence over normal labels, which again take precedence over net wires.

If there is no frame on that sheet, "» 2" (two question marks) is returned. If any
part of the net is placed outside the frame, either of the values may be '2' (question
mark). These members can only be used in a sheet context.

If the net is retrieved with ur_scheEMATIC.allnets () the valid members
are: name, class and pinrefs (). The pinrefs () loop member loops also through the
virtual pinrefs generated by module instances.

Example

schematic (S) {
S.nets (N) {
printf ("Net: %s\n", N.name) ;
// N.segments (SEG) will NOT work here!

}
// or with virt. nets:
S.allnets (N) {
printf ("Net: %s\n", N.name) ;
}
}
schematic (S) {
S.sheets (SH) {
SH.nets (N) {
printf ("Net: %s\n", N.name) ;
N.segments (SEG) {
SEG.wires (W) {
printf ("\tWire: (%f %f) (%f %f)\n",
uZ2mm (W.x1), u2mm(W.yl), uZ2mm(W.x2), u2mm(W.y2));

UL_PACKAGE

Data members

area UL AREA

description strin

headline string

library §gigg

libraryurn string (see note)

libraryversion int (see note)

name string (PACKAGE NAME LENGTH)
Loop members

circles () UL CIRCLE

contacts () UL CONTACT

dimensions () UL DIMENSION

frames () UL FRAME

holes () UL HOLE

polygons () UL _POLYGON (see note)

rectangles () UL RECTANGLE

texts () UL _TEXT (see note)

wires () UL_WIRE (see note)

See also UL_DEVICE, UL_ELEMENT, UL LIBRARY

Constants

max. recommended length of a package name (used in formatted

PACKAGE _NAME LENGTH
output only)

Note

The description member returns the complete descriptive text as defined with
the DESCRIPTION command, while the head1ine member returns only the first

line of the description, without any HTML tags. When using the description text
keep in mind that it may contain newline characters ('\n").

If the UL_PACKAGE is derived from a UL_ELEMENT, the texts () member only
loops through the non-detached texts of that element.

If the UL_PACKAGE is derived from a UL_ELEMENT, polygons and wires
belonging to contacts with arbitrary pad shapes are available through the loop
members polygons () and wires () of this contact.

The 1ibraryurn and 1ibraryversion are only applicable if this UL_PACKAGE
comes from a managed library. If not, 1ibraryurn will be the empty string
and libraryversion will be -1.

Example

library (L) {

L.packages (PAC) {
printf ("Package: %$s\n", PAC.name) ;

PAC.contacts (C) {

if (C.pad)

printf ("\tPad: %s, (%
C.name, u2mm (

else if (C.smd)
printf ("\tSmd: %s, (%
C.name, u2mm (

f $f)\n",
C.pad.x), u2mm(C.pad.y));

f %f)\n",
C.smd.x), u2mm(C.smd.y));
}
}
}
board (B) {
B.elements (E) {
printf ("Element: %s, Package: %s\n", E.name, E.package.name) ;
}
}

UL_PAD

Data members

angle real (0.0...359.9)
diameter[layer] int

drill int

drillsymbol ﬂi

elongation iﬁ

flags int (PAD_FLAG ...)

name string (PAD NAME LENGTH)
shape [layer] int (PAD_SHAPE ...)
signal §gigg

X, Y int (center point, see note)

See also UL PACKAGE, UL CONTACT, UL _SMD

Constants

PAD_FLAG_STOP generate stop mask
PAD_FLAG_THERMALS generate thermals
PAD_FLAG_FIRST use special "first pad" shape
PAD SHAPE SQUARE square

PAD SHAPE ROUND round
PAD_SHAPE_OCTAGON octagon

PAD SHAPE LONG long

PAD SHAPE OFFSET offset

max. recommended length of a pad name (same

PAD NAME LENGTH
- - as CONTACT NAME LENGTH)

Note

The parameters of the pad depend on the context in which it is accessed:

 if the pad is derived from a UL_LIBRARY context, the coordinates (x, y)
and angle will be the same as defined in the package drawing
 1n all other cases, they will have the actual values from the board

The diameter and shape of the pad depend on the layer for which they shall be
retrieved, because they may be different in each layer depending on the Design
Rules. If one of the layers LAYER_TOP..LAYER_BOTTOM, LAYER_TSTOP or
LAYER_BSTORP is given as the index to the diameter or shape data member, the
resulting value will be calculated according to the Design Rules. If LAYER_PADS
is given, the raw value as defined in the library will be returned.

drillsymbol returns the number of the drill symbol that has been assigned to this
drill diameter (see the manual for a list of defined drill symbols). A value
of 0 means that no symbol has been assigned to this drill diameter.

angle defines how many degrees the pad is rotated counterclockwise around its
center.

elongation 1s only valid for shapes PAD_SHAPE_LONG and
PAD_SHAPE_OFFSET and defines how many percent the long side of such a pad
is longer than its small side. This member returns O for any other pad shapes.

The value returned by f1ags must be masked with the pap_rrac ... constants to
determine the individual flag settings, as in

if (pad.flags & PAD FLAG STOP) {

Note that if your ULP just wants to draw the objects, you don't need to check these

flags explicitly. The diameter(] and shape (1 members will return the proper data;
for instance, if pPAD FLAG sTOP 1S Set, diameter [LAYER TsTOP] Will return o, which

should result in nothing being drawn in that layer. The f1ags member is mainly for
ULPs that want to create script files that create library objects.

Example

library (L) {
L.packages (PAC) {
PAC.contacts (C) {
if (C.pad)
printf ("Pad: '%s', (%f $f), d=%f\n",
C.name, u2mm(C.pad.x), u2mm(C.pad.y),
u2mm (C.pad.diameter [LAYER BOTTOM])) ;
}
}
}

UL_PART

Data members

attribute[] string (see note)

device UL DEVICE

deviceset UL DEVICESET

module UL _MODULE (see note)

modulepart UL_PART (see note)

modulepath string (see note)

name string (PART NAME LENGTH)

populate int (O=do not populate, 1=populate)

value string (PART VALUE LENGTH)
Loop members

attributes () UL_ATTRIBUTE (see note)

instances () UL INSTANCE (see note)

variants () UL_VARIANT (see note)

See also UL_SCHEMATIC, UL_SHEET

Constants

PART NAME LENGTH mzix.)recommended length of a part name (used in formatted output
only

PART VALUE LENGTH mzix.)recommended length of a part value (used in formatted output
only

Note

The attribute] member can be used to query a UL_PART for the value of a given
attribute (see the second example below). The returned string is empty if there is no
attribute by the given name, or if this attribute is explicitly empty.

When looping through the attributes () of a UL_PART, only
the name, value, defaultvalue and constant members of the resulting
UL_ATTRIBUTE objects are valid.

When looping through the assembly variants () of a UL_PART, only actual
variants are available. The default assembly variant is not available here. Therefore
this loop is not active on parts without assembly variants.

If the part is in a sheet context, the instances () loop member loops only through
those instances that are actually used on that sheet. If the part is in a schematic or
module context, all instances are looped through.

If the part is a virtual part (virtual parts can be retrieved
with v, scHEMATIC.allparts (), see UL_SCHEMATIC) the instances () loop is
empty.

If the part is from a module or is a virtual part, module refers to this. If not (part in
main schematic), module is null.

If the part is virtual, modulepart is the (real) part from the source module moduie. If
it's a part in main schematic or if it's a module part itself modulepart is null.

If the part is virtual, modulepath is a string with the sequence of names of the
module instances that point to the module containing the part being used. These
names are separated by ":'. In other cases this string is empty.

For example, a virtual part with name 'MI1:R1' has modulepath 'MI1'.

'R101' coming from a module instance 'MX' with offset notation,
dtherSmodulepath'DA)C.

'MAIN:SUB1:SUBSUB1:C5' has modulepath 'MAIN:SUB1:SUBSUB1'.

Examples

schematic (S) {
S.parts (P) printf ("Part: %s\n", P.name);
}
schematic (S) {
S.allparts(P) {
if (P.attribute["REMARK"])
printf ("%$s: %$s\n", P.name, P.attribute["REMARK"]) ;
if (P.modulepart) {
P.modulepart.instances (I)
printf ("$s is a virtual part from %s in module %$s with part
instance on sheet %d\n",
P.name, P.modulepart.name, P.module.name, I.sheet):;
}
else {
P.instances (I)
printf ("%$s is a part on main schematic with instance on sheet
%d\n",
P.name, I.sheet);

}

}
}
schematic(S) {
S.allparts(P) {
if (P.modulepart) {
string miNames[];
int nr = strsplit (miNames,
if (nr == 1)
printf ("%s is a virtual part created by module instance %s in
main schematic.\n",
P.name,

P.modulepath, ':');

miNames [0]) ;
else {
printf ("%s is a virtual part in a multiple hierarchy created by
this path of module instances:\n", P.name);
for (int i = 0; 1 < nr; ++1i)
printf ("$s\n", miNames[i]);

UL_PIN

Data members

angle real (0, 90, 180 and 270)
contact UL_CONTACT (deprecated, see note)
direction int(PIN DIRECTION ...)
function int (PIN FUNCTION FLAG ...)
length int (PIN LENGTH ...)
name string (PIN NAME LENGTH)
net string (see note)
route int (CONTACT ROUTE_...)
swaplevel int
visible int (PIN VISIBLE FLAG ...)
X, ¥ int (connection point)

Loop members
circles () UL _CIRCLE
contacts () UL_CONTACT (see note)
texts () UL TEXT
wires () UL_WIRE

See also UL_SYMBOL, UL_PINREF, UL_CONTACTREF

Constants

PIN DIRECTION NC
PIN DIRECTION_ IN
PIN DIRECTION OUT
PIN DIRECTION IO
PIN DIRECTION OC
PIN DIRECTION PWR
PIN DIRECTION_ PAS
PIN DIRECTION HIZ

not connected

input

output (totem-pole)
in/output (bidirectional)
open collector

power input pin

passive

high impedance output

PIN_DIRECTION SUP supply pin
PIN_FUNCTION FLAG_NONE no symbol

PIN FUNCTION FLAG DOT inverter symbol
PIN FUNCTION FLAG CLK clock symbol
PIN LENGTH POINT no wire
PIN LENGTH SHORT 0.1 inch wire
PIN LENGTH MIDDLE ().2 inch wire
PIN LENGTH LONG 0.3 inch wire
max. recommended length of a pin name (used in formatted output

PIN NAME LENGTH
only)

PIN VISIBLE FLAG OFF no name drawn

PIN_VISIBLE_FLAG_PAD pad name drawn
PIN_VISIBLE_FLAG_PIN pin name drawn

CONTACT_ROUTE_ALL must explicitly route to all contacts
CONTACT_ROUTE_ANY may route to any contact

Note

The contacts () loop member loops through the contacts that have been assigned to
the pin through a CONNECT command. This is the case in a UL_DEVICE context
or coming via UL_PINREF, but not via UL_LIBRARY .symbols(). If this is not the
case the list is empty.

The contact data member returns the contact that has been assigned to the pin
through a CONNECT command. This member is deprecated! It will work for
backwards compatibility and as long as only one pad has been connected to the
pin, but will cause a runtime error when used with a pin that is connected to
more than one pad.

The route member also only makes sense if there's a relation to contacts the pin is
connected to. Otherwise the value is set to 0.

The coordinates (and layer, in case of an SMD) of the contact returned by
the contact data member depend on the context in which it is called:

o if the pin is derived from a UL_PART that is used on a sheet, and if there is
a corresponding element on the board, the resulting contact will have the
coordinates as used on the board

« 1n all other cases, the coordinates of the contact will be the same as defined
in the package drawing

The name data member always returns the name of the pin as it was defined in the
library, with any 'e' character for pins with the same name left intact (see

the PIN command for details).

The texts loop member, on the other hand, returns the pin name (if it is visible) in
the same way as it is displayed in the current drawing type.

The net data member returns the name of the net to which this pin is connected to
(only available in a UL_SCHEMATIC context).

Example

library (L) {
L.symbols (S) {
printf ("Symbol: %s\n", S.name);
S.pins (P) {
printf ("\tPin: %s, (%f %$f)", P.name, u2mm(P.x), u2mm(P.y));
if (P.direction == PIN_DIRECTION_IN)
printf (" input");
if ((P.function & PIN_FUNCTION_FLAG_DOT) 1= 0)
printf (" inverted");
printf ("\n") ;
}

UL_PINREF

Data members
instance UL INSTANCE
part UL PART
pin UL PIN
See also UL_SEGMENT, UL_CONTACTREF

Example

schematic (SCH) {
SCH.sheets (SH) {
printf ("Sheet: %d\n", SH.number) ;
SH.nets (N) {
printf ("\tNet: %$s\n", N.name);
N.segments (SEG) {
SEG.pinrefs (P) {
printf ("connected to: %s, %s, %s\n",
P.part.name, P.instance.name, P.pin.name);

UL_POLYGON

Data members

isolate int
layer int
orphans int (0=off, 1=on)

pour int (POLYGON POUR . ..)

rank HE

spacing int
thermals int (0O=off, 1=on)
width 1_11‘[

Loop members
contours () UL_WIRE (see note)
fillings () UL WIRE
wires () UL _WIRE

See
also UL BOARD, UL PACKAGE, UL SHEET, UL SIGNAL, UL SYMBOL

Constants
POLYGON POUR SOLID solid
POLYGON POUR HATCH hatch

POLYGON POUR CUTOUT cutout

Note

The contours () and fillings () loop members loop through the wires that are used
to draw the calculated polygon if it is part of a signal and the polygon has been
calculated by the RATSNEST command. The wires () loop member always loops
through the polygon wires as they were drawn by the user. For an uncalculated
signal polygon contours () does the same as wires (), and fillings () does nothing.

If the contours () loop member is called without a second parameter, it loops
through all of the contour wires, regardless whether they belong to a positive or a
negative polygon. If you are interested in getting the positive and negative contour
wires separately, you can call contours () with an additional integer parameter (see
the second example below). The sign of that parameter determines whether a
positive or a negative polygon will be handled, and the value indicates the index of
that polygon. If there is no polygon with the given index, the statement will not be
executed. Another advantage of this method is that you don't need to determine the
beginning and end of a particular polygon yourself (by comparing coordinates). For
any given index, the statement will be executed for all the wires of that polygon.
With the second parameter o the behavior is the same as without a second
parameter.

Polygon width

When using the fil1ings () loop member to get the fill wires of a solid polygon,
make sure the width of the polygon is not zero (actually it should be quite a bit
larger than zero, for example at least the hardware resolution of the output device
you are going to draw on). Filling a polygon with zero width may result in
enormous amounts of data, since it will be calculated with the smallest editor
resolution of 1/320000mm!

Partial polygons

A calculated signal polygon may consist of several distinct parts

(called positive polygons), each of which can contain extrusions
(negativepolygons) resulting from other objects being subtracted from the polygon.
Negative polygons can again contain other positive polygons and so on.

The wires looped through by contours () always start with a positive polygon. To
find out where one partial polygon ends and the next one begins, simply store the
(x1,y1) coordinates of the first wire and check them against (x2,y2) of every
following wire. As soon as these are equal, the last wire of a partial polygon has
been found. It is also guaranteed that the second point (x2,y2) of one wire is
identical to the first point (x1,y1) of the next wire in that partial polygon.

To find out where the "inside" and the "outside" of the polygon lays, take any
contour wire and imagine looking from its point (x1,y1) to (x2,y2). The "inside" of
the polygon is always on the right side of the wire. Note that if you simply want to
draw the polygon you won't need all these details.

Example

board (B) {
B.signals (S) {
S.polygons (P) {
int x0, y0, first = 1;
P.contours (W) {
if (first) {
// a new partial polygon is starting

x0 = W.x1;
y0 = W.yl;
}
/] ...
// do something with the wire
/] ...
if (first)
first = 0;
else if (W.x2 == x0 && W.y2 == y0) {

// this was the last wire of the partial polygon,
// so the next wire (if any) will be the first wire
// of the next partial polygon
first = 1;
}
}
}
}
}
board(B) {
B.signals (S) {
S.polygons (P) {
// handle only the "positive" polygons:

int 1 = 1;
int active;
do {

active = 0;

P.contours (W, 1) {
active = 1;
// do something with the wire
}

aarar g

} while (active);

UL_PORT

Data members

border int (MODULE_BORDER .. .)
bus string (see note)
direction int(PIN DIRECTION ... (see note))
name string (PORT NAME LENGTH)
net string (see note)
X, ¥ int (connection point)
Loop members
nets () UL _NET (see note)
texts () UL_TEXT
wires () UL_WIRE

See also UL_MODULE, UL_MODULEINST, UL_PORTREF

Constants

MODULE_BORDER_BOTTOM at bottom border of module
MODULE_BORDER_RIGHT at right border of module
MODULE_BORDER_TOP at top border of module
MODULE_BORDER_LEFT at left border of module

max. recommended length of a port name (used in formatted

PORT NAME LENGTH
output only)

Note

The direction values are identical to the PIN_DIRECTION._... values (without
PIN_DIRECTION_SUP).

The bus and the net data members return the name of the bus or net to which this
port is connected to (only available in a UL_MODULEINST context). Additionally
the nets loop member loops through all available nets of this connection.

Example

schematic (SCH) {
SCH.modules (M) {
M.ports (P) printf ("Port: %s\n", P.name);
}

UL_PORTREF

Data members
moduleinst UL MODULEINST
port UL PORT

See also UL_SEGMENT

Example

schematic (SCH) {
SCH.sheets (SH) {
printf ("Sheet: %d\n", SH.number) ;
SH.nets (N) {
printf ("\tNet: %$s\n", N.name);
N.segments (SEG) {
SEG.portrefs (P) {
printf ("\tconnected to: %s, %s\n",
P.moduleinst.name, P.port.name) ;

UL_RECTANGLE

Data members
angle gggl(0.0.0359.9)
layer int
x1, y1 int (lower left corner)
X2, y2 int (upper right corner)

See also UL_BOARD, UL _PACKAGE, UL_SHEET, UL _SYMBOL

The coordinates (x1 y1) and (x2 y2) are always referring to the initial orientation of
the rectangle regardless of the angie.

angle defines how many degrees the rectangle is rotated counterclockwise around
its center. The center coordinates are given by (x1+x2) /2 and (y1+y2) /2.

Example

board (B) {
B.rectangles (R) {
printf ("Rectangle: (%f %f), (%f %f)\n",
u2mm (R.x1), u2mm(R.yl), u2mm(R.x2), uZ2mm(R.y2));
}
}

UL_SCHEMATIC

Data members

alwaysvectorfont int (ALWAYS VECTOR FONT ..., see note)
checked int (see note)
description string
grid UL GRID
headline string
name string (see note)
verticaltext int (VERTICAL TEXT ...)
xreflabel string
xrefpart string

Loop members
allnets () UL _NET (see note)
allparts () UL _PART (see note)
attributes () UL _ATTRIBUTE (see note)
classes () UL_CLASS
errors () UL ERROR
layers () UL LAYER
libraries() UL_LIBRARY
modules () UL _MODULE
nets () UL _NET
parts () UL _PART
sheets () UL SHEET
variantdefs () UL _VARIANTDEF

See also UL_BOARD, UL_LIBRARY, variant()

Constants

ALWAYS_VECTOR_FONT_GUI alwaysvectorfont is set in the user interface dialog
ALWAYS VECTOR_FONT_PERSISTENT alwaysvectorfont is set persistent in this schematic
VERTICAL_TEXT_UP reading direction for vertical texts: up

VERTICAL_TEXT_DOWN reading direction for vertical texts: down

Note

The value returned by a1waysvectorfont can be used in boolean context or can be
masked with the atways vector _rFonT ... constants to determine the source of this

setting, as in

if (sch.alwaysvectorfont) ({
// alwaysvectorfont is set in general
}

if (sch.alwaysvectorfont & ALWAYS VECTOR FONT GUI) {
// alwaysvectorfont is set in the user interface

}
The value returned by checked can be used in boolean context and is set only after a

recent 'Electrical Rule Check' (ERC).

The name member returns the full file name, including the directory.

The xref1label and xrefpart members return the format strings used to
display cross-reference labels and part cross-references.

The attributes () loop member loops through the global attributes.
Virtual nets, a1inets () loop

The alinets () loop member loops through the nets () of the schematic itself and
through all the virtual nets, generated by module instances.

Virtual parts, aiiparts () loop

Hierarchical parts are generated by module instances and actually do not exist in
the schematic, only corresponding parts in the modules. For this we sometimes call
them 'Virtual parts'. One module part can be used by several virtual parts via
several module instances. As each virtual part corresponds to a (real existing)
element in the board, the User Language supplies those parts as well, e.g. for BOM
generation.

The al1parts () loop member loops through the parts () of the schematic itself and
through all the virtual parts.

Example

schematic(S) {
S.parts (P) printf ("Part: %$s\n", P.name);
}

UL_SEGMENT

Loop members

junctions () UL _JUNCTION (see note)
labels () UL _LABEL

pinrefs () UL _PINREF (see note)
portrefs () UL_PORTREF

texts () UL _TEXT (deprecated, see note)
wires () UL_WIRE

See also UL_BUS, UL_NET

Note

The junctions () and pinrefs () loop members are only available for net segments.

The texts () loop member was used in older EAGLE versions to loop through the
labels of a segment, and 1s only present for compatibility. It will not deliver the text
of cross-reference labels at the correct position. Use the 1abe1s () loop member to
access a segment's labels.

Example

schematic (SCH) {
SCH.sheets (SH) {
printf ("Sheet: %d\n", SH.number) ;
SH.nets (N) {
printf ("\tNet: %$s\n", N.name);
N.segments (SEG) {
SEG.pinrefs (P) {
printf ("connected to: %s, %s, %s\n",
P.part.name, P.instance.name, P.pin.name);

UL_SHEET

Data members

area UL AREA
description string
headline string
number int

Loop members
busses () UL BUS
circles() UL CIRCLE
dimensions () UL DIMENSION
frames () UL FRAME
instances () UL INSTANCE
moduleinsts () UL MODULEINST
nets () UL NET
polygons () UL POLYGON
rectangles () UL RECTANGLE
texts () UL TEXT
wires () UL WIRE

See also UL _ SCHEMATIC

Example

schematic (SCH) {
SCH.sheets (S) {
printf ("Sheet: %d\n", S.number);
}
}

UL_SIGNAL

Data members
airwireshidden int

class UL CLASS

name string (SIGNAL NAME LENGTH)
Loop members

contactrefs () UL CONTACTREF

polygons () UL POLYGON

vias () UL VIA

wires () UL WIRE

See also UL BOARD

Constants
sTGNAL NaMe Lengrn — Max. recommended length of a signal name (used in formatted
- - output only)
Example
board(B) {
B.signals (S) printf("Signal: %$s\n", S.name);
}
Data members
angle real (0.0...359.9)
dx[layer], dyl[layer] int (size)
flags int (SMD_FLAG ...)
layer int (see note)
name string (SMD_NAME_LENGTH)
roundness int (see note)
signal string
X, Y int (center point, see note)

See also UL PACKAGE, UL CONTACT, UL PAD

Constants

SMD_FLAG_STOP generate stop mask
SMD_FLAG_THERMALS generate thermals
SMD_FLAG_CREAM generate cream mask

max. recommended length of an smd name (same

SMD NAME_LENGTH
- - as CONTACT NAME LENGTH)

Note

The parameters of the smd depend on the context in which it is accessed:

o if the smd is derived from a UL_LIBRARY context, the coordinates (x,
y), angle, layer and roundness of the smd will be the same as defined in the
package drawing

 1n all other cases, they will have the actual values from the board

If the ax and ay data members are called with an optional layer index, the data for
that layer is returned according to the Design Rules. Valid layersare LAYER_TOP,
LAYER_TSTOP and LAYER_TCREAM for an smd in the Top layer, and
LAYER_BOTTOM, LAYER_BSTOP and LAYER_BCREAM for an smd in the
Bottom layer, respectively.

angle defines how many degrees the smd is rotated counterclockwise around its
center.

The value returned by f1ags must be masked with the sup_r1ac ... constants to
determine the individual flag settings, as in

if (smd.flags & SMD FLAG STOP) {

}
Note that if your ULP just wants to draw the objects, you don't need to check these
flags explicitly. The ax[] and ay[] members will return the proper data; for
instance, if sMp_rF1AG_sTop is set, dx [LavER_TsTop] Will return o, which should result
in nothing being drawn in that layer. The f1ags member is mainly for ULPs that
want to create script files that create library objects.

Example

library (L) {
L.packages (PAC) {
PAC.contacts (C) {
if (C.smd)
printf ("Smd: '$s', (
C.name, u2mm
u2mm (C.smd.dy)) ;
}
}
}

$f %f), dx=%f, dy=%f\n",
(C.smd.x), u2mm(C.smd.y), u2mm(C.smd.dx),

UL_SYMBOL

Data members

area UL AREA
description strin

headline string

library §gigg
libraryurn string (see note)

libraryversion int (see note)
name string (SYMBOL_NAME_LENGTH)

Loop members
circles ()
dimensions ()
frames ()
rectangles ()
pins ()
polygons ()
texts ()

wires ()

UL

UL_CIRCLE

UL

DIMENSION

UL

FRAME

UL

RECTANGLE

U

PIN

UL

POLYGON

UL

TEXT (see note)

UL

WIRE

See also UL_GATE, UL_LIBRARY

Constants

SYMBOL NAME LENGTH

Note

If the UL_SYMBOL is derived from a UL_INSTANCE, the texts () member only
loops through the non-detached texts of that instance.

The 1ibraryurn and 1ibraryversion are only applicable if this UL_SYMBOL
comes from a managed library. If not, 1ibraryurn will be the empty string

max. recommended length of a symbol name (used in formatted

output only)

and libraryversion will be -1.

Example

library (L) {

L.symbols (S) printf ("Sym: %s\n", S.name);

}

UL_TEXT

Data members
align
angle
font
layer
linedistance
mirror
ratio
size
spin
value
X, Y

Loop members

int (ALIGN ...)
real (0.0...359.9)
int (FONT ...)

int
int
int
int
int
int

string
int (origin point)

wires () UL_WIRE (see note)

See also UL_BOARD, UL _PACKAGE, UL_SHEET, UL_SYMBOL

Constants

FONT_ VECTOR vector font

FONT PROPORTIONAL proportional font
FONT_ FIXED fixed font
ALIGN_BOTTOM_LEFT bottom/left aligned
ALIGN_BOTTOM CENTER bottom/center aligned
ALIGN_BOTTOM RIGHT bottom/right aligned
ALIGN CENTER LEFT center/left aligned
ALIGN CENTER centered

ALIGN CENTER RIGHT center/right aligned
ALIGN_TOP_LEFT top/left aligned

ALIGN TOP CENTER top/center aligned
ALIGN TOP RIGHT top/right aligned
Note

The wires () loop member always accesses the individual wires the text is
composed of when using the vector font, even if the actual font is notronT vECTOR.

If the UL_TEXT 1is derived from a UL_ELEMENT or UL_INSTANCE context,
the member values will be those of the actual text as located in the board or sheet
drawing.

Example

board (B) {
B.texts (T) {
printf ("Text: %s\n", T.value);
}
}

UL_VARIANTDEF

Data members

name string
See also UL _VARIANT, UL SCHEMATIC, UL BOARD, variant()

Example

schematic (SCH) {
printf ("Defined assembly variants:\n");
SCH.variantdefs (VD) {
printf ("\t'%s'\n", VD.name) ;
}
printf ("\n") ;

printf ("Part\tVariantdef\tValue\tTechn.\tPopulated\n") ;
SCH.parts (P) {
printf ("$s\t%s\t%s\t%s\t%s\n", P.name, "default", P.value,
P.device.activetechnology, "yes");
P.variants (V) {
printf ("$s\t%s\t%s\t%s\t%s\n", P.name, V.variantdef.name, V.value,
V.technology, V.populate ? "yes" : "no");
}
}

UL_VARIANT

Data members

populate int (O=do not populate, 1=populate)
value string

technology Shing
variantdef UL VARIANTDEF
See also UL_VARIANTDEF, UL_PART, variant()

Example

schematic (SCH) {
printf ("Defined assembly variants:\n");
SCH.variantdefs (VD) {
printf ("\t'%s'\n", VD.name) ;
}
printf ("\n") ;
printf ("Part\tVariantdef\tValue\tTechn.\tPopulated\n") ;
SCH.parts (P) {
printf ("$s\t%s\t%s\t%s\t%s\n", P.name, "default", P.value,
P.device.activetechnology, "yes");
P.variants (V) {
printf ("$s\t%s\t%s\t%s\t%s\n", P.name, V.variantdef.name, V.value,
V.technology, V.populate ? "yes" : "no");
}
}

UL_VIA

Data members

diameter[layer] int

drill int

drillsymbol iﬁ

end int

flags int (VIA_FLAG ...)
shape [layer] int (VIA SHAPE ...)
start int

X, y int (center point)

See also UL _SIGNAL

Constants

VIA_FLAG_STOP always generate stop mask
VIA SHAPE_SQUARE square

VIA SHAPE ROUND round
VIA_SHAPE_OCTAGON octagon

Note

The diameter and shape of the via depend on the layer for which they shall be
retrieved, because they may be different in each layer depending on the Design
Rules. If one of the layers LAYER_TOP..LAYER_BOTTOM, LAYER_TSTOP or
LAYER_BSTORP is given as the index to the diameter or shape data member, the
resulting value will be calculated according to the Design Rules. If LAYER_VIAS
is given, the raw value as defined in the via will be returned.

Note that diameter and shape will always return the diameter or shape that a via
would have in the given layer, even if that particular via doesn't cover that layer (or
if that layer isn't used in the layer setup at all).

start and end return the layer numbers in which that via starts and ends. The value
of start will always be less than that of ena.

drillsymbol returns the number of the drill symbol that has been assigned to this
drill diameter (see the manual for a list of defined drill symbols). A value
of 0 means that no symbol has been assigned to this drill diameter.

Example

board (B) {
B.signals (S) {
S.vias (V) {
printf ("Via: (%f $f)\n", u2mm(V.x), u2mm(V.y));
}
}
}

UL_WIRE

Data members

arc UL ARC

cap int (Cap_...)

curve real

layer int

style int (WIRE_STYLE ...)
width int

x1l, vyl i (starting point)

x2, y2 int (end point)
Loop members
pieces () UL_WIRE (see note)
See
also UL_BOARD, UL_PACKAGE, UL_SEGMENT, UL_SHEET, UL_SIGNAL,
UL_SYMBOL, UL_ARC

Constants
CAP FLAT flat arc ends
CAP_ROUND round arc ends
WIRE STYLE CONTINUOUS continuous
WIRE_STYLE LONGDASH long dash
WIRE STYLE SHORTDASH short dash
WIRE STYLE DASHDOT dash dot

[
Wire Style

A UL_WIRE that has a style other than wire_sTvLE conTINUOUS can use

the pieces () loop member to access the individual segments that constitute for
example a dashed wire. If pieces () 1s called for a UL_WIRE

with wIiRE STYLE cONTINUOUS, a single segment will be accessible which is just the
same as the original UL_WIRE. The pieces () loop member can't be called from a
UL_WIRE that itself has been returned by a call to pieces () (this would cause an
infinite recursion).

Arcs at Wire level

Arcs are basically wires, with a few additional properties. At the first level arcs are
treated exactly the same as wires, meaning they have a start and an end point, a
width, layer and wire style. In addition to these an arc, at the wire level, has

a cap and a curve parameter. cap defines whether the arc endings are round or flat,
and curve defines the "curvature" of the arc. The valid range for curve is -360..+360,
and its value means what part of a full circle the arc consists of. A value of 90, for
instance, would result in a 90° arc, while 180 would give you a semicircle. The
maximum value of 360 can only be reached theoretically, since this would mean
that the arc consists of a full circle, which, because the start and end points have to
lie on the circle, would have to have an infinitely large diameter. Positive values
for curve mean that the arc is drawn in a mathematically positive sense (i.e.
counterclockwise). If curve is o, the arc is a straight line ("no curvature"), which is
actually a wire.

The cap parameter only has a meaning for actual arcs, and will always
return cap_rounD for a straight wire.

Whether or not an UL_WIRE is an arc can be determined by checking the boolean
return value of the arc data member. If it returns o, we have a straight wire,
otherwise an arc. If arc returns a non-zero value it may be further dereferenced to
access the UL_ARC specific parameters start and end angle, radius and center
point. Note that you may only need these additional parameters if you are going to
draw the arc or process it in other ways where the actual shape is important.

Example
board (B) {
B.wires (W) {
printf ("Wire: (%f $f) (%f %f)\n",
uZ2mm (W.x1), u2mm(W.yl), u2mm(W.x2), u2mm(W.y2));
}
}
L) [] []
Definitions

The data items to be used in a User Language Program must be defined before they
can be used.

There are three kinds of definitions:

o Constant Definitions
o Variable Definitions
o Function Definitions

The scope of a constant or variable definition goes from the line in which it has
been defined to the end of the current block, or to the end of the User Language
Program, if the definition appeared outside any block.

The scope of a function definition goes from the closing brace (1) of the function
body to the end of the User Language Program.

Constant Definitions

Constants are defined using the keyword enum, as in
enum { a, b, c };

which would define the three constants a, 1 and ¢, giving them the values o, 1 and 2,
respectively.

Constants may also be initialized to specific values, like

enum { a, b =5, ¢ };
where a would be o, b would be 5 and < would be 5.

Variable Definitions

The general syntax of a variable definition is
[numeric] type identifier [= initializer][, ...];

where type 18 one of the data or object types, identifier 1S the name of the
variable, and initializer 1S a optional initial value.

Multiple variable definitions of the same type are separated by commas (,).

If identifier 1s followed by a pair of brackets ((1), this defines an array of
variables of the given type. The size of an array is automatically adjusted at
runtime.

The optional keyword numeric can be used with string arrays to have them sorted
alphanumerically by the sort() function.

By default (if no initializer is present), data variables are set to o (or "", in case
of a string), and object variables are "invalid".

Examples

int i; defines an int variable named i

string s = "Hello"; defines a string variable named s and initializes it to "Hello"
defines three real variables named a, b and c, initializing b to the

real a, b =1.0, c;
value 1.0

int n{] = { 1, 2, 3 defines an array of int, initializing the first three elements

by to 1,2 and 3

numeric string
names|[];

UL _WIRE w; defines a UL_WIRE object named w

The members of array elements of object types can't be accessed directly:
UL SIGNAL signals[];

defines a string array that can be sorted alphanumerically

UL SIGNAL s = signals[0];
printf ("%s", s.name);

Function Definitions

You can write your own User Language functions and call them just like
the Builtin Functions.

The general syntax of a function definition is

type identifier (parameters)

{

statements

}

where type 1S one of the data or object types, identifier 1S the name of the
function, parameters is a list of comma separated parameter definitions,
and statements 1s a sequence of statements.

Functions that do not return a value have the type void.

A function must be defined before it can be called, and function calls can not be
recursive (a function cannot call itself).

The statements in the function body may modify the values of the parameters, but
this will not have any effect on the arguments of the function call.

Execution of a function can be terminated by the return statement. Without
any return statement the function body is executed until it's closing brace ().

A call to the exit() function will terminate the entire User Language Program.

The special function nain)

If your User Language Program contains a function called main (), that function will
be explicitly called as the main function, and it's return value will be the return
value of the program.

Command line arguments are available to the program through the global Builtin
Variables argc and argv.

Example

int CountDots (string s)
{
int dots = 0;
for (int i =
if (s[i]
++dots;
return dots;
}
string dotted = "This.has.dots...";
output ("test") {
printf ("Number of dots: %d\n",
CountDots (dotted)) ;

0; s[i]; ++1)
—)

’

}

Operators

The following table lists all of the User Language operators, in order of their
precedence (Unary having the highest precedence, Comma the lowest):
Unary F e s el

Multiplicative ~ */%

Additive t-
Shift <<>>
Relational <<=>>=
Equality ==
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR I
9.

Conditional
Assignment
Comma .

= [=0%=+4+= = &="= ‘: <<= >>=

Associativity is left to right for all operators, except
for Unary, Conditional and Assignment, which are right to left associative.

The normal operator precedence can be altered by the use of parentheses.

Bitwise Operators

Bitwise operators work only with data types char and int.

Unary

~ Bitwise (1's) complement

Binary

<< Shift left

>> Shift right

& Bitwise AND
Bitwise XOR

| Bitwise OR

Assignment

&= Assign bitwise AND

n= Assign bitwise XOR

|= Assign bitwise OR

<<= Assign left shift

>>= Assign right shift

Logical Operators

Logical operators work with expressions of any data type.

Unary

! Logical NOT
Binary

&& Logical AND
| Logical OR

Using a string expression with a logical operator checks whether the string is empty.

Using an Object Type with a logical operator checks whether that object contains
valid data.

Comparison Operators

Comparison operators work with expressions of any data type, except Object

Types.

< Less than

<= Less than or equal to

> Greater than

>= Qreater than or equal to
== Equal to

'= Not equal to

Evaluation Operators

Evaluation operators are used to evaluate expressions based on a condition, or to
group a sequence of expressions and have them evaluated as one expression.

2 Conditional

, Comma

The Conditional operator 1s used to make a decision within an expression, as in

int a;
// ...code that calculates 'a'
string s = a ? "True" : "False";
which is basically the same as
int a;
string s;
// ...code that calculates 'a'
if (a)

s = "True";
else

s = "False";

but the advantage of the conditional operator is that it can be used in an expression.

The Comma operator is used to evaluate a sequence of expressions from left to
right, using the type and value of the right operand as the result.

Note that arguments in a function call as well as multiple variable declarations also
use commas as delimiters, but in that case this is not a comma operator!

Arithmetic Operators

Arithmetic operators work with data types char, int and real (except for ++, --
,% and s=).

+ Unary plus

- Unary minus

t+ Pre- or postincrement
-- Pre- or postdecrement
Binary

* Multiply

/ Divide

% Remainder (modulus)
+ Binary plus

- Binary minus
Assignment

= Simple assignment

*= Assign product

/= Assign quotient

&= Assign remainder (modulus)
+= Assign sum

-= Assign difference

See also String Operators

String Operators

String operators work with data types char, int and string. The left operand must
always be of type string.

Binary

+ Concatenation
Assignment

= Simple assignment
+= Append to string

The + operator concatenates two strings, or adds a character to the end of a string
and returns the resulting string.

The += operator appends a string or a character to the end of a given string.

See also Arithmetic Operators

Expressions

An expression can be one of the following:

o Arithmetic Expression
o Assignment Expression
o String Expression

o Comma Expression

o Conditional Expression
o Function Call

Expressions can be grouped using parentheses, and may be recursive, meaning that
an expression can consist of subexpressions.

Arithmetic Expression

An arithmetic expression is any combination of numeric operands and
an arithmetic operator or a bitwise operator.

Examples

a+ b
@k
m << 1

Assignment Expression

An assignment expression consists of a variable on the left side of an assignment
operator, and an expression on the right side.

Examples

String Expression

A string expression is any combination of string and char operands and a string
operator.

Examples
s + ".brd"
t + 'x'

Comma Expression

A comma expression is a sequence of expressions, delimited by the comma
operator

Comma expressions are evaluated left to right, and the result of a comma
expression is the type and value of the rightmost expression.

Example

i++, j++, k++

Conditional Expression

A conditional expression uses the conditional operator to make a decision within an
expression.

Example

int a;

// ...code that calculates 'a'
string s = a ? "True" : "False";

Function Call

A function call transfers the program flow to a user defined function or a builtin
function. The formal parameters defined in the function definitionare replaced with
the values of the expressions used as the actual arguments of the function call.

Example

int p = strchr(s, 'b');

Statements

A statement can be one of the following:

o Compound Statement
o Control Statement

o Expression Statement
o Builtin Statement

o Constant Definition

o Variable Definition

Statements specify the flow of control as a User Language Program executes. In
absence of specific control statements, statements are executed sequentially in the
order of appearance in the ULP file.

Compound Statement

A compound statement (also known as block) is a list (possibly empty) of
statements enclosed in matching braces ({}). Syntactically, a block can be
considered to be a single statement, but it also controls the scoping of identifiers.
An identifier declared within a block has a scope starting at the point of declaration
and ending at the closing brace.

Compound statements can be nested to any depth.

Expression Statement

An expression statement is any expression followed by a semicolon.

An expression statement is executed by evaluating the expression. All side effects
of this evaluation are completed before the next statement is executed. Most
expression statements are assignments or function calls.

A special case is the empty statement, consisting of only a semicolon. An empty
statement does nothing, but it may be useful in situations where the ULP syntax
expects a statement but your program does not need one.

Control Statements

Control statements are used to control the program flow.

Iteration statements are

do...while
for
while

Selection statements are

if...else

switch

Jump statements are
break

continue

return

break

The break statement has the general syntax
break;

and immediately terminates
the nearest enclosing do...while, for, switch or while statement. This also applies
to loop members of object types.

Since all of these statements can be intermixed and nested to any depth, take care to
ensure that your break exits from the correct statement.

continue

The continue statement has the general syntax
continue;

and immediately transfers control to the test condition of
the nearest enclosing do...while, while, or for statement, or to the increment
expression of the nearest enclosing for statement.

Since all of these statements can be intermixed and nested to any depth, take care to
ensure that your continue affects the correct statement.

do...while

The do...while statement has the general syntax
do statement while (condition);

and executes the statement until the condition expression becomes zero.

The condition is tested after the first execution of statement, which means that the
statement is always executed at least one time.

If there 1S noO break O return inside the statement, the statement must affect the value
of the condition, Or condition itself must change during evaluation in order to
avoid an endless loop.

Example

string s = "Trust no one!";
int i = -1;
do {

F4kal g

} while (s[i]);

for

The for statement has the general syntax
for ([init]; [test]; [inc]) statement

and performs the following steps:

i

. If an initializing expression init 1S present, it is executed.

2. If a test expression is present, it is executed. If the result is nonzero (or if
there is no test expression at all), the statement is executed.

3. If an inc expression is present, it is executed.

4. Finally control returns to step 2.

If there is no break OF return inside the statement, the inc expression (or
the statement) must affect the value of the test expression, or testitself must
change during evaluation in order to avoid an endless loop.

The initializing expression init normally initializes one or more loop counters. It
may also define a new variable as a loop counter. The scope of such a variable is
valid until the end of the block which encloses the for loop.

Example
string s = "Trust no one!";
int sum = 0;

for (int i =
sum += s/

s[i]; ++1)

0;
i]; // sums up the characters in s

if...else

The if...else statement has the general syntax
if (expression)

t statement
[else

f statement]

The conditional expression 18 evaluated, and if its value is nonzero
the t statement is executed. Otherwise the £ statement 1s executed in case there is
an else clause.

An e1se clause is always matched to the last encountered it without an e1se. If this
is not what you want, you need to use braces to group the statements, as in

if (a == 1) {
if (b == 1)
printf("a == 1 and b == 1\n");
}
else
printf("a != 1\n");

return

A function with a return type other than void must contain at least

one return statement with the syntax
return expression;

where expression must evaluate to a type that is compatible with the function's
return type. The value of expression 1s the value returned by the function.

If the function is of type void, a return statement without an expression can be
used to return from the function call.

switch

The switch statement has the general syntax
switch (sw_exp) {
case case_ exp: case statement

[default: def statement]
}

and allows for the transfer of control to one of several case-labeled statements,
depending on the value of sw_exp (which must be of integral type).

Any case_statement can be labeled by one or more case labels. The case exp of
each case label must evaluate to a constant integer which is unique within it's
enclosing switch statement.

There can also be at most one default label.

After evaluating sw_exp, the case exp are checked for a match. If a match is found,
control passes to the case statement with the matching caselabel.

If no match is found and there is a defau1t label, control passes to def statement.
Otherwise none of the statements in the switch 18 executed.

Program execution is not affected when case and default labels are encountered.
Control simply passes through the labels to the following statement.

To stop execution at the end of a group of statements for a particular case, use
the break statement.

Example
string s = "Hello World";
int vowels = 0, others = 0;
for (int i = 0; s[i]; ++1)
switch (toupper (s[il)) {
case 'A':
case 'E':
case 'I':
case 'O':
case 'U': ++vowels;
break;

default: ++others;
}

printf ("There are %d vowels in '%s'\n", vowels, s);

while

The while statement has the general syntax
while (condition) statement

and executes the statement as long as the condition expression is not zero.

The condition is tested before the first possible execution of statement, which
means that the statement may never be executed if condition is initially zero.

If there 1S nO break O return inside the statement, the statement must affect the value
of the condition, Or condition itself must change during evaluation in order to
avoid an endless loop.

Example

string s = "Trust no one!";
int i
while

= 0;
(s[i])
g

Builtins

Builtins are Constants, Variables, Functions and Statements that provide additional
information and allow for data manipulations.

o Builtin Constants
o Builtin Variables
o Builtin Functions
o Builtin Statements

Builtin Constants

Builtin constants are used to provide information about object parameters, such as
maximum recommended name length, flags etc.

Many of the object types have their own Constants section which lists the builtin
constants for that particular object (see e.g. UL_PIN).

The following builtin constants are defined in addition to the ones listed for the
various object types:

EAGLE_VERSION EAGLE program version number (int)
EAGLE_RELEASE EAGLE program release number (int)
a string containing EAGLE program name, version and copyright

EAGLE SIGNATURE ‘ ’
information

EAGLE_PATH a string containing the complete path of the EAGLE executable

a string containing the directory of the EAGLE installation
($EAGLEDIR)

a string containing the user's home directory when starting EAGLE
($HOME)

eagle_epf a string containing the complete path of the currently used eagle.epf
a string containing a signature of the operating system (e.g. Mac...,
Windows... or Linux)

the minimum positive real number such that 1.0 + REAL EPSILON !=
1.0

REAL_MAX the largest possible real value
the smallest possible (positive!) real value

EAGLE DIR

EAGLE HOME

0S_SIGNATURE

REAL EPSILON

B the smallest representable number is -REAL MAX
INT_MAX the largest possible int value

INT_MIN the smallest possible int value

PI the value of "pi" (3.14..., real)

usage a string containing the text from the #usage directive

These builtin constants contain the directory paths defined in the directories dialog,
with any of the special variables (suove and seacrLeEpIR) replaced by their actual
values. Since each path can consist of several directories, these constants

are string arrays with an individual directory in each member. The first empty
member marks the end of the path:

path doc[] Documentation

path 1br[] Libraries

path_drul[] Design Rules

path ulp[] User Language Programs
path_scr(] Scripts

path_cam[] CAM Jobs

path_epf[] Projects

When using these constants to build a full file name, you need to use a directory
separator, as in

string s = path 1lbr[0] + '/' + "mylib.lbr";
The libraries that are currently in use through the USE command:

used libraries|[]

Builtin Variables

Builtin variables are used to provide information at runtime.

int argc number of arguments given to the RUN command

string arguments given to the RUN command (argv (0] is the full ULP file
argv(l] name)

Builtin Functions

Builtin functions are used to perform specific tasks, like printing formatted strings,
sorting data arrays or the like.

You may also write your own functions and use them to structure your User
Language Program.

The builtin functions are grouped into the following categories:

o Character Functions

o File Handling Functions
o Mathematical Functions
o Miscellaneous Functions
o Network Functions

o Printing Functions

o String Functions

o Time Functions

e Object Functions

« XML Functions

Alphabetical reference of all builtin functions:

bs

°
o

e clrgrou
e countr
. S

[)
ceRELRLREEE
CEEREEREEEEE

Q o

= |=

°
smg)

dlsignature()
o filedir

o fileerror

ileext
. lle IOb

ilename

ileread

o filesetext()
o filesize()
o filetime()

oL

E;

]

isalnum
isalpha

1scntrl()
isdigit()

isegraph
islower
isprint

ispunct
isspace

isupper

1sxdigit

anguage

y—

=} =
L ELERE
Slel e g g g g8

neterror

netget()

netpost

palette()
pow()

printf()

round()

setgrou

setvariant

intf

T

M

[en) =

7| = . = fast
= 2 <3 58 273 7
5 S 55T E S E
Al N wnn v wnl v v wn
e e o e o o o o

)
»n |»n
-
=
E
S
=
—

. trstr

)
w2
(g
—
w2
[
g

°
©v |»
(g
H
=3
LE
= &

o

. trt

)
w2
-t
—
o
=

. trxstr

e o o

H‘[:)PVJVJ
=2
=l
=)

2dayofweek()

e t2hour

e t2minute
t2month

o t2second

o t2strin

e t2year

1

° runc

o xmltags()
o xmltext

Character Functions

Character functions are used to manipulate single characters.
The following character functions are available:

e 1salnum
isalpha
o 1iscntrl
dici
e 1sgraph

i

o 1islower()
e 1isprint

e ispunct()
o 1isspace()
o isupper()
o isxdigit()
o tolower()
o toupper()

iS...()

Function
Check whether a character falls into a given category.
Syntax

int isalnum
int isalpha (char
int iscntrl (char
int isdigit (char

(char
(
(
(
int isgraph (char
(
(
(
(

Ne Ne Ne N

o N

int islower (char
int isprint (char
int ispunct (char
int isspace (char
int isupper (char
int isxdigit (char

Returns
The is... functions return nonzero if the given character falls into the
category, zero otherwise.

~e e

~e

Q0000000000
Ovvvvvvvvvv

~— ~
~e

Character categories

isalnum letters (2 to z or a to z) or digits (0 to 9)

isalpha letters (2 to z or a to z)

iscntrl delete characters or ordinary control characters (0x7F or 0x00 to 0x1F)
isdigit digits (0 to 9)

isgraph printing characters (except space)

islower lowercase letters (a to z)

isprint printing characters (0x20 to 0x7E)

ispunct punctuation characters (iscntrl or isspace)

space, tab, carriage return, new line, vertical tab, or formfeed
(0x09 to 0x0D, 0x20)

isupper uppercase letters (a to z)

isxdigit hex digits (0 to 9,At0 F, a to f)

isspace

Example

char ¢ = 'A';
if (isxdigit(c))
printf ("%c is hex\n", c);

else
printf ("%c is not hex\n", c);

to...()

Function
Convert a character to upper- or lowercase.
Syntax

char tolower (char c);
char toupper (char c);

Returns
The tolower function returns the converted character if ¢ 1s uppercase. All
other characters are returned unchanged.
The toupper function returns the converted character if c is lowercase. All
other characters are returned unchanged.

See also strupr, strlwr

File Handling Functions

Filename handling functions are used to work with file names, sizes and
timestamps.

The following file handling functions are available:

o fileerror()

o fileglob()
o filedir()
o fileext()

o filename()
o fileread()
o filesetext
o filesize()

o filetime

See output() for information about how to write into a file.

fileerror()

Function
Returns the status of I/O operations.
Syntax

int fileerror();
Returns

The fileerror function returns o if everything is ok.
See also output, printf, fileread

fileerror checks the status of any I/O operations that have been performed since
the last call to this function and returns o if everything was ok. If any of the I/O
operations has caused an error, a value other than o will be returned.

You should call fi1eerror before any I/O operations to reset any previous error
state, and call it again after the I/O operations to see if they were successful.

When fileerror returns a value other than o (thus indicating an error) a proper
error message has already been given to the user.

Example

fileerror () ;

output ("file.txt", "wt") {
printf ("Test\n") ;
}

if (fileerror())
exit (1) ;

fileglob()

Function
Perform a directory search.

Syntax
int fileglob(string &array[], string pattern);

Returns
The fileglob function returns the number of entries copied into array.
See also dlgFileOpen(), dlgFileSave()

fileglob performs a directory search using pattern.

pattern may contain '+' and '2' as wildcard characters. If pattern ends witha '/,
the contents of the given directory will be returned.

Names in the resulting array that end with a '/ are directory names.
The array 1s sorted alphabetically, with the directories coming first.

The special entries '.' and .. (for the current and parent directories) are never
returned in the array.

If pattern doesn't match, or if you don't have permission to search the given
directory, the resulting array will be empty.

Note for Windows users

The directory delimiter in the array is always a forward slash. This makes sure User
Language Programs will work platform independently. In
the pattern the backslash ('\ ") is also treated as a directory delimiter.

Sorting filenames under Windows is done case insensitively.

Example

string all;
int n = fileglob(a, "*.brd");

Filename Functions

Function
Split a filename into its separate parts.

Syntax
string filedir(string file);
string fileext (string file);
string filename (string file);
string filesetext(string file, string newext);

Returns
filedir returns the directory of file (including the drive letter under
Windows).
fileext returns the extension of file.
filename returns the file name of ri1e (including the extension).
filesetext returns file with the extension set to newext.

See also Filedata Functions

Example

if (board) board(B) {
output (filesetext (B.name, ".out")) {

}

Filedata Functions

Function
Gets the timestamp and size of a file.
Syntax

int filesize(string filename);
int filetime (string filename);

Returns

filesize returns the size (in byte) of the given file.
filetime returns the timestamp of the given file in seconds. The format is
compatible to be used with the time functions.

See also time, Filename Functions

Example

board (B)
printf ("Board: %$s\nSize: %d\nTime: %s\n",
B.name, filesize (B.name),
t2string(filetime (B.name))) ;

File Input Functions

File input functions are used to read data from files.

The following file input is available:

o fileread()

See output() for information about how to write into a file.

fileread()

Function

Reads data from a file.
Syntax

int fileread(dest, string file);
Returns

fileread returns the number of objects read from the file.
The actual meaning of the return value depends on the type of dest.
See also lookup, strsplit, fileerror

If qest 1s a character array, the file will be read as raw binary data and the return
value reflects the number of bytes read into the character array (which is equal to
the file size).

If dest 1s a string array, the file will be read as a text file (one line per array
member) and the return value will be the number of lines read into the string array.
Newline characters will be stripped.

If qest 1s a string, the entire file will be read into that string and the return value
will be the length of that string (which is not necessarily equal to the file size, if the
operating system stores text files with "cr/If" instead of a "newline" character).

Example

char b[];

int nBytes = fileread(b, "data.bin");
string lines|[];

int nLines = fileread(lines, "data.txt"):;
string text;

int nChars = fileread (text, "data.txt");

Mathematical Functions

Mathematical functions are used to perform mathematical operations.
The following mathematical functions are available:

e abs

L]
85 EE
=5 B9

.
(@)
o
72}

° rac

e o
[i :

el
A=
)

2
5

é

.
=
o
c
=
o

[)

» |»n
p— o

EE

—

]
ot
-
e
=
(@)

°
—
o

%

Error Messages

If the arguments of a mathematical function call lead to an error, the error message

will show the actual values of the arguments. Thus the statements
real x =1.0¢
real r sqrt (2 * x);

will lead to the error message
Invalid argument in call to 'sqgrt(-2)'

Absolute, Maximum and Minimum
Functions

Function
Absolute, maximum and minimum functions.

Syntax
type abs (type x);
type max (type x, type vy);
type min(type x, type vy);

Returns
abs returns the absolute value of x.
max returns the maximum of x and v.
min returns the minimum of x and v.

The return type of these functions is the same as the (larger) type of the
arguments. type must be one of char, int OF real.

Example

real x = 2.567, y = 3.14;
printf ("The maximum is $f\n", max(x, Vy));

Rounding Functions

Function
Rounding functions.
Syntax

real ceil (real x);
real floor (real x);
real frac(real x);
real round(real x);
real trunc(real x);

Returns
ceil returns the smallest integer not less than x.
floor returns the largest integer not greater than x.
frac returns the fractional part of x.
round returns x rounded to the nearest integer.
trunc returns the integer part of x.

Example

real x = 2.567;
printf ("The rounded value of %f is %$f\n", x, round(x));

Trigonometric Functions

Function
Trigonometric functions.
Syntax

real acos(real x)
real asin(real x)
real atan(real x)

;
;
;
real cos(real x)

real sin(real x)
real tan(real x)

Returns
acos returns the arc cosine of x.
asin returns the arc sine of x.
atan returns the arc tangent of x.
cos returns the cosine of x.
sin returns the sine of x.
tan returns the tangent of x.

Constants

PI the value of "pi" (3.14...)

Note

Angles are given in radian.

Example

real x = PI / 2;
printf ("The sine of %f is %f\n", x, sin(x));

Exponential Functions

Function
Exponential Functions.
Syntax

real exp(real x);

real log(real x);

real loglO(real x);

real pow(real x, real vy);
real sqgrt(real x);

Returns
exp returns the exponential e to the power of x.
1og returns the natural logarithm of x.
1og10 returns the base 10 logarithm of x.

pow returns the value of x to the power of y.
sqrt returns the square root of x.

Example

real x = 2.1;
printf ("The square root of %f is %f\n", x, sqrt(x));
printf ("The 3rd root of %f is %f\n", x, pow(x, 1.0/3));

Miscellaneous Functions

Miscellaneous functions are used to perform various tasks.

The following miscellaneous functions are available:

e country()
o exit()
o fdlsignature()
« language
o looku
alette
. ort
. tatus
e System
o Configuration Parameters
o Unit Conversions

1]

Configuration Parameters

Function

Store and retrieve configuration parameters.
Syntax

string cfgget (string name[, string default]);

void cfgset(string name, string value);
Returns

cfgget returns the value of the parameter stored under the given name. If no
such parameter has been stored, yet, the value of the optional defauit is
returned (or an empty string, if no default 1s given).
The cfgget function retrieves values that have previously been stored with a call
10 cfgset ().

The cfgset function sets the parameter with the given name to the given value.

The valid characters for name are 'a'-'z', 'a'-'z', 'o'-'9', *.vand ' .
Parameter names are case sensitive.

The parameters are stored in the user's eaglerc file. To ensure that different User
Language Programs don't overwrite each other's parameters in case they use the
same parameter names, it is recommended to put the name of the ULP at the
beginning of the parameter name. For example, a ULP named mytoo1.ulp that uses
a parameter named vyparam could store that parameter under the name

mytool.MyParam

Because the configuration parameters are stored in the eaglerc file, which also
contains all of EAGLE's other user specific parameters, it is also possible to access
the EAGLE parameters with cfgget () and cfgset () . In order to make sure no ULP
parameters collide with any EAGLE parameters, the EAGLE parameters must be

prefixed with "eacLE: ", as in
EAGLE:Option.XreflLabelFormat

Note that there is no documentation of all of EAGLE's internal parameters and how
they are stored in the eaglerc file. Also, be very careful when changing any of these
parameters! As with the eaglerc file itself, you should only manipulate these
parameters if you know what you are doing! Some EAGLE parameters may require
a restart of EAGLE for changes to take effect.

In the eaglerc file the User Language parameters are stored with the prefix "vre:".
Therefore this prefix may be optionally put in front of User Language parameter
names, as in

ULP:mytool.MyParam

Example
string MyParam = cfgget ("mytool.MyParam", "SomeDefault");
MyParam = "OtherValue";

cfgset ("mytool.MyParam", MyParam) ;

country()

Function
Returns the country code of the system in use.
Syntax

string country () ;

Returns
country returns a string consisting of two uppercase characters that identifies
the country used on the current system. If no such country setting can be
determined, the default "US" will be returned.

See also language

Example

dlgMessageBox ("Your country code is: " + country()):;

exit()

Function
Exits from a User Language Program.
Syntax

void exit (int result);
void exit (string command) ;

See also RUN

The exit function terminates execution of a User Language Program.

If an integer result 1s given it will be used as the return value of the program.

If a string command 1s given, that command will be executed as if it were entered into
the command line immediately after the RUN command. In that case the return
value of the ULP is set to Ex1T Ssuccess.

Constants

EXIT_SUCCESS return value for successful program execution (value 0)
EXIT_FAILURE return value for failed program execution (value -1)

fdlsignature()

Function
Calculates a digital signature for Premier Farnell's Design Link.
Syntax

string fdlsignature(string s, string key);
The fd1signature function is used to calculate a digital signature when accessing
Premier Farnell's Design Link interface.

language()

Function
Returns the language code of the system in use.
Syntax

string language () ;

Returns
language returns a string consisting of two lowercase characters that
identifies the language used on the current system. If no such language
setting can be determined, the default "en" will be returned.

See also country

The 1anguage function can be used to make a ULP use different message string,
depending on which language the current system is using.

In the example below all the strings used in the ULP are listed in the string

array 118n[], preceeded by a string containing the various language codes
supported by this ULP. Note the vtab characters used to separate the individual
parts of each string (they are important for the 10oxupfunction) and the use of the
commas to separate the strings. The actual work is done in the function tr (), which
returns the translated version of the given string. If the original string can't be found
in the 118 array, or there is no translation for the current language, the original
string will be used untranslated.

The first language defined in the 118n array must be the one in which the strings
used throughout the ULP are written, and should generally be English in order to
make the program accessible to the largest number of users.

Example

string I18N[] = {
"en\v"
"de\V"
"j_t\V"

4

"I18N Demo\v"

"Beispiel fur Internationalisierung\v"
"Esempio per internazionalizzazione\v"
4

"Hello world!\v"

"Hallo Welt!\v"

"Ciao mondo!\v"

14

"+0k\v"

"+0k\v"

"+Approvazione\v"

14

"—Cancel\v"

"-Abbrechen\v"

"-Annullamento\v"

I &
int Language = strstr(I18N[0], language()) / 3;
string tr(string s)
{

string t = lookup(I18N, s, Language, '\v');

return t ? t : s;
}
dlgDialog (tr ("I18N Demo")) {
dlgHBoxLayout dlgSpacing (350) ;
dlgLabel (tr ("Hello world!"));
dlgHBoxLayout {
dlgPushButton (tr ("+0k")) dlgAccept () ;
dlgPushButton (tr ("-Cancel")) dlgReject () ;

}
I &

lookup()

Function

Looks up data in a string array.
Syntax

string lookup(string arrayl[], string key, int field index[, char
separator]);

string lookup(string arrayl[], string key, string field name[, char
separator]);

Returns
1ookup returns the value of the field identified by fie1d index Or field name.
If the field doesn't exist, or no string matching xey is found, an empty string
1s returned.

See also fileread, strsplit

An array that can be used with 100kup () consists of strings of text, each string
representing one data record.

Each data record contains an arbitrary number of fields, which are separated by the
character separator (default is '\t ', the tabulator). The first field in a record is
used as the kxey and 1s numbered o.

All records must have unique ey fields and none of the xey fields may be empty -
otherwise it is undefined which record will be found.

If the first string in the array contains a "Header" record (i.e. a record where each
field describes its contents), using 1ookup With a field namestring automatically
determines the index of that field. This allows using the 100kup function without
exactly knowing which field index contains the desired data.

It is up to the user to make sure that the first record actually contains header
information.

If the xey parameter in the call to 100kup () 1s an empty string, the first string of
the array will be used. This allows a program to determine whether there is a
header record with the required field names.

If a field contains the separator character, that field must be enclosed in double
quotes (as in "abc;def", assuming the semicolon (' ; ') is used as separator). The
same applies if the field contains double quotes ("), in which case the double quotes
inside the field have to be doubled (as in "abc; ""def"";gnhi", which would

be abc;"def";ghi).

It is best to use the default "tab" separator, which doesn't have these problems
(no field can contain a tabulator).

Here's an example data file (' ; ' has been used as separator for better readability):

Name;Manufacturer; Code; Price
7400; Intel;I-01-234-97;$0.10
68HC12;Motorola;M68HC1201234;$3.50

Example

string OrderCodes|[];
if (fileread (OrderCodes, "ordercodes") > 0) {
if (lookup (OrderCodes, "", "Code", ';')) {
schematic (SCH) {
SCH.parts (P) {
string OrderCode;
// both following statements do exactly the same:
OrderCode = lookup (OrderCodes, P.device.name, "Code", ';');
OrderCode = lookup (OrderCodes, P.device.name, 2, ';');
}
}
}
else
dlgMessageBox ("Missing 'Code' field in file 'ordercodes');

}

palette()

Function

Returns color palette information.
Syntax

int palette(int index[, int typel);
Returns

The palette function returns an integer ARGB value in the form
Oxaarrggbb, or the type of the currently used palette (depending on the value
of index).
The palette function returns the ARGB value of the color with the
given index (Which may be in the range 0..PALETTE_ENTRIES-1). If type is not
given (or is -1) the palette assigned to the current editor window will be used.
Otherwise type specifies which color palette to use (PALETTE_BLACK,
PALETTE_WHITE or PALETTE_COLORED).

The special value -1 for index makes the function return the type of the palette that
is currently in use by the editor window.

If either index or type is out of range, an error message will be given and the ULP
will be terminated.

Constants

PALETTE_TYPES the number of palette types (3)
PALETTE_BLACK the black background palette (0)
PALETTE_WHITE the white background palette (1)

PALETTE_COLORED the colored background palette (2)
PALETTE_ENTRIES the number of colors per palette (64)

sleep()

Function
Sleeps number of seconds.
Syntax

void sleep(int seconds);

See also time()

The si1eep function delays the execution of an ULP program for number of seconds.

sort()

Function
Sorts an array or a set of arrays.
Syntax
void sort (int number, arrayl([, array2,...1);

The sort function either directly sorts a given array1, or it sorts a set of arrays
(starting with array2), in which case array1 is supposed to be an array of int, which
will be used as a pointer array.

In any case, the number argument defines the number of items in the array(s).

Sorting a single array

If the sort function is called with one single array, that array will be sorted directly,

as in the following example:
string A[];
int n = 0;
[n++] = "World";
[n++] = "Hello";
A[n++] = "The truth is out there...";
sort (n, A);
for (int 1 = 0; 1 < n; ++1i)
printf (A[i]);

A
A

Sorting a set of arrays

If the sort function is called with more than one array, the first array must be an
array of int, while all of the other arrays may be of any array type and hold the data
to be sorted. The following example illustrates how the first array will be used as a

pointer:
numeric string Nets[], Parts[], Instances[], Pins[];
int n = 0;
int index|[];
schematic (S) {
S.nets (N) N.pinrefs (P) {
Nets[n] = N.name;
Parts[n] = P.part.name;
Instances[n] = P.instance.name;
Pins[n] = P.pin.name;
ki ¢
}

sort (n, index, Nets, Parts, Instances, Pins);
for (int i = 0; 1 < n; ++1i)
printf ("$-8s %-8s %-8s %-8s\n",
Nets[index[i]], Parts[index[i]],
Instances[index[i]], Pins[index[i]]);

}
The idea behind this is that one net can have several pins connected to it, and in a

netlist you might want to have the net names sorted, and within one net you also
want the part names sorted and so on.

Note the use of the keyword numeric in the string arrays. This causes the strings to
be sorted in a way that takes into account a numeric part at the end of the strings,
which leads to IC1, IC2,... IC9, IC10 instead of the alphabetical order IC1, IC10,
1C2,...1C9.

When sorting a set of arrays, the first (index) array must be of type int and need not
be initialized. Any contents the index array might have before calling
the sort function will be overwritten by the resulting index values.

status()

Function
Displays a status message in the status bar.
Syntax

void status(string message);

See also dlgMessageBox()

The status function displays the given message in the status bar of the editor
window in which the ULP is running.

system()

Function
Executes an external program.
Syntax

int system(string command) ;
Returns

The system function returns the exit status of the command. This is

typically o if everything was ok, and non-zero in case of an error.
The system function executes the external program given by the command string, and
waits until the program ends.

Input/Output redirection

If the external program shall read its standard input from (or write its standard
output to) a particular file, input/output needs to be redirected.

On Linux and Mac OS X this is done by simply adding a '<' or '>' to the command

line, followed by the desired file name, as in
system ("program < infile > outfile");

which runs program and makes it read from infile and write to outfile.

On Windows you have to explicitly run a command processor to do this, as in
system ("cmd.exe /c program < infile > outfile");

(on DOS based Windows systems use command.com instead of cmd. exe).

Background execution

The system function waits until the given program has ended. This is useful for
programs that only run for a few seconds, or completely take over the user's
attention.

If an external program runs for a longer time, and you want the system call to return

immediately, without waiting for the program to end, you can simply add an 's' to the

command string under Linux and Mac OS X, as in
system ("program &") ;

Under Windows you need to explicitly run a command processor to do this, as in
system("cmd.exe /c start program") ;
(on DOS based Windows systems use command.com instead of cmd. exe).

Example

int result = system("simulate -f filename");

This would call a simulation program, giving it a file which the ULP has just
created. Note that simulate here is just an example, it is not part of the EAGLE
package!

If you want to have control over what system commands are actually executed, you
can write a wrapper function that prompts the user for confirmation before
executing the command, like

int MySystem(string command)
{
if (dlgMessageBox ("!0k to execute the following command?<p><tt>" +
command + "</tt>", "&Yes", "&No") == 0)
return system(command) ;
return -1;
}

int result = MySystem("simulate -f filename");

Unit Conversions

Function
Converts internal units.

Syntax
real u2inch (int n);
real uZ2mic(int n);
real u2mil (int n);
real uZ2mm(int n);
int inch2u(real n);
int mic2u(real n);
int mil2u(real n);
int mm2u(real n);

Returns
u2inch returns the value of n in inch.
u2mic returns the value of n in microns (1/1000mm).
u2mil returns the value of n in mil (1/1000inch).
u2mm returns the value of n in millimeters.
inch2u returns the value of n (which is in inch) as internal units.
mic2u returns the value of n (which is in microns) as internal units.
mil2u returns the value of n (which is in mil) as internal units.
mm2u returns the value of n (which is in millimeters) as internal units.
See also UL_GRID

EAGLE stores all coordinate and size values as int values with a resolution of
1/320000mm (0.003125u). The above unit conversion functions can be used to
convert these internal units to the desired measurement units, and vice versa.

Example

board (B) {
B.elements (E) {
printf ("%$s at (%f, %f)\n", E.name,
uZ2mm (E.x), u2mm(E.y));
}
}

Network Functions

Network functions are used to access remote sites on the Internet.

The following network functions are available:

e neterror()

. netgqu

. netposu!
neterror()
Function

Returns the error message of the most recent network function call.

Syntax

string neterror (void) ;
Returns
neterror returns a textual message describing the error that occurred in the
most recent call to a network function.
If no error has occurred, the return value is an empty string.
See also netget, netpost

The neterror function should be called after any of the other network functions has
returned a negative value, indicating that an error has occurred. The return value
of neterror 1S a textual string that can be presented to the user.

For errors related to SSL connections (HTTPS) also consider the note in netget.

Example

string Result;
if (netget(Result, "http://web.cadsoft.de/cgi-bin/http-
test?see=me&hear=them") >= 0) {
// process Result
}
else
dlgMessageBox (neterror()) ;

netget()

Function

Performs a GET request on the network.
Syntax

int netget(dest, string url[, int timeout]);
Returns

netget returns the number of objects read from the network.
The actual meaning of the return value depends on the type of dest.
In case of an error, a negative value is returned and neterror() may be called
to display an error message to the user.
See also netpost, neterror, fileread

The netget function sends the given ur1 to the network and stores the result in
the dest variable.

If no network activity has occurred for timeout seconds, the connection will be
terminated. The default timeout is 20 seconds.

The ur1 must contain the protocol to use (HTTP, HTTPS or FTP) and can contain
name=value pairs of parameters, as in

http://web.cadsoft.de/cgi-bin/http-test?see=me&hear=them
ftp://ftp.cadsoft.de/eagle/userfiles/README

If a user i1d and password is required to access a remote site, these can be given as
https://userid:password@www.secret-site.com/. ..

If dest is a character array, the result will be treated as raw binary data and the
return value reflects the number of bytes stored in the character array.

If dest 1s a string array, the result will be treated as text data (one line per array
member) and the return value will be the number of lines stored in the string array.
Newline characters will be stripped.

If dest is a string, the result will be stored in that string and the return value will be
the length of the string. Note that in case of binary data the result is truncated at the
first occurrence of a byte with the value 0x00.

If you need to use a proxy to access the Internet with HTTP or HTTPS, you can set
that up in the "Configure" dialog under "Help/Check for Update" in the Control
Panel.

SSL Connections

For SSL connections (request per HTTPS) certificates are necessary, which may
miss or be expired on some systems. The connection fails then with according error
message that you can query with neterror ().

With this error message it should be possible to install missing or update expired
certificates and make the connection work this way. It depends on your system how
to do this (in Windows e.g. via Control Panel/Internet Options etc.).

Example

string Result;
if (netget(Result, "http://web.cadsoft.de/cgi-bin/http-
test?see=me&hear=them") >= 0) {

// process Result

}
else
dlgMessageBox (neterror()) ;

netpost()

Function
Performs a POST request on the network.
Syntax

int netpost(dest, string url, string datal, int timeout[, string
content type] 1);

Returns
netpost returns the number of objects read from the network.
The actual meaning of the return value depends on the type of dest.
In case of an error, a negative value is returned and neterror() may be called
to display an error message to the user.
See also netget, neterror, fileread

The netpost function sends the given data to the given ur1 on the network and
stores the result in the dest variable.

If no network activity has occurred for timeout seconds, the connection will be
terminated. The default timeout is 20 seconds.

If content_type is given, it overwrites the default content type of "text/htm1;
charset=utf-8".

The ur1 must contain the protocol to use (HTTP or HTTPS).

If a user i1d and password is required to access a remote site, these can be given as

https://userid:password@www.secret-site.com/. ..
If dest 1s a character array, the result will be treated as raw binary data and the
return value reflects the number of bytes stored in the character array.

If dest 1s a string array, the result will be treated as text data (one line per array
member) and the return value will be the number of lines stored in the string array.
Newline characters will be stripped.

If dest is a string, the result will be stored in that string and the return value will be
the length of the string. Note that in case of binary data the result is truncated at the
first occurrence of a byte with the value 0x00.

If you need to use a proxy to access the Internet with HTTP or HTTPS, you can set
that up in the "Configure" dialog under "Help/Check for Update" in the Control
Panel.

If you should face problems related to SSL connections (HTTPS) consider the note
in netget.

Example

string Data = "see=me\nhear=them";
string Result;
if (netpost (Result, "http://web.cadsoft.de/cgi-bin/http-test", Data) >= 0)
{
// process Result

}
else
dlgMessageBox (neterror ()) ;

Printing Functions

Printing functions are used to print formatted strings.

The following printing functions are available:

o printf()

o sprintf()

printf()

Function

Writes formatted output to a file.
Syntax

int printf(string format[, argument, ...1);
Returns

The printf function returns the number of characters written to the file that
has been opened by the most recent output statement.

In case of an error, print£ returns -1.

See also sprintf, output, fileerror

Format string

The format string controls how the arguments will be converted, formatted and
printed. There must be exactly as many arguments as necessary for the format. The
number and type of arguments will be checked against the format, and any
mismatch will lead to an error message.

The format string contains two types of objects - plain characters and format
specifiers:

« Plain characters are simply copied verbatim to the output
« Format specifiers fetch arguments from the argument list and apply
formatting to them

Format specifiers

A format specifier has the following form:

% [flags] [width] [.prec] type
Each format specification begins with the percent character (s). After the s comes
the following, in this order:

« an optional sequence of flag characters, [f1ags]
« an optional width specifier, [width]

« an optional precision specifier, [.prec]

« the conversion type character, type

Conversion type characters

signed decimal int

unsigned octal int

unsigned decimal int

unsigned hexadecimal int (with a, b,...)

unsigned hexadecimal int (with A, B,...)

signed real value of the form [-]dddd.dddd
signed real value of the form [-]d.dddde[+]ddd
same as e, but with E for exponent

signed real value in either e or £ form, based on given value and precision
same as g, but with E for exponent if e format used
single character

character string

the % character is printed

n Q0 QW @B 0 Hh X X & O Q

o

Flag characters

The following flag characters can appear in any order and combination.

"-" the formatted item is left-justified within the field; normally, items are right-justified
a signed, positive item will always start with a plus character (+); normally, only
negative items begin with a sign

a signed, positive item will always start with a space character; if both "+" and "

" are specified, "+" overrides " "

nwyn

won

Width specifiers

The width specifier sets the minimum field width for an output value.

Width is specified either directly, through a decimal digit string, or indirectly,
through an asterisk (). If you use an asterisk for the width specifier, the preceding
argument (which must be an int) to the one being formatted (with this format
specifier) determines the minimum output field width.

In no case does a nonexistent or small field width cause truncation of a field. If the
result of a conversion is wider than the field width, the field is simply expanded to
contain the conversion result.

At least n characters are printed. If the output value has less than # characters, the
output is padded with blanks (right-padded if "-" flag given, left-padded otherwise).
At least n characters are printed. If the output value has less than # characters, it is
filled on the left with zeros.

The argument list supplies the width specifier, which must precede the actual argument
being formatted.

On

Precision specifiers

A precision specifier always begins with a period (.) to separate it from any
preceding width specifier. Then, like width, precision is specified either directly
through a decimal digit string, or indirectly, through an asterisk (). If you use an

asterisk for the precision specifier, the preceding argument (which must be an int)
to the one being formatted (with this format specifier) determines the precision.

none
.0

Precision set to default.

For int types, precision is set to default; for real types, no decimal point is printed.
n characters or n decimal places are printed. If the output value has more

than n characters the output might be truncated or rounded (depending on the type
character).

The argument list supplies the precision specifier, which must precede the actual
argument being formatted.

Default precision values

douxX
eEf
gG

c

1

6

all significant digits
no effect

print entire string

How precision specification (.») affects conversion

douxX

ekEf

gG

.n specifies that at least n characters are printed. If the input argument has less
than n digits, the output value is left-padded with zeros. If the input argument has
more than n digits, the output value is not truncated.

.n specifies that n characters are printed after the decimal point, and the last digit
printed is rounded.

.n specifies that at most n significant digits are printed.

.n has no effect on the output.

.n specifies that no more than n characters are printed.

Binary zero characters

Unlike sprintf, the printf function can print binary zero characters (0x00).

char c¢

= 0x00;

printf ("%c", c);

Example

int i 42;

real r = 3.14;

char ¢ = '"A';

string s = "Hello";

printf ("Integer: %8d\n", 1i);

printf ("Hex: %8X\n", 1i);

printf ("Real: %$8f\n", r);

printf ("Char: %$-8c\n", c);
printf ("String: %-8s\n", s);

sprintf()

Function
Writes formatted output into a string.
Syntax

int sprintf(string result, string format[, argument, ...]);
Returns

The sprintf function returns the number of characters written into

the result string.

In case of an error, sprintf returns -1.

See also printf

Format string

See printf.

Binary zero characters

Note that sprintf can not return strings with embedded binary zero characters
(0x00). If the resulting string contains a binary zero character, any characters
following that zero character will be dropped. Use printf if you need to output
binary data.

Example

string result;
int number = 42;
sprintf (result, "The number is %d", number) ;

String Functions

String functions are used to manipulate character strings.

The following string functions are available:

)
»n [\nn |[\tn |[\1n |L1n |1 |\Ln |[\1n |\
= = =t (= =
! ! B jo a3
o [¢]
g = :rggﬁ =3
= =

e strjoin

trr
U trrstr

U trstr

trtod

°
»n

o strtol()

e strupr()
e strxstr()

strchr()

Function

Scans a string for the first occurrence of a given character.
Syntax

int strchr(string s, char c[, int index]);
Returns

The strchr function returns the integer offset of the character in the string,
or -1 if the character does not occur in the string.
See also strrchr, strstr

If index is given, the search starts at that position. Negative values are counted
from the end of the string.

Example

string s = "This is a string";
char ¢ = 'a';

int pos = strchr(s, c);

if (pos >= 0)

printf ("The character %c is at position %d\n", c, pos);
else

printf ("The character was not found\n");

strjoin()

Function
Joins a string array to form a single string.
Syntax

string strjoin(string arrayl], char separator);
Returns

The strjoin function returns the combined entries of array.
See also strsplit, lookup, fileread

strjoin joins all entries in array, delimited by the given separator and returns the
resulting string.

If separator is the newline character ('\n") the resulting string will be terminated
with a newline character. This is done to have a text file that consists of N lines
(each of which is terminated with a newline) and is read in with

the fileread() function and split into an array of N strings to be joined to the original
string as read from the file.

Example

string a[] = { "Field 1", "Field 2", "Field 3" };
string s = strjoin(a, ':');

strlen()

Function
Calculates the length of a string.
Syntax

int strlen(string s);
Returns
The strien function returns the number of characters in the string.

Example

string s = "This is a string";
int 1 = strlen(s);
printf ("The string is %d characters long\n", 1);

striwr()

Function
Converts uppercase letters in a string to lowercase.
Syntax

string strlwr (string s);

Returns
The striwr function returns the modified string. The original string (given as
parameter) is not changed.

See also strupr, tolower

Example

string s = "This Is A String";

string r = strlwr(s);

printf ("Prior to strlwr: %s - after strlwr: %s\n", s, r);

strrchr()

Function
Scans a string for the last occurrence of a given character.
Syntax

int strrchr(string s, char c[, int index]);
Returns

The strrcnr function returns the integer offset of the character in the string,
or -1 if the character does not occur in the string.
See also strchr, strrstr

If index is given, the search starts at that position. Negative values are counted
from the end of the string.

Example

string s = "This is a string";
char ¢ = 'a';

int pos = strrchr(s, c);

if (pos >= 0)

printf ("The character %c is at position %d\n", c, pos);
else

printf ("The character was not found\n");

strrstr()

Function
Scans a string for the last occurrence of a given substring.
Syntax

int strrstr(string sl, string s2[, int index]);

Returns
The strrstr function returns the integer offset of the first character of s2 in
s1, or -1 if the substring does not occur in the string.

See also strstr, strrchr

If index is given, the search starts at that position. Negative values are counted
from the end of the string.

Example
string sl = "This is a string", s2 = "is a";
int pos = strrstr(sl, s2);

if (pos >= 0)

printf ("The substring starts at %d\n", pos);
else

printf ("The substring was not found\n");

strsplit()

Function
Splits a string into separate fields.
Syntax

int strsplit(string &array([], string s, char separator);
Returns

The strsp1it function returns the number of entries copied into array.
See also strjoin, lookup, fileread

strsplit splits the string s at the given separator and stores the resulting fields in
the array.

If separator is the newline character ('\n") the last field will be silently dropped if
it is empty. This is done to have a text file that consists of N lines (each of which is
terminated with a newline) and is read in with the fileread() function to be split into
an array of N strings. With any other separator an empty field at the end of the
string will count, so "a:b:c:" will result in 4 fields, the last of which is empty.

Example

string all;
int n = strsplit(a, "Field 1l:Field 2:Field 3", ':');

strstr()

Function
Scans a string for the first occurrence of a given substring.
Syntax

int strstr(string sl, string s2[, int index]);

Returns
The strstr function returns the integer offset of the first character of s2 in
s1, or -1 if the substring does not occur in the string.

See also strrstr, strchr, strxstr

If index is given, the search starts at that position. Negative values are counted
from the end of the string.

Example

string sl = "This is a string", s2 = "is a";
int pos = strstr(sl, s2);
if (pos >= 0)

printf ("The substring starts at %d\n", pos);
else

printf ("The substring was not found\n");

strsub()

Function
Extracts a substring from a string.

Syntax
string strsub(string s, int start([, int lengthl]);

Returns
The strsub function returns the substring indicated by
the start and 1ength value.

The value for 1ength must be positive, otherwise an empty string will be
returned. If 1ength is ommitted, the rest of the string (beginning at start) is
returned.

If start points to a position outside the string, an empty string is returned.

Example

string s "This is a string";
string t strsub (s, 4, 7);
printf ("The extracted substring is: %$s\n", t);

strtod()

Function
Converts a string to a real value.
Syntax

real strtod(string s);

Returns
The strtod function returns the numerical representation of the given string
as a real value. Conversion ends at the first character that does not fit into
the format of a real constant. If an error occurs during conversion of the
string 0.0 will be returned.

See also strtol

Example

string s = "3.1415";
real r = strtod(s):;
printf ("The value is %f\n", r);

strtol()

Function
Converts a string to an integer value.
Syntax

int strtol(string s);

Returns
The strtol function returns the numerical representation of the given string
as an int value. Conversion ends at the first character that does not fit into

the format of an integer constant. If an error occurs during conversion of the
string o will be returned.
See also strtod

Example

string s = "1234";
int i = strtol(s);
printf ("The value is %d\n", 1);

strupr()

Function
Converts lowercase letters in a string to uppercase.
Syntax

string strupr(string s);

Returns
The strupr function returns the modified string. The original string (given as
parameter) is not changed.

See also strlwr, toupper

Example
string s = "This Is A String";
string r = strupr(s);
printf ("Prior to strupr: %s - after strupr: %$s\n", s, r);
Function
Scans a string for the first occurrence of a given regular expression.
Syntax
int strxstr(string sl, string s2[, int index[, int &lengthll]);
Returns

The strxstr function returns the integer offset of the substring in s1 that
matches the regular expression in s2, or -1 if the regular expression does not
match in the string.

See also strstr, strchr, strrstr

If index is given, the search starts at that position. Negative values are counted
from the end of the string.

If 1engtn 1s given, the actual length of the matching substring is returned in that
variable.

Regular expressions allow you to find a pattern within a text string. For instance,
the regular expression "i.*a" would find a sequence of characters that starts with an
1, followed by any character ('.") any number of times ('*'), and ends with an 'a". It
would match on "is a" as well as "is this a" or "ia".

Details on regular expressions can be found, for instance, in the book Mastering
Regular Expressions by Jeffrey E. F. Friedl.

Example

string sl = "This is a string", s2 = "i.*a";
int len = 0;

int pos = strxstr(sl, s2, 0, len);

if (pos >= 0)

printf ("The substring starts at %d and is %d charcaters long\n", pos,
len) ;
else

printf ("The substring was not found\n");

Time Functions

Time functions are used to get and process time and date information.

The following time functions are available:

o sleep()
. t2day()
o t2dayofweek()
e t2hour()
e t2minute()
e t2month()
e t2second()
o (2string()
e t2year
e time
e timems
time()
Function
Gets the current system time.
Syntax
int time (void);
Returns

The time function returns the current system time as the number of seconds
elapsed since a system dependent reference date.

See also Time Conversions, filetime, timems()

Example

int CurrentTime = time () ;

timems()

Function
Gets the number of milliseconds since the start of the ULP.
Syntax

int timems (void) ;

Returns
The timems function returns the number of milliseconds since the start of the
ULP.

After 86400000 milliseconds (i.e. every 24 hours), the value starts at 0 again.

See also time

Example

int elapsed = timems() ;

Time Conversions

Function
Convert a time value to day, month, year etc.

Syntax
int t2day(int t);
int t2dayofweek (int t);
int t2hour (int t);
int t2minute (int t);
int t2month (int t);
int t2second(int t);
int t2year(int t);

string t2string(int t[, string format]);
Returns
t2day returns the day of the month (1..31)
t2dayofweek returns the day of the week (o=sunday..6)
t2hour returns the hour (0..23)
t2minute returns the minute (0..59)
t2month returns the month (0..11)
t2second returns the second (0..59)

t2year returns the year (including century!)
t2string returns a formatted string containing date and time
See also time

The t2string function without the optional format parameter converts the given
time t into a country specific string in local time.

If t2string is called with a format string, that format is used to determine what the
result should look like.

The following expressions can be used in a format string:

d the day as a number without a leading zero (1 to 31)

dd the day as a number with a leading zero (01 to 31)

ddd the abbreviated localized day name (e.g. "Mon" to "Sun")

dddd the long localized day name (e.g. "Monday" to "Sunday")

M the month as a number without a leading zero (1-12)

MM the month as a number with a leading zero (01-12)

MMM the abbreviated localized month name (e.g. "Jan" to "Dec")

MMMM the long localized month name (e.g. "January" to "December")

vy the year as a two digit number (00-99)

yYYY the year as a four digit number

h the hour without a leading zero (0 to 23 or 1 to 12 if AM/PM display)
hh the hour with a leading zero (00 to 23 or 01 to 12 if AM/PM display)
m the minute without a leading zero (0 to 59)

mm the minute with a leading zero (00 to 59)

] the second without a leading zero (0 to 59)

ss the second with a leading zero (00 to 59)

the milliseconds without leading zeros (always 0, since the given time only has a

z one second resolution)

_— the milliseconds with leading zeros (always 000, since the given time only has a
one second resolution)

AP use AM/PM display (4P will be replaced by either "AM" or "PM")

ap use am/pm display (ap will be replaced by either "am" or "pm")

U display the given time as UTC (must be the first character; default is local time)

All other characters will be copied "as is". Any sequence of characters that are
enclosed in singlequotes will be treated as text and not be used as an expression.
Two consecutive single quotes (") are replaced by a single quote in the output.

Example

int t = time ()
printf ("It is now %02d:%02d:%02d\n",
t2hour (t), t2minute(t), t2second(t));
printf ("ISO time is %s\n", t2string(t, "Uyyyy-MM-dd hh:mm:ss")) ;

Object Functions

Object functions are used to access common information about objects.

The following object functions are available:

e clrgroup()
e ingroup()

o setgroup()
o setvariant()
o variant()

clrgroup()

Function
Clears the group flags of an object.
Syntax

void clrgroup (object) ;

See also ingroup(), seteroup(), GROUP command

The cirgroup () function clears the group flags of the given object, so that it is no
longer part of the previously defined group.

When applied to an object that contains other objects (like a UL_BOARD or
UL_NET) the group flags of all contained objects are cleared recursively, but with
analogous limitations like for setgroup().

Example

board (B) {
B.elements (E)
clrgroup (E) ;
}

ingroup()

Function
Checks whether an object is in the group.
Syntax

int ingroup (object);

Returns
The ingroup function returns a non-zero value if the given object is in the
group.

See also clrgroup(), seteroup(), GROUP command

If a group has been defined in the editor, the ingroup () function can be used to
check whether a particular object is part of the group.

Objects with a single coordinate that are individually selectable in the current
drawing (like UL_TEXT, UL_VIA, UL_CIRCLE etc.) return a non-zero value in a
call to ingroup () if that coordinate is within the defined group.

A UL_WIRE returns 0, 1, 2 or 3, depending on whether none, the first, the second
or both of its end points are in the group.

A UL_RECTANGLE and UL_FRAME returns a non-zero value if one or more of
its corners are in the group. The value has bit O set for the upper right corner, bit 1
for the upper left, bit 2 for the bottom left, and bit 3 for the bottom right corner.

Higher ranking objects that have no coordinates (UL_NET, UL_SEGMENT,
UL_SIGNAL, UL_POLYGON) or that are actually not available as drawing
objects (UL_SHEET, UL_DEVICESET, UL_SYMBOL, UL_PACKAGE), return
a non-zero value if one or more of the objects within them are in the group. For
details on the object hierarchies see Object Types.

UL_CONTACTREF and UL_PINREF, though not having coordinates of their
own, return a non-zero value if the referenced UL_CONTACT or UL_PIN,
respectively, is within the group.

For other not selectable objects like UL_GRID, UL_VARIANT or wires of a
UL_TEXT or UL_FRAME object, the behaviour of ingroup () is undefined and
therefore should not be used.

Identifying the context menu object

If the ULP is started from a context menu the selected object can be accessed by the
group mechansim. A one element group is made from the selected object. So it can
be identified with ingroup () . (see also SET and RUN).

Example

output ("group.txt") {
board (B) {
B.elements (E) {
if (ingroup (E))
printf ("Element %s is in the group\n", E.name);
}
}
}

setgroup()

Function
Sets the group flags of an object.

Syntax
void setgroup (object[, int flags]);

See also clrgroup(), ingroup(), GROUP command

The setgroup () function sets the group flags of the given object, so that it becomes
part of the group.

If no r1ags are given, the object is added to the group as a whole (i.e. all of its
selection points, in case it has more than one).

If f1ags has a non-zero value, only the group flags of the given points of the object
are set. For a UL_WIRE this means that 1 sets the group flag of the first

point, '2' that of the second point, and '3 sets both. Any previously set group
flags remain unchanged by a call to setgroup ().

When applied to an object that contains other objects (like a UL_BOARD or
UL_NET) the group flags of all contained objects are set recursively with
following limitations:

It's not the case for UL_LIBRARY and UL_SCHEMATIC. Subordinate objects
that are not selectable or not inidividually selectable are not flagged (e.g.
UL_GRID or UL_VARIANT objects or wires of UL_TEXT or UL_FRAME
objects).

For details on the object hierarchies see Object Types.

Example

board (B) {
B.elements (E)
setgroup (E) ;
}

setvariant()

Function
Sets the current assembly variant.
Syntax

int setvariant (string name) ;

See also variant(), UL_VARIANTDEF, VARIANT command

The setvariant () function sets the current assembly variant to the one given
by name. This can be used to loop through all of the parts and "see" their data
exactly as defined in the given variant.

name must reference a valid assembly variant that is contained in the current
drawing.

This function returns a non-zero value if the given assembly variant exists, zero
otherwise.

The assembly variant that has been set by a call to setvariant () is only active until
the User Language Program returns. After that, the variant in the drawing will be
the same as before the start of the ULP.

Setting the assembly variant in a board is only possible if the consistent schematic
is loaded.

Example

if (setvariant ("My variant")) {
// do something ...

else

// error: unknown variant

variant()

Function
Query the current assembly variant.
Syntax

string variant (void);

See also setvariant(), UL _VARIANTDEF, VARIANT command

The variant () function returns the name of the current assembly variant. If no
variant is currently selected, the empty string (' ') is returned.

Example

string CurrentVariant = variant();

XML Functions

XML functions are used to process XML (Extensible Markup Language) data.
The following XML functions are available:

« xmlattribute()
o xmlattributes()
o xmlelement()
o xmlelements()

o xmltags()
o xmltext()

xmlattribute(), xmlattributes()

Function
Extract the attributes of an XML tag.

Syntax
string xmlattribute(string xml, string tag, string attribute);
int xmlattributes(string &array[], string xml, string tag);

See also xmlelement(), xmltags(), xmltext()

The xm1attribute function returns the value of the given attribute from the
given tag within the given xm1 code. If an attribute appears more than once in the
same tag, the value of its last occurrence is taken.

The xm1attributes function stores the names of all attributes from the

given tag within the given xm1 code in the array and returns the number of
attributes found. The order is not necessarily the same like in the given xm1 code. If
an attribute appears more than once in the same tag, its name appears only once in
the array.

The tag is given in the form of a path.

If the given xm1 code contains an error, the result of any XML function is empty,
and a warning dialog is presented to the user, giving information about where in the
ULP and XML code the error occurred. Note that the line and column number
within the XML code refers to the actual string given to this function as

the xm1 parameter.

Example

// String XML contains the following data:
//<root>

// <body abc="def" xyz="123">

// ..

// </body>

//</root>

string s[];
int n = xmlattributes (s, XML, "root/body"):;

// Result: { "abc", "xyz" }
string s = xmlattribute (XML, "root/body", "xyz");

// Result: "123"

xmlelement(), xmlelements()

Function
Extract elements from an XML code.
Syntax

string xmlelement (string xml, string tagqg);
int xmlelements (string &arrayl[], string xml, string tagqg);

See also xmltags(), xmlattribute(), xmltext()

The xmlelement function returns the complete XML element of the given tag within
the given xm1 code. The result still contains the element's outer XML tag, and can
thus be used for further processing with the other XML functions. Any whitespace
within plain text parts of the element is retained. The overall formatting of the
XML tags within the element and the order of element attributes may be different
than the original xm1code, though.

If there 1s more than one occurrence of tag within xm1, the first one will be
returned. Use xmielements if you want to get all occurrences.

The xm1elements function works just like xm1e1ement, but returns all occurrences of
elements with the given tag. The return value is the number of elements stored in
the array.

The tag is given in the form of a path.

If the given xm1 code contains an error, the result of any XML function is empty,
and a warning dialog is presented to the user, giving information about where in the
ULP and XML code the error occurred. Note that the line and column number
within the XML code refers to the actual string given to this function as

the xm1 parameter.

Example

// String XML contains the following data:
//<root>

// <body>

// <contents>

// <string>Some text 1</string>
// <any>anything 1</any>

// </contents>

// <contents>

// <string>Some text 2</string>
// <any>anything 2</any>

// </contents>

// <appendix>

// <string>Some text 3</string>
// </appendix>

// </body>

//</root>

//

string s = xmlelement (XML, "root/body/appendix");

// Result: " <appendix>\n <string>Some text 3</string>\n </appendix>\n"
string s[];
int n = xmlelements (s, XML, "root/body/contents");

// Result: { " <contents>\n <string>Some text 1</string>\n <any>anything
1</any>\n </contents>\n",
// " <contents>\n <string>Some text 2</string>\n <any>anything
2</any>\n </contents>\n"

// }

xmltags()

Function
Extract the list of tag names within an XML code.
Syntax
int xmltags(string &array[], string xml, string tag);

See also xmlelement(), xmlattribute(), xmltext()

The xm1tags function returns the names of all the tags on the top level of the
given tag within the given xm1 code. The return value is the number of tag names
stored in the array.

Each tag name is returned only once, even if it appears several times in the XML
code.

The tag is given in the form of a path.

If the given xm1 code contains an error, the result of any XML function is empty,
and a warning dialog is presented to the user, giving information about where in the
ULP and XML code the error occurred. Note that the line and column number
within the XML code refers to the actual string given to this function as

the xm1 parameter.

Example

//String XML contains the following data:
//<root>

// <body>

// <contents>

// <string>Some text 1</string>
// <any>anything 1</any>

// </contents>

// <contents>

// <string>Some text 2</string>
// <any>anything 2</any>

// </contents>

// <appendix>

// <string>Some text 3</string>
// </appendix>

// </body>

//</root>

//

string s[];

int n = xmltags (s, XML, "root/body"):;
// Result: { "contents", "appendix" }

int n = xmltags(s, XML, "");

// Result: "root"

xmltext()

Function
Extract the textual data of an XML element.
Syntax

string xmltext (string xml, string tag);
See also xmlelement(), xmlattribute(), xmltags()

The xm1text function returns the textual data from the given tag within the
given xm1 code.

Any tags within the text are stripped, whitespace (including newline characters) is
retained.

The tag is given in the form of a path.

If the given xm1 code contains an error, the result of any XML function is empty,
and a warning dialog is presented to the user, giving information about where in the
ULP and XML code the error occurred. Note that the line and column number
within the XML code refers to the actual string given to this function as

the xm1 parameter.

Example

// String XML contains the following data:
//<root>

// <body>

// Some text.

// </body>

//</root>

//

string s = xmltext (XML, "root/body");

// Result: "\n Some text.\n "

Builtin Statements

Builtin statements are generally used to open a certain context in which data
structures or files can be accessed.

The general syntax of a builtin statement is

name (parameters) statement

where name 18 the name of the builtin statement, parameters stands for one or more
parameters, and statement 1S the code that will be executed inside the context
opened by the builtin statement.

Note that statement can be a compound statement, as in

board (B) {
B.elements (E) printf ("Element: %s\n", E.name);
B.Signals (S) printf("Signal: %s\n", S.name) ;
}

The following builtin statements are available:

e board()

e deviceset()
o library()

o module()

e output()

« package()

o schematic()
o sheet()

e symbol

board()

Function
Opens a board context.
Syntax

board(identifier) statement
See also schematic, library

The voard statement opens a board context if the current editor window contains a
board drawing. A variable of type UL_BOARD is created and is given the name
indicated by identifier.

Once the board context is successfully opened and a board variable has been
created, the statement 1s executed. Within the scope of thestatement the board
variable can be accessed to retrieve further data from the board.

If the current editor window does not contain a board drawing, an error message 1s
given and the ULP is terminated.

ChecKk if there is a board

By using the voard statement without an argument you can check if the current
editor window contains a board drawing. In that case, boardbehaves like an integer

constant, returning 1 if there is a board drawing in the current editor window,
and o otherwise.

Accessing board from a schematic

If the current editor window contains a schematic drawing, you can still access that

schematic's board by preceding the board statement with the prefiX project, as in
project.board(B) { ... }

This will open a board context regardless whether the current editor window
contains a board or a schematic drawing. However, there must be an editor window
containing that board somewhere on the desktop!

Example

if (board)
board (B) {
B.elements (E)
printf ("Element: %s\n", E.name);

}

deviceset()

Function
Opens a device set context.
Syntax

deviceset (identifier) statement
See also package, symbol, library

The deviceset statement opens a device set context if the current editor window
contains a device drawing. A variable of type UL_DEVICESETis created and is
given the name indicated by identifier.

Once the device set context is successfully opened and a device set variable has
been created, the statement is executed. Within the scope of thestatement the
device set variable can be accessed to retrieve further data from the device set.

If the current editor window does not contain a device drawing, an error message 1s
given and the ULP is terminated.

Check if there is a device set

By using the deviceset statement without an argument you can check if the current
editor window contains a device drawing. In that case deviceset behaves like an
integer constant, returning 1 if there is a device drawing in the current editor
window, and o otherwise.

Example

if (deviceset)
deviceset (D) {
D.gates (G)
printf ("Gate: %s\n", G.name);

}

library()

Function
Opens a library context.
Syntax

library(identifier) statement
See also board, schematic, deviceset, package, symbol

The 1ibrary statement opens a library context if the current editor window contains
a library drawing. A variable of type UL_LIBRARY is created and is given the
name indicated by identifier.

Once the library context is successfully opened and a library variable has been
created, the statement 1s executed. Within the scope of thestatement the library
variable can be accessed to retrieve further data from the library.

If the current editor window does not contain a library drawing, an error message is
given and the ULP is terminated.

Check if there is a library

By using the 1ibrary statement without an argument you can check if the current
editor window contains a library drawing. In that case, 1ibrarybehaves like an
integer constant, returning 1 if there is a library drawing in the current editor
window, and o otherwise.

Example

if (library)
library (L) {
L.devices (D)
printf ("Device: %s\n", D.name);

}

module()

Function
Opens a module context.

Syntax

module (identifier) statement
See also board, library, schematic, sheet

#The module statement opens a module context if the current editor# #window
contains a module drawing. A variable of type# The modu1estatement opens a
module context if in the editor window currently a module drawing is edited. A
variable of type UL_MODULE is created and is given the name indicated

by identifier.

Once the module context is successfully opened and a module variable has been
created, the statement 1s executed. Within the scope of thestatement the module
variable can be accessed to retrieve further data from the module.

#If the current editor window does not contain a module drawing, an error#
#message is given and the ULP is terminated.# If in the editor window currently no
module drawing is edited, an error message is given and the ULP is terminated.

ChecKk if there is a module

By using the module statement without an argument you can check #if the current
editor window contains a module drawing. In that case # if in the editor window
currently a module drawing is edited. In that case, moduie behaves like an integer
constant, returning 1 if there is a module drawing in the current editor window,
and o otherwise.

Example

if (module)
module (M) {
printf ("Module: %s\n", M.name) ;

}

output()

Function

Opens an output file for subsequent printf() calls.
Syntax

output (string filename[, string mode]) statement

See also printf, fileerror

The output statement opens a file with the given filename and mode for output
through subsequent printf() calls. If the file has been successfully opened,
the statement 1S executed, and after that the file 1s closed.

If the file cannot be opened, an error message is given and execution of the ULP is
terminated.

By default the output file is written into the Project directory.

File Modes

The mode parameter defines how the output file is to be opened. If

no mode parameter is given, the default is "wt".

append to an existing file, or create a new file if it does not exist

create a new file (overwriting an existing file)

open file in text mode

open file in binary mode

delete this file when ending the EAGLE session (only works together with w)
force using this file name (normally *.brd, *.sch and *.1br are rejected)

g o o =

Mode characters may appear in any order and combination. However, only the last
one of a and w or t and b, respectively, is significant. For example a mode
of "abtw" would open a file for textual write, which would be the same as "wt".

Nested Output statements

output statements can be nested, as long as there are enough file handles available,
and provided that no two active output statements access the same file.

Example

void PrintText (string s)

{

printf ("This also goes into the file: %s\n", s);
}
output ("file.txt", "wt") {

printf ("Directly printed\n") ;

PrintText ("via function call");

}

package()

Function
Opens a package context.
Syntax

package (identifier) statement
See also library, deviceset, symbol

The package statement opens a package context if the current editor window
contains a package drawing. A variable of type UL_PACKAGE is created and is
given the name indicated by identifier.

Once the package context is successfully opened and a package variable has been
created, the statement 1s executed. Within the scope of thestatement the package
variable can be accessed to retrieve further data from the package.

If the current editor window does not contain a package drawing, an error message
is given and the ULP is terminated.

Check if there is a package

By using the package statement without an argument you can check if the current
editor window contains a package drawing. In that case, packagebehaves like an
integer constant, returning 1 if there is a package drawing in the current editor
window, and o otherwise.

Example
if (package)
package (P) {
P.contacts (C)
printf ("Contact: %s\n", C.name);
}
[]
schematic()
Function
Opens a schematic context.
Syntax

schematic (identifier) statement
See also board, library, module, sheet

The schematic statement opens a schematic context if the current editor window
contains a schematic drawing. A variable of typeUL_SCHEMATIC is created and
is given the name indicated by identifier.

Once the schematic context is successfully opened and a schematic variable has
been created, the statement is executed. Within the scope of thestatement the
schematic variable can be accessed to retrieve further data from the schematic.

If the current editor window does not contain a schematic drawing, an error
message is given and the ULP is terminated.

Check if there is a schematic

By using the schematic statement without an argument you can check if the current
editor window contains a schematic drawing. In that case,schematic behaves like an

integer constant, returning 1 if there is a schematic drawing in the current editor
window, and o otherwise.

Accessing schematic from a board

If the current editor window contains a board drawing, you can still access that
board's schematic by preceding the schematic statement with the prefix project, as

m
project.schematic(S) { ... }

This will open a schematic context regardless whether the current editor window
contains a schematic or a board drawing. However, there must be an editor window
containing that schematic somewhere on the desktop!

Access the current Sheet

Use the sheet statement to directly access the currently loaded sheet.

Access the current Module

Use the module statement to directly access the currently edited module.

Example

if (schematic)
schematic (S) {
S.parts (P)
printf ("Part: %s\n", P.name);

}

sheet()

Function
Opens a sheet context.
Syntax

sheet (identifier) statement
See also schematic

The sheet statement opens a sheet context if the current editor window contains a
sheet drawing. A variable of type UL_SHEET is created and is given the name
indicated by identifier.

Once the sheet context is successfully opened and a sheet variable has been created,
the statement is executed. Within the scope of the statementthe sheet variable can
be accessed to retrieve further data from the sheet.

If the current editor window does not contain a sheet drawing, an error message is
given and the ULP is terminated.

ChecKk if there is a sheet

By using the sheet statement without an argument you can check if the current
editor window contains a sheet drawing. In that case, sheetbehaves like an integer
constant, returning 1 if there is a sheet drawing in the current editor window,

and o otherwise.

Example
if (sheet)
sheet (S) {
S.instances (I)
printf ("Instance: %s\n", I.name);

}

symbol()

Function
Opens a symbol context.
Syntax

symbol (identifier) statement
See also library, deviceset, package

The symbo1 statement opens a symbol context if the current editor window contains
a symbol drawing. A variable of type UL_SYMBOL is created and is given the
name indicated by identifier.

Once the symbol context is successfully opened and a symbol variable has been
created, the statement 1s executed. Within the scope of thestatement the symbol
variable can be accessed to retrieve further data from the symbol.

If the current editor window does not contain a symbol drawing, an error message
is given and the ULP is terminated.

Check if there is a symbol

By using the symbo1l statement without an argument you can check if the current
editor window contains a symbol drawing. In that case, symbo1behaves like an
integer constant, returning 1 if there is a symbol drawing in the current editor
window, and o otherwise.

Example

if (symbol)
symbol (S) {
S.pins (P)
printf ("Pin: %s\n", P.name);

}

Dialogs

User Language Dialogs allow you to define your own frontend to a User Language
Program.

The following sections describe User Language Dialogs in detail:

Predefined Dialogs describes the ready to use standard dialogs

Dialog Objects defines the objects that can be used in a dialog

Layout Information explains how to define the location of objects within a dialog
Dialog Functions describes special functions for use with dialogs

A Complete Example shows a complete ULP with a data entry dialog

Predefined Dialogs

Predefined Dialogs implement the typical standard dialogs that are frequently used
for selecting file names or issuing error messages.

The following predefined dialogs are available:

e dlgDirectory()

o dlgFileOpen()

o dlgFileSave()

o dlgMessageBox()

See Dialog Objects for information on how to define your own complex user
dialogs.

digDirectory()

Function
Displays a directory dialog.

Syntax
string dlgDirectory(string Title[, string Start])

Returns
The digpirectory function returns the full pathname of the selected
directory.
If the user has canceled the dialog, the result will be an empty string.

See also dlgFileOpen

The d1gpirectory function displays a directory dialog from which the user can
select a directory.

Title Will be used as the dialog's title.

If start is not empty, it will be used as the starting point for the d1gbirectory.

Example

string dirName;
dirName = dlgDirectory("Select a directory", "");

digFileOpen(), digFileSave()

Function
Displays a file dialog.

Syntax
string dlgFileOpen(string Title[, string Start[, string Filter]])
string dlgFileSave(string Title[, string Start[, string Filter]])

Returns
The digFileopen and d1grilesave functions return the full pathname of the
selected file.
If the user has canceled the dialog, the result will be an empty string.

See also dlgDirectory

The digrileopen and d1grilesave functions display a file dialog from which the
user can select a file.

Title Will be used as the dialog's title.

If start is not empty, it will be used as the starting point for the file dialog.
Otherwise the current directory will be used.

Only files matching ri1ter will be displayed. If riiter is empty, all files will be
displayed.

Filter can be either a simple wildcard (as in "+.bra"), a list of wildcards (as
In "+.bmp *.jpg") Or may even contain descriptive text, as

In"Bitmap files (*.omp)".If the "File type" combo box of the file dialog shall
contain several entries, they have to be separated by double semicolons, as
hl"Bitmap files (*.bmp);;Other images (*.jpg *.png)".

Example

string fileName;
fileName = dlgFileOpen ("Select a file", "", "*.brd");

dligMessageBox()

Function
Displays a message box.
Syntax

int dlgMessageBox (string Message[, button 1ist])
Returns
The d1gMessageBox function returns the index of the button the user has
selected.
The first button in button 1ist has index o.

See also status()

The d1gMessageBox function displays the given Message in @ modal dialog and waits
until the user selects one of the buttons defined in button 1ist.

If Message contains any HTML tags, the characters '<', >' and '&' must be given as
"<", ">" and "&", respectively, if they shall be displayed as such.

button list 1S an optional list of comma separated strings, which defines the set of
buttons that will be displayed at the bottom of the message box.

A maximum of three buttons can be defined. If no button_1ist is given, it defaults
to "ox".

The first button in button 1ist will become the default button (which will be
selected if the user hits ENTER), and the last button in the list will become the
"cancel button", which is selected if the user hits ESCape or closes the message
box. You can make a different button the default button by starting its name with
a '+', and you can make a different button the cancel button by starting its name
with a '-'. To start a button text with an actual '+' or '-' it has to be escaped.

If a button text contains an '« ', the character following the ampersand will become
a hotkey, and when the user hits the corresponding key, that button will be selected.
To have an actual '«' character in the text it has to be escaped.

The message box can be given an icon by setting the first character of Message to
' ;1 - for an Information
r11 - for a Warning
.1 - for an Error

If, however, the vessage shall begin with one of these characters, it has to

be escaped.

On Mac OS X only the character ' : * will actually result in showing an icon. All others
are ignored.

Example

if (dlgMessageBox ("!Are you sure?", "&Yes", "&No") == 0) {
// let's do it!

}

Dialog Objects

A User Language Dialog is built from the following Dialog Objects:

digCell
dlgCheckBox
dlgComboBox
digDialog
dlgGridLayout
dlgGroup
dlgHBoxLayout
digIntEdit
digLabel
digListBox
digListView
dlgPushButton
dlgRadioButton
digRealEdit
dlgSpacing
dlgSpinBox
dlgStretch
dlgStringEdit
digTabPage
dlgTabWidget
dlgTextEdit

digTextView
dlgVBoxLayout

digCell

a grid cell context

a checkbox

a combo box selection field
the basic container of any dialog
a grid based layout context
a group field

a horizontal box layout context
an integer entry field

a text label

a list box

a list view

a push button

a radio button

a real entry field

a layout spacing object

a spin box selection field

a layout stretch object

a string entry field

a tab page

a tab page container

a text entry field

a text viewer field

a vertical box layout context

Function
Defines a cell location within a grid layout context.
Syntax
dlgCell (int row, int column[, int row2, int column2]) statement

See also dlgGridLayout, dilgHBoxLayout, dleVBoxLayout, Layout Information, A
Complete Example

The da1gce11 statement defines the location of a cell within a grid layout context.

The row and column indexes start at 0, so the upper left cell has the index (0, 0).

With two parameters the dialog object defined by statement will be placed in the
single cell addresses by row and colunn. With four parameters the dialog object will
span over all cells from row/column t0o row2/column2.

By default a a1gce11 contains a digHBoxLayout, so if the cell contains more than
one dialog object, they will be placed next to each other horizontally.

Example

string Text;

dlgGridLayout {
dlgCell (0, 0) dlgLabel("Cell 0,0");
dlgCell (1, 2, 4, 7) dlgTextEdit (Text);
}

dlgCheckBox

Function
Defines a checkbox.

Syntax
dlgCheckBox (string Text, int &Checked) [statement]

See also dlgRadioButton, dlgeGroup, Layout Information, A Complete Example

The digcheckBox statement defines a check box with the given text.

If Text contains an ' &', the character following the ampersand will become a
hotkey, and when the user hits a1t+notkey, the checkbox will be toggled. To have
an actual '« character in the text it has to be escaped.

dlgCheckBox 18 mainly used within a dlgGroup, but can also be used otherwise.
All check boxes within the same dialog must have different checked variables!

If the user checks a d1gcheckpox, the associated checked variable is set to 1,
otherwise it is set to 0. The initial value of checked defines whether a checkbox 1s
initially checked. If checked is not equal to o, the checkbox is initially checked.

The optional statement is executed every time the digcheckBox is toggled.

Example

int mirror =
int rotate =
int flip = 0;
dlgGroup ("Orientation") {
dlgCheckBox ("&Mirror", mirror);
dlgCheckBox ("&Rotate", rotate):;
dlgCheckBox ("&Flip", flip);
}

0;
1g

dlgComboBox

Function
Defines a combo box selection field.
Syntax
dlgComboBox (string arrayl[], int &Selected) [statement]

See also dlglListBox, dlglabel, Layout Information, A Complete Example

The d1gcomboBox statement defines a combo box selection field with the contents of
the given array.

selected reflects the index of the selected combo box entry. The first entry has
index o.

Each element of array defines the contents of one entry in the combo box. None of
the strings in array may be empty (if there is an empty string, all strings after and
including that one will be dropped).

The optional statement is executed whenever the selection in

the d1gcomboBox changes.

Before the statement is executed, all variables that have been used with dialog
objects are updated to their current values, and any changes made to these variables
inside the statement will be reflected in the dialog when the statement returns.

If the initial value of se1lected is outside the range of the array indexes, it is set
to 0.

Example

string Colors[] = { "red", "green", "blue", "yellow" };

int Selected = 2; // initially selects "blue"

dlgComboBox (Colors, Selected) dlgMessageBox ("You have selected " +
Colors|[Selected]) ;

digDialog

Function
Executes a User Language Dialog.

Syntax
int dlgDialog(string Title) block ;

Returns
The digpialog function returns an integer value that can be given a user
defined meaning through a call to the digAccept() function.
If the dialog is simply closed, the return value will be -1.

See
also dlgGridLayout, dlgHBoxLayout, dlgVBoxLayout, dlgAccept, dlgReset, dlgRe
ject, A Complete Example

The digpialog function executes the dialog defined by block. This is the only dialog
object that actually is a User Language builtin function. Therefore it can be used
anywhere where a function call is allowed.

The b1ock normally contains only other dialog objects, but it is also possible to use
other User Language statements, for example to conditionally add objects to the
dialog (see the second example below).

By default a d1gpialog contains a dlgVBoxIayout, so a simple dialog doesn't have
to worry about the layout.

A digbialog should at some point contain a call to the digAccept() function in order to
allow the user to close the dialog and accept its contents.

If all you need is a simple message box or file dialog you might want to use one of
the Predefined Dialogs instead.

Examples

int Result = dlgDialog("Hello") ({
dlgLabel ("Hello world") ;
dlgPushButton ("+OK") dlgAccept () ;
i

int haveButton = 1;

dlgbDialog ("Test") {
dlgLabel ("Start") ;
if (haveButton)

dlgPushButton ("Here") dlgAccept():;

i

dlgGridLayout

Function
Opens a grid layout context.

Syntax
dlgGridLayout statement

See also dlgCell, dlgHBoxLayout, dlgeVBoxLayout, Layout Information, A
Complete Example

The digGridrayout statement opens a grid layout context.

The only dialog object that can be used directly in statement is dlgCell, which
defines the location of a particular dialog object within the grid layout.

The row and column indexes start at 0, so the upper left cell has the index (0, 0).
The number of rows and columns is automatically extended according to the
location of dialog objects that are defined within the grid layout context, so you
don't have to explicitly define the number of rows and columns.

Example

dlgGridLayout {
dlgCell (0, 0) dlgLabel ("Row 0/Col 0");
dlgCell (1, 0) dlgLabel ("Row 1/Col 0O");
dlgCell (0, 1) dlgLabel ("Row 0/Col 1");
dlgCell (1, 1) dlgLabel ("Row 1/Col 1");
}

digGroup

Function

Defines a group field.
Syntax

dlgGroup (string Title) statement
See also dlgCheckBox, dlgRadioButton, Layout Information, A Complete Example

The digGroup statement defines a group with the given tit1e.

By default a a1gGroup contains a digVBoxILayout, so a simple group doesn't have to
worry about the layout.

dlgGroup 1s mainly used to contain a set of radio buttons or check boxes, but may as
well contain any other objects in its statement.
Radio buttons within a d1gGroup are numbered starting with o.

Example

int align = 1;

dlgGroup ("Alignment") {
dlgRadioButton ("&Top", align);
dlgRadioButton ("&Center", align);
dlgRadioButton ("&Bottom", align) ;
}

digHBoxLayout

Function
Opens a horizontal box layout context.
Syntax

dlgHBoxLayout statement

See also dlgGridLayout, dlgVBoxLayout, Layout Information, A Complete
Example

The diguBoxLayout statement opens a horizontal box layout context for the
given,statement.

Example

dlgHBoxLayout {
dlgLabel ("Box 1");
dlgLabel ("Box 2");
dlgLabel ("Box 3");
}

digintEdit

Function
Defines an integer entry field.
Syntax

dlgIntEdit (int &Value, int Min, int Max)
See also dlgRealEdit, dlgStringEdit, dlglabel, Layout Information, A Complete

Example

The digintedit statement defines an integer entry field with the given value.

If va1ue is initially outside the range defined by min and max it will be limited to
these values.

Example

int Value = 42;

dlgHBoxLayout {
dlgLabel ("Enter a &Number between 0 and 99");
dlgIntEdit (Value, 0, 99);
}

digl.abel

Function
Defines a text label.

Syntax
dlgLabel (string Text [, int Updatel])

See also Layout Information, A Complete Example, dlgRedisplay()

The digrapel statement defines a label with the given Text.

Text can be either a string literal, as in "sel10", Or a string variable.

If Text contains any HTML tags, the characters '<', >' and '&' must be given as
"<", ">" and "&", respectively, if they shall be displayed as such.

External hyperlinks in the Text will be opened with the appropriate application
program.

If the update parameter is not 0 and Text 1S a string variable, its contents can be
modified in the statement of, e.g., a digPushButton, and the label will be
automatically updated. This, of course, is only useful if Text is a dedicated string
variable (not, e.g., the loop variable of a for statement).

If Text contains an 's', and the object following the label can have the keyboard
focus, the character following the ampersand will become a hotkey, and when the
user hits a1t+hotkey, the focus will go to the object that was defined immediately
following the digrave1. To have an actual '«' character in the text it has to

be escaped.

Example

string OS = "Windows";

dlgHBoxLayout {
dlgLabel (OS, 1);
dlgPushButton ("&Change 0S") { OS = "Linux"; }
}

digListBox

Function
Defines a list box selection field.
Syntax
dlglListBox (string arrayl[], int &Selected) [statement]

See also dlgComboBox, dlgListView, dlgSelectionChanged, dlglabel, Layout
Information, A Complete Example

The d1g1istBox statement defines a list box selection field with the contents of the
given.array.

selected reflects the index of the selected list box entry. The first entry has index o.

Each element of array defines the contents of one line in the list box. None of the
strings in array may be empty (if there is an empty string, all strings after and
including that one will be dropped).

The optional statement is executed whenever the user double clicks on an entry of
the d1gListBox (see dlgSelectionChanged for information on how to have

the statement called when only the selection in the list changes).

Before the statement is executed, all variables that have been used with dialog
objects are updated to their current values, and any changes made to these variables
inside the statement Will be reflected in the dialog when the statement returns.

If the initial value of seilected is outside the range of the array indexes, no entry
will be selected.

Example

string Colors[] = { "red", "green", "blue", "yellow" };

int Selected = 2; // initially selects "blue"

dlgListBox (Colors, Selected) dlgMessageBox ("You have selected " +
Colors|[Selected]) ;

digListView

Function
Defines a multi column list view selection field.

Syntax
dlglListView (string Headers, string array[], int &Selected[, int
&Sort]) [statement]

See also dlglListBox, dlgSelectionChanged, dlglabel, Layout Information, A
Complete Example

The d1gristview statement defines a multi column list view selection field with the
contents of the given array.

Headers 1S the tab separated list of column headers.

selected reflects the index of the selected list view entry in the array (the sequence
in which the entries are actually displayed may be different, because the contents of
a dlgListview can be sorted by the various columns). The first entry has index o.

If no particular entry shall be initially selected, seiected should be initialized to -1.
If it is set to -2, the first item according to the current sort column is made current.
If no view entry has been selected, -1 is returned.

sort defines which column should be used to sort the list view. The leftmost
column is numbered 1. The sign of this parameter defines the direction in which to
sort (positive values sort in ascending order). If sort is 0 or outside the valid
number of columns, no sorting will be done. The returned value of sort reflects the
column and sort mode selected by the user by clicking on the list column headers.
By default d1g1nistviewsorts by the first column, in ascending order.

Each element of array defines the contents of one line in the list view, and must
contain tab separated values. If there are fewer values in an element of array than
there are entries in the Headers string the remaining fields will be empty. If there
are more values in an element of arraythan there are entries in the Headers string
the superfluous elements will be silently dropped. None of the strings in array may
be empty (if there is an empty string, all strings after and including that one will be
dropped).

A list entry that contains line feeds ('\n') will be displayed in several lines
accordingly.

The optional statement is executed whenever the user double clicks on an entry of
the d1gristview (see dlgSelectionChanged for information on how to have

the statement called when only the selection in the list changes).

Before the statement is executed, all variables that have been used with dialog
objects are updated to their current values, and any changes made to these variables
inside the statement Will be reflected in the dialog when the statement returns.

If the initial value of seilected is outside the range of the array indexes, no entry
will be selected.

If Headers 1S an empty string, the first element of the array is used as the header
string. Consequently the index of the first entry is then 1.

The contents of a digristview can be sorted by any column by clicking on that
column's header. Columns can also be swapped by "click&dragging" a column
header. Note that none of these changes will have any effect on the contents of

the array. If the contents shall be sorted alphanumerically a numeric string(] array
can be used.

Example

string Colors[] = { "red\tThe color RED", "green\tThe color GREEN",
"blue\tThe color BLUE" };

int Selected = 0; // initially selects "red"

dlgListView ("Name\tDescription", Colors, Selected) dlgMessageBox ("You have
selected " + Colors[Selected]);

digPushButton

Function
Defines a push button.
Syntax

dlgPushButton (string Text) statement
See also Layout Information, Dialog Functions, A Complete Example

The digpushButton statement defines a push button with the given Text.

If Text contains an ' &', the character following the ampersand will become a
hotkey, and when the user hits a1t+hotkey, the button will be selected. To have an
actual 's' character in the text it has to be escaped.

If Text starts with a ' +' character, this button will become the default button, which
will be selected if the user hits ENTER.

If Text starts with a '-' character, this button will become the cancel button, which
will be selected if the user closes the dialog.

CAUTION: Make sure that the statement of such a marked cancel button
contains a call to digReject()! Otherwise the user may be unable to close the
dialog at all!

To have an actual '+' or '-' character as the first character of the text it has to

be escaped.

If the user selects a d1gPushButton, the given statement is executed.

Before the statement is executed, all variables that have been used with dialog
objects are updated to their current values, and any changes made to these variables
inside the statement will be reflected in the dialog when the statement returns.

Example

int defaultWidth = 10;
int defaultHeight = 20;
int width = 5;
int height = 7;
dlgPushButton ("&Reset defaults") {
width = defaultWidth;
height = defaultHeight;
}
dlgPushButton ("+&Accept") dlgAccept();
dlgPushButton ("-Cancel") { if (dlgMessageBox ("Are you sure?", "Yes", "No")
== (0) dlgReject(); }

digRadioButton

Function
Defines a radio button.

Syntax
dlgRadioButton(string Text, int &Selected) [statement]

See also dlgCheckBox, dleGroup, Layout Information, A Complete Example

The d1gradioButton statement defines a radio button with the given rext.

If Text contains an ' &', the character following the ampersand will become a
hotkey, and when the user hits a1t+hotkey, the button will be selected. To have an
actual 's' character in the text it has to be escaped.

dlgRadioButton can only be used within a dlgGroup.
All radio buttons within the same group must use the same seiected variable!

If the user selects a d1gradioButton, the index of that button within the d1gGroup 18
stored in the selected variable.

The initial value of seiected defines which radio button is initially selected.

If seilected is outside the valid range for this group, no radio button will be
selected. In order to get the correct radio button selection, se1ected must be

set before the first d1gradioButton 18 defined, and must not be modified between
adding subsequent radio buttons. Otherwise it is undefined which (if any) radio
button will be selected.

The optional statement is executed every time the digradioButton is selected.

Example

int align = 1;

dlgGroup ("Alignment") {
dlgRadioButton ("&Top", align);
dlgRadioButton ("&Center", align);
dlgRadioButton ("&Bottom", align) ;
}

digRealEdit

Function
Defines a real entry field.
Syntax

dlgRealEdit (real &Value, real Min, real Max)
See also dlgIntEdit, dlgStringEdit, dlglLabel, Layout Information, A Complete

Example

The digrealrdit statement defines a real entry field with the given vaiue.

If va1ue is initially outside the range defined by min and max it will be limited to
these values.

Example

real Value = 1.4142;

dlgHBoxLayout {
dlgLabel ("Enter a &Number between 0 and 99");
dlgRealEdit (Value, 0.0, 99.0);
}

dlgSpacing

Function
Defines additional space in a box layout context.

Syntax
dlgSpacing (int Size)

See also dlgHBoxLayout, dlgVBoxLayout, dlgStretch, Layout Information, A
Complete Example

The digspacing statement defines additional space in a vertical or horizontal box
layout context.

size defines the number of pixels of the additional space.

Example

dlgVBoxLayout {
dlgLabel ("Label 1");
dlgSpacing (40) ;
dlgLabel ("Label 2");
}

dlgSpinBox

Function
Defines a spin box selection field.
Syntax

dlgSpinBox (int &Value, int Min, int Max)
See also dlgIntEdit, dlgl.abel, Layout Information, A Complete Example

The d1gspinBox statement defines a spin box entry field with the given vaiue.

If va1ue is initially outside the range defined by min and max it will be limited to
these values.

Example

int Value = 42;
dlgHBoxLayout {
dlgLabel ("&Select value");
dlgSpinBox (Value, 0, 99);
}

dlgStretch

Function
Defines an empty stretchable space in a box layout context.

Syntax
dlgStretch(int Factor)

See also dlgHBoxLayout, dlgVBoxLayout, dlgSpacing, Layout Information, A
Complete Example

The d1gstretch statement defines an empty stretchable space in a vertical or
horizontal box layout context.

ractor defines the stretch factor of the space.

Example

dlgHBoxLayout {
dlgStretch (1) ;
dlgPushButton (
dlgPushButton (
}

"+OK") { dlgAccept ()
"Cancel™) { dlgReject()

I8
b8

’
’

digStringEdit

Function
Defines a string entry field.
Syntax
dlgStringEdit (string &Text[, string &HistoryI[][, int Size]l])

See also dlgRealEdit, dlgIntEdit, dlgTextEdit, dlglLabel, Layout Information, A
Complete Example

The digstringrdit statement defines a one line text entry field with the given Text.

If History 1S given, the strings the user has entered over time are stored in that
string array. The entry field then has a button that allows the user to select from
previously entered strings. If a size greater than zero is given, only at most that
number of strings are stored in the array. If nistorycontains data when the dialog is
newly opened, that data will be used to initialize the history. The most recently
entered user input is stored at index 0.

None of the strings in History may be empty (if there is an empty string, all strings
after and including that one will be dropped).

Example

string Name = "Linus";
dlgHBoxLayout {
dlgLabel ("Enter &Name") ;
dlgStringEdit (Name) ;
}

digTabPage

Function
Defines a tab page.

Syntax
dlgTabPage (string Title) statement

See also dlgTabWidget, Layout Information, A Complete Example

The d1gTabrage statement defines a tab page with the given Tit1e containing the
given,statement.

If Tit1e contains an '« ', the character following the ampersand will become a
hotkey, and when the user hits a1t+hotkey, this tab page will be opened. To have an
actual '« character in the text it has to be escaped.

Tab pages can only be used within a dlgTabWidget.

By default a a1gTabrage contains a dlgVBoxI.ayout, so a simple tab page doesn't
have to worry about the layout.

Example

dlgTabWidget {

dlgTabPage ("Tab &1") {
dlgLabel ("This is page 1");
}

dlgTabPage ("Tab &2") {
dlgLabel ("This is page 2");
}

}

digTabWidget

Function
Defines a container for tab pages.

Syntax
dlgTabWidget { tabpages }
dlgTabWidget (int &Index) { tabpages }

See also dlgTabPage, Layout Information, A Complete Example

The di1gTabwidget defines a container for a set of tab pages.

tabpages must be a sequence of one or more dlgTabPage objects. There must be no
other dialog objects in this sequence.

Index defines which tab should be selected initially. If this selection changes the
variable 1ndex is set accordingly. The first page has index o(independent of its
title).

Examples

dlgTabWidget {
dlgTabPage ("Tab &1") {
dlgLabel ("This is page 1");
}
dlgTabPage ("Tab &2") {
dlgLabel ("This is page 2");
}
}
dlgbialog("test")
{
int TabNr = 0;
int CheckBoxValuel];
dlgTabWidget (TabNr) {
for (int 1 = 0; 1 <= 9; i++) {
string s;
sprintf (s, "&%d", 1i);
dlgTabPage ("Tab " + s) {
dlgLabel ("This is page " + s);
dlgCheckBox (s, CheckBoxValue[i]) {
string Msg;
sprintf (Msg, "Value #%d: %d\n", TabNr,
CheckBoxValue [TabNr]) ;
dlgMessageBox (Msqg) ;
}

digTextEdit

Function
Defines a multiline text entry field.

Syntax
dlgTextEdit (string &Text)

See also dlgStringEdit, dlgTextView, dlglabel, Layout Information, A Complete
Example

The d1gTextedit statement defines a multiline text entry field with the given rext.

The lines in the Text have to be delimited by a newline character (' \n'). Any
whitespace characters at the end of the lines contained in Text will be removed, and
upon return there will be no whitespace characters at the end of the lines. Empty
lines at the end of the text will be removed entirely.

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout {

dlgLabel ("&Edit the text");

dlgTextEdit (Text) ;

digTextView

Function
Defines a multiline text viewer field.

Syntax
dlgTextView (string Text)
dlgTextView(string Text, string &Link) statement

See also dlgTextEdit, dlglabel, Layout Information, A Complete Example

The digTextview statement defines a multiline text viewer field with the given Text.
The Text may contain HTML tags.

External hyperlinks in the Text will be opened with the appropriate application
program.

If ink 1s given and the Text contains hyperlinks, statement will be executed every
time the user clicks on a hyperlink, with the value of Link set to whatever the tag defines as the value of href. If, after the execution of statement,

the 1ink variable is not empty, the default handling of hyperlinks will take place.
This is also the case if 1.ink contains some text before dlgTextView is opened,
which allows for an initial scrolling to a given position. If a Link is given, external
hyperlinks will not be opened.

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout {

dlgLabel ("&View the text");

dlgTextView (Text) ;

}

digVBoxLayout

Function
Opens a vertical box layout context.
Syntax

dlgVBoxLayout statement
See also dlgGridLayout, dlgHBoxLayout, Layout Information, A Complete

Example

The di1gvBoxLayout statement opens a vertical box layout context for the
given,statement.

By default a dlgDialog contains a digvBoxLayout, SO a simple dialog doesn't have to
worry about the layout.

Example

dlgVBoxLayout {
dlgLabel ("Box 1");
dlgLabel ("Box 2");
dlgLabel ("Box 3");
}

Layout Information

All objects within a User Language Dialog a placed inside a layout context.

Layout contexts can be either grid, horizontal or vertical.

Grid Layout Context

Objects in a grid layout context must specify the grid coordinates of the cell or cells
into which they shall be placed. To place a text label at row 5, column 2, you would

write

dlgGridLayout {
dlgCell (5, 2) dlgLabel ("Text");
}

If the object shall span over more than one cell you need to specify the coordinates
of the starting cell and the ending cell. To place a group that extends from row 1,

column 2 up to row 3, column 5, you would write
dlgGridLayout {
dlgCell(l, 2, 3, 5) dlgGroup("Title") {
/] ...
}
}

Horizontal Layout Context
Objects in a horizontal layout context are placed left to right.

The special objects dlgStretch and dlgSpacing can be used to further refine the
distribution of the available space.

To define two buttons that are pushed all the way to the right edge of the dialog,
you would write

dlgHBoxLayout {
dlgStretch (1) ;
dlgPushButton ("+OK") dlgAccept () ;
dlgPushButton ("Cancel") dlgReject();
}

Vertical Layout Context

Objects in a vertical layout context follow the same rules as those in a horizontal
layout context, except that they are placed top to bottom.

Mixing Layout Contexts

Vertical, horizontal and grid layout contexts can be mixed to create the desired
layout structure of a dialog. See the Complete Example for a demonstration of this.

Dialog Functions

The following functions can be used with User Language Dialogs:

dlgAccept() closes the dialog and accepts its contents
dlgRedisplay() immediately redisplays the dialog after changes to any values
dlgReset() resets all dialog objects to their initial values
digReject() closes the dialog and rejects its contents
dleSelectionChanged() tells whether the current selection in a digListView or dlgListBox
has changed
digAccept()
Function
Closes the dialog and accepts its contents.
Syntax

void dlgAccept ([int Result]);
See also dlgReject, dleDialog, A Complete Example

The digaccept function causes the dlgDialog to be closed and return after the
current statement sequence has been completed.

Any changes the user has made to the dialog values will be accepted and are copied
into the variables that have been given when the dialog objectswere defined.

The optional resu1t is the value that will be returned by the dialog. Typically this
should be a positive integer value. If no value is given, it defaults to 1.

Note that di1gaccept () does return to the normal program execution, so in a
sequence like

dlgPushButton ("OK") {
dlgAccept () ;
dlgMessageBox ("Accepting!") ;
}
the statement after d1gaccept () Will still be executed!

Example

int Result = dlgDialog("Test") {
dlgPushButton ("+0K") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject () ;
}i

digRedisplay()

Function
Redisplays the dialog after changing values.

Syntax
void dlgRedisplay(void) ;

See also dlgReset, dleDialog, A Complete Example

The digredisplay function can be called to immediately refresh the dlgDialog after
changes have been made to the variables used when defining the dialog objects.

You only need to call digredisplay () if you want the dialog to be refreshed while
still executing program code. In the example below the status is changed to
"Running..." and d1gredisplay () has to be called to make this change take effect
before the "program action" is performed. After the final status change to
"Finished." there is no need to call d1gredisplay (), since all dialog objects are
automatically updated after leaving the statement.

Example

string Status = "Idle";
int Result = dlgDialog("Test") {
dlgLabel (Status, 1); // note the 'l' to tell the label to be
updated!
dlgPushButton ("+0K") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject () ;
dlgPushButton ("Run") {
Status = "Running...";
dlgRedisplay () ;
// some program action here...
Status = "Finished.";
}
}i

digReset()

Function
Resets all dialog objects to their initial values.

Syntax
void dlgReset (void) ;

See also dlgReject, dleDialog, A Complete Example

The digreset function copies the initial values back into all dialog objects of the
current dlgDialog.

Any changes the user has made to the dialog values will be discarded.
Calling d1greject () implies a call to digreset ().

Example

1;
dlgDialog ("Test") {
dlgIntEdit (Number) ;

int Number
int Result

dlgPushButton ("+0K") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject () ;
dlgPushButton ("Reset") dlgReset():;

I &

digReject()

Function
Closes the dialog and rejects its contents.

Syntax
void dlgReject ([int Result]);

See also dlgAccept, dlgReset, dlgDialog, A Complete Example

The digreject function causes the dlgDialog to be closed and return after the
current statement sequence has been completed.

Any changes the user has made to the dialog values will be discarded. The
variables that have been given when the dialog objects were defined will be reset to
their original values when the dialog returns.

The optional resu1t is the value that will be returned by the dialog. Typically this
should be o or a negative integer value. If no value is given, it defaults to o.

Note that digreject () does return to the normal program execution, so in a
sequence like

dlgPushButton ("Cancel™) {
dlgReject () ;
dlgMessageBox ("Rejecting!") ;
}
the statement after d1greject () Will still be executed!

Calling d1greject () implies a call to digreset ().

Example

int Result = dlgDialog("Test") {
dlgPushButton ("+0K") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject () ;
i

dlgSelectionChanged()

Function
Tells whether the current selection in a dlgListView or dlgListBox has
changed.

Syntax
int dlgSelectionChanged(void) ;

Returns
The digselectionChanged function returns a nonzero value if only the
selection in the list has changed.

See also dlgListView, dlgListBox

The d1gselectionchanged function can be used in a list context to determine
whether the statement of the d1gristview Or d1gListBox was called because the user
double clicked on an item, or whether only the current selection in the list has
changed.

If the statement of a digListview Or d1gListBox doesn't contain any call

to dlgselectionChanged, that statement is only executed when the user double
clicks on an item in the list. However, if a ULP needs to react on changes to the
current selection in the list, it can call d1gselectionCchanged Within the list's
statement. This causes the statement to also be called if the current selection in the
list changes.

If a list item 1is initially selected when the dialog is opened and the list's statement
contains a call to d1gselectionChanged, the statement is executed

with d1gselectionChanged returning true in order to indicate the initial change from
"no selection" to an actual selection. Any later programmatical changes to the
strings or the selection of the list will not trigger an automatic execution of the list's
statement. This is important to remember in case the current list item controls
another dialog object, for instance a d1grextview that shows an extended
representation of the currently selected item.

Example

string Colors[] = { "red\tThe color RED", "green\tThe color GREEN",
"blue\tThe color BLUE" };
int Selected = 0; // initially selects "red"
string MyColor;
dlgLabel (MyColor, 1);
dlgListView ("Name\tDescription", Colors, Selected) {

if (dlgSelectionChanged())

MyColor = Colors[Selected];

else
dlgMessageBox ("You have chosen " + Colors[Selected]);

Escape Character

Some characters have special meanings in button or label texts, so they need to
be escaped if they shall appear literally.

To do this you need to prepend the character with a backslash, as in

dlgLabel ("Miller \\& Co.");
This will result in "Miller & Co." displayed in the dialog.

Note that there are actually two backslash characters here, since this line will first
go through the User Language parser, which will strip the first backslash.

A Complete Example

Here's a complete example of a User Language Dialog.
int hor = 1;
int ver = 1;
string fileName;
int Result = dlgDialog("Enter Parameters") {
dlgHBoxLayout {
dlgStretch (1) ;
dlgLabel ("This is a simple dialog");
dlgStretch (1) ;
}
dlgHBoxLayout {
dlgGroup ("Horizontal") {
dlgRadioButton ("&Top", hor);
dlgRadioButton ("&Center", hor);
dlgRadioButton ("&Bottom", hor);
}
dlgGroup ("Vertical") {
dlgRadioButton ("&Left", ver);
dlgRadioButton ("C&enter", ver);
dlgRadioButton ("&Right", ver);
}
}
dlgHBoxLayout {
dlgLabel ("File &name:");
dlgStringEdit (fileName) ;
dlgPushButton ("Bro&wse") {
fileName = dlgFileOpen("Select a file", fileName);
}
}

dlgGridLayout {
dlgCell (0, 0) dlgLabel ("Row 0/Col 0");
dlgCell (1, 0) dlgLabel ("Row 1/Col 0");
dlgCell (0, 1) dlgLabel ("Row 0/Col 1");
dlgCell (1, 1) dlgLabel ("Row 1/Col 1");

}

dlgSpacing (10) ;

dlgHBoxLayout {
dlgStretch (1) ;
dlgPushButton ("+OK")

dlgPushButton ("Cancel™)

}
I

dlgAccept () ;
dlgReject () ;

Supported HTML tags

EAGLE supports a subset of the tags used to format HTML pages. This can be
used to format the text of several User Language Dialog objects, in
the #usage directive or in the description of library objects.

Text is considered to be HTML if the first line contains a tag. If this is not the case,
and you want the text to be formatted, you need to enclose the entire text in

the <html>...</html> tag.

The following table lists all supported HTML tags and their available attributes:

Tag
<html>...</html>

<body>...</body>

<hl1>...</h1>
<h2>...</h2>
<h3>...</h3>

<p>.. ,</p>

<center>...</center>
<blockquote>...</blockquote>

...

...

..

<pre>...</pre>

<a>..

Description

An HTML document.

The body of an HTML document. It understands the
following attribute

e Dbgcolor - The background color, for
exanqﬂebgcolor="yellow"Orbgcolor="#OOOOFFW
This attribute works only within a dlgTextView.

A top-level heading.

A sub-level heading.

A sub-sub-level heading.

A left-aligned paragraph. Adjust the alignment with

the align attribute. Possible values

are left, right and center.

A centered paragraph.

An indented paragraph, useful for quotes.

An un-ordered list. You can also pass a type argument to
define the bullet style. The default is t ype=disc, other types
are circle and sguare.

An ordered list. You can also pass a type argument to define
the enumeration label style. The default is type="1", other
types are "a" and "a".

A list item. This tag can only be used within the context

of ol or ul.

For larger chunks of code. Whitespaces in the contents are
preserved. For small bits of code, use the inline-style code.
An anchor or link. It understands the following attributes:

...
...
<i>..</i>

...
<uw>...</u>
<big>...</big>
<small>...</small>

<code>...</code>

<tt>...</tt>

...

<img...>

<hr>

e href - The reference target as in ... You can also
specify an additional anchor within the specified
target document, for example If you want to
link to a local file that has a blank in its name, you

need to prepend the file name with file:, asin <a
href="file:/path with

blanks/target.html">....
e name - The anchor name, as in

Emphasized (same as <i>...</i>).

Strong (same as . . .).

Italic font style.

Bold font style.

Underlined font style.

A larger font size.

A smaller font size.

Indicates Code. (same as <tt>...</tt>. For larger chunks
of code, use the block-tag pre.

Typewriter font style.

Customizes the font size, family and text color. The tag
understands the following attributes:

e color - The text color, for
example color="red" Or color="#FF0000".

e size - The logical size of the font. Logical sizes 1 to
7 are supported. The value may either be absolute, for
example size=3, or relative like size=-2. In the
latter case, the sizes are simply added.

e face - The family of the font, for
example face=times.

An image. This tag understands the following attributes:

e src - The image name, for example .

The URL of the image may be external, as in .

e width - The width of the image. If the image does not
fit to the specified size, it will be scaled
automatically.

e height - The height of the image.

e align - Determines where the image is placed. Per
default, an image is placed inline, just like a normal
character. Specify 1eft or right to place the image
at the respective side.

A horizonal line.

<nobr>...</nobr>

<table>...</table>

<tr>...</tr>

<td>...</td>

<th>...</th>

<author>...</author>

A line break.

No break. Prevents word wrap.

A table definition. The default table is frameless. Specify the
boolean attribute border in order to get a frame. Other
attributes are:

e bgcolor - The background color.

e width - The table width. This is either absolute in
pixels or relative in percent of the column width, for
example width=80%.

e Dborder - The width of the table border. The default is
0 (= no border).

e cellspacing - Additional space around the table
cells. The default is 2.

e cellpadding - Additional space around the contents
of table cells. Default is 1.

A table row. Can only be used within table. Understands the
attribute

e Dbgcolor - The background color.

A table data cell. Can only be used within tr. Understands
the attributes

e bgcolor - The background color.

e width - The cell width. This is either absolute in
pixels or relative in percent of the entire table width,
for example width=50%.

e colspan - Defines how many columns this cell spans.
The default is 1.

e rowspan - Defines how many rows this cell spans.
The default is 1.

e align - Alignment, possible values
are left, right and center. The default is left-
aligned.

A table header cell. Like td but defaults to center-alignment
and a bold font.
Marks the author of this text.

<dI>...</dl> A definition list.

<dt>...</dt> A definition tag. Can only be used within d1.
<dd>...</dd> Definition data. Can only be used within d1.
Tag Meaning

< <

> >

& &

 non-breaking space

ä a

ö 0

ü i

Ä
Ö
Ü
ß
©
°
µ
±
"

°Q > O

=

