EAGLE

EASILY APPLICABLE GRAPHICAL LAYOUT EDITOR

User Language

Version 5.7

Copyright © 2010 CadSoft All rights reserved

EAGLE User Language Version 5.7

Table Of Contents
USET LANGUAZE....uuieiiiiieeeetiiiee ettt eettiee e ettt e e eetaaeeseetaaeeeeeanneseetanneeesneannsennnsennns 13
WIIEING @ ULP..ceiiie s ettt e et aan e e e e eees 13
EX@CULING @ ULP....eeiiii e e e 14
)74 8Lz D U PO UUTRPPP PR PPPPPR 14
W HIEESPACE. ...ettteeeeeieeeie ettt ettt e e e e e e sttt e e e e e e e s st seseeeeeeeeeaeaeeesnnnnns 14
L€00] 1311 8 1<) 0 1 5 J PP UPPRPPPRPRRRt 15
DT AT 15
2 1 1ol 11 La (PR UPPPRPPN 15
POTTADIIIEY NOTE. .. utiiieiieeeeeeciiiiieeeee e e e e eeeerre e e e e e e e e earreeeeeeeeeeeeeeeeaeeeesesssssnnnnnns 16
FETEQUITE. .. eeeieeeeiiiiiieee e e e eeeettitt e e e e e eeeetebaaa e e e seeeeeatasasasaaaeseeeeeasssnnnnneseeeeeensnnnnnnnnns 16
FFUSAZC e e e e e e e anas 16
|05 211110 (TSRO PPPPRRR 17
KEYWOTAS. ceeeiiiiieeiiiiietee e e ettt e e e e e e ettt e e e e e e e e e s s aabbaeeeeeeeesesssnnnnsaeeeeseaaeaeneens 17
(e <31 1 411 & J PO RPRPP SRR 17
L0} 8 1) =1 | 18
Character COMSTANES.cevvuuuiieeeeeeeeeerrtrreeaeeeeeeeerrrsrsnnaaaeeeessssssssnnnsseseeessssssssnnneaseses 18
INtEZET COMSTANES. ceivuuueiiiiiiieeeetiiiieeeettuieeeeettaiereettnieseerranneseerrsnnnesarssnsseeesssnsseensnssennns 18
00 ez 1101 o) T J OSSP 18
REAI CONSLATES. ..vvuvvvvrerererrrrererrrrerrrereesreereeererrarerer.—.———.————....—..rsrersr......n.srron 18
10521101) (=TSO OUUPPPPP PRI 19
STTINE COMSTANES. ..eetieeiiiiiiiiieeeeeeeetetttiieeeeeeeeetetanaaaeaeeeeeeaatessnnssessnnssessnseessnnseesnnns 19
ESCAPE SEQUEIICES.....uiiiiiiiiiiiiiiiiii ittt e e e aas e aaaa e 19
|05 21101 0) (=T3P PPPUPPPPPRPRPRRRIN 20
L o e =1 o) SN 20
BraCKEES . eeeiiiiiiieeeee e e et cceee e e e e e e ettt ree e e e e e e e e e e a b —eeeeeeeeeraaa b erttaeearaaeerraaaes 20
PaATEINIENIESES. ..eevvvrtiieeeeeeeeeeeetticeeeee e e e ee ettt eeeeeeeeeeeerar b eaeeeeeeereararaaaeaeeraraeerrraaaaes 21
2 = [T ST PRPRRN 21
L@00] 1311 0 VS PRTRROt 21
SEIMICOLOM.c.ceiiiieiieeieeeeeeeeeeeeeeeeeeeeeeeeeee eeeeeeeeeeeeeeearaaeeeeeeanes 21
@] Lo o VU UUPPP SRR 22
EQUAL SIZN..uniiiiiiiieiieee ettt e et e s e e e e et e e e e as 22
DAL TYPES. ettt ettt ettt ettt e ettt e e et ta e s et ta e e e ttn e ea e ea e en e ana e eeaas 22
CRAT ettt e e e e e e e e e e a e —eeeeeeeeeeraa b —————aeeeearerarbraaeaerrrrrnaees 22
0 RN 22
14 | IO UUUPU RO PPPPPRt 23
SETITIE i eeeeeeeeettruuiieeeeeeeeeteruaaa e eeeeeeeaeaassssssaeeseeeessssnssnneseeeeessssssnsnnsseseeeesssssnsnnneesenes 23
Implementation details...........ccceeeeiiiiiiii i, 23
TYPE COMVETSIONS. ..eeeeiiiiiiuiieeeteeeetititiieeeeeeeeeettranasaaaeseeeeeetssannnsaseseeesmesssnnnesesnnseeens 24

Page 2 of 136

EAGLE User Language Version 5.7

TYPECAST. ..ttt e e e et e e et e e e e e eaas 24
Ot T DS e i iieiieeeieee e 24
UL ARC e e et a e e e e e e ann e 27
00} 8 151 7= 1 | £~ J 27
Lo T 27
EXAIMPLE. .ttt e et e e e e e e e st e e e e e e e ee s 27
UL AREA. ettt eee 27
|05 21111) (TSR PPPPSR 28
UL ATTRIBUTE......euttitiiiiiiieeetteeee ettt e e e e e ettt e e e e e e sessassrteeeeeeessssnnnnnnes 28
00} 151 =1 s | S 28
N[0 P 28
|05 €21 111 0] (TSRO 29
UL BOARD. ...ttt ettt e e e e e ettt e e e e e e e e e e e e e e e e e eeeeenees 29
|\ Lo TP 29
|25 211115 (TSR PO PPPPPRR 30
UL BUS .ttt ettt ettt ettt et e e e ettt e e e e e e e e sssrabteeeeeee e e e nnnneeeeeees 30
(@00 s 1] = 1 | £~ J PR 30
EXAIMIPLE. .ttt ettt e ettt e e ettt e e e e 30
UL CIRCLE......ciiiiiiiiteeeeeeeeeee ettt e ettt e e e e e e e e e e e e e e e eeeeeenes 30
|05 211010 (TSRO USSP PPPPPPRURRN 30
UL CLASS. ettt ettt e e e e ettt e e e e e s e msrreeeeeeeeeeeeeeenes 30
A Lo T 31
|05 211115 (TOR U PO PPPPPRURN 31
UL CONTACT ...ttt ettt ettt et ettt et e e e e eeeeeeeeeetaaa e s e e eeesaneeeaees 31
(00} 8 151 =1 | £~ 31
A\ (0] (P 31
125 €111 o) (TSR 32
UL CONTACTREFcciiiitiiiiiiiiiitititititttitieetteeteeeeteeteeeeteeteeeteeeteeeteeeteeeteaeeeeateesaneseaees 32
125 €110 o) (TS 32
UL DEVICE.....cc ittt e et eees 32
00} 151 =1 s | S 32
N[0 33
10521101) (=TSSP OUUPPPPPPRRRN 33
UL DEVICESET ...ttt e e s e e e e e e e e e e e e e e e eeees 34
00} 8 151 =1 s | S 34
N[0 34
|05 €211 01) (=TSSP 34
UL ELEMENT ..ottt ettt e e e e e e ettt e e e e e e e s e e e e e e e e e eeeeenees 34
(@00 s 1] - 1 | £~ J PP 35
A Lo T 35
|05 211010 (=T3P PPPPPPPPPPPPRRRIN 35
UL FRAME . ..ttt ettt e e e e e ettt e e e e s s e e essraeeeeeeeeseeennnes 36
@) 111 1 £~ J TP 36

Page 3 of 136

EAGLE User Language Version 5.7

|\ TSNPt 36
|05 211115 (TOR U PO PPPPPRURN 36
UL GATTE. .. e e e e e e e e e e e e s e e e e e e e e e e s e e e s e e e e e e e e e e s eaaaasaaesaanen 37
00} 8 15 =1 s | £~ J 37
A\ (0] (P 37
I35 €111 o) (TS 37
UL GRID ittt easassssssstssssasssnsssanaeeeaees 37
00} 8 15171 | £~ J 38
A\ (0] (T 38
125 €111 o) (TS 38
UL HOLE... e s e e e e e e e 38
N[0 38
|05 21101) (=TSP PPPPR 38
UL INSTANGE.....cttttttttttttitttttiititeettteteteeeeeeeeeeeeeeeeaeeeaea———eeae—a—————a————aaea—aetaaeeaareearaaraae 38
L0} 8 151 =1 s | S 39
N[0 39
|05 211010 (=TSSP 40
UL JUNCTION. ..ttt ettt et e e et eee e e e s s e e et teeeeeesesemnssneeeeeeeeeenes 40
|05 211110 (TSRO PPPPPPRR 40
UL LABEL....cetteeeeeeeeettt ettt et e e ettt e e e e e e e s sssae et e eeeeeeeeeeaeeeeeennnes 40
|\ Lo T PR 40
|05 211010 (TSR PPPPRR 41
UL LAYER....c ittt ettt et e e e s ettt e e e e e s e assseeeeeeeeeeenes 41
@0} 3 15 v=1 3 1 £~ J PP 4]
|05 211010 (TSRO USSP PPPPPPRURRN 42
UL LIBRARY ..ottt ettt ettt ettt ettt e e e e e s e e emeeee e e e e e e e e s e e e e e e eeeeeeennenes 42
(@00 s 1] : 1 | - JS 43
A L] T 43
|05 211015 (TSRO PO P PPPP PPN 43
|8) P AN 2 PP P PP PP PPPPPPPPPPPPPPPPPPRY 43
00} 8 151 7= 1 s | £~ J 44
A Lo T 44
I35 €111 o) (TSR 44
UL PACKAGE..... et e et eees 44
00} 8 15171 | £~ J 45
Lo T 45
EXAIMPIE. .ttt e et e e e e e e e et e e e e et e ae s 45
UL PAD ..ttt ettt tee et b e bbb bbb e e s s bab bt s bbebaae b bbb aabbb bbb abbbbabaeaa e eaee 46
[010] 3 1 : 1 0L SRR SPPPTPPRPR 46
A0 1RSSO PPTPPRR 46
|05 21111) (TSP 47
UL PART ..t et tbba e e eees 47
00} 8 151 =1 s | S 47
N[0 48

Page 4 of 136

EAGLE User Language Version 5.7

|05 211115 (TSRO PPPPPPPRRRN 48
UL PIN. ittt ettt ettt e e e ettt e e e e e e sttt eeeeeeeeessasssbaaeeeeessessanssnnenes 48
00} 8 151 =1 | £~ J 49
A\ (0] (P 49
I35 €111 o) (TN SSR 50
UL PINREF ...ttt ettt e e e e e e sttt e e e e e s s s se s e e e e eeeaaeenanees 50
125 €111 o) (TSR 50
UL POLYGON....ciiitittitieeeeieieeteeeee e e e e ettt e e e e s e e eineseee e eeeeeeesennsanaeeeeeeeeeeeeeeeenees 50
00} 8 151 =1 s | 51
N[0 51
| 200)) 42407 114 Ta L o FO PP 51
Partial POLYZOMS. ...uuiiiiiiiieeeiiiiiiieeee e e eeeecttee et e e e e e e e et reeeeeeeeeeeeeeeeeeeeeeeeaeeanannas 51
|05 21101) (=TSP PPPPR 52
UL RECTANGLE. ...ttt ettt e e e e e ettt saaee e e e e e e e eeeeeas 53
|05 21111) (=TSR 53
UL SCHEMATIC.....uueetiieeeiteee ettt ettt ettt e ettt e e e ettt e s st e e e easeeeeessannneeeenns 53
|\ Lo TR 53
|05 211110 (TSROSO PPPPRRR 54
UL SEGMENT ...ttt ettt ettt e e et e e s ettt e e e sttt e e e s et e e s esnnbeeeeeeeaanns 54
|\ Lo T PP 54
|05 211110 (TSRO PPPPPR 54
UL SHEET ...ttt ettt ettt e e ettt e e e st e e s emree e et e e eeeeeeaeeeeseaassnnnns 54
|05 211010 (TSRO PP PPPPPPPRRRR 55
UL SIGNAL. ...ttt ettt ettt e ettt e e ettt e e e st e e e s e bt e e e e ennraeeeeeeesanannn 55
(@00 5 1] : 1 | £~ JS 55
|05 211115 (TSRO PR PPPPPPPRRR 55
UL SMD ...ttt ettt et e ettt e e e e e e sttt e e e e e e e s ssassssaaaeeeeeesessssnnsnneeeeeeee 55
[@00) 8 1] 21 11 £-J0NU OO PUPURIRRt 56
|\ o) TP URPUPURRRRt 56
125 €111 o) (TN SST 56
UL SYMBOL....iiiiiiitiieeeeeeeiittt ettt e ettt et e e e e s e sttt e e e e e s e s s se s e e e e eeeeeeaeeenes 57
00} 8 151 7= 1 | £~ J 57
Lo T 57
EXAIMPLE. .ttt e e e e e e e e e s e e e e e e e ee s 57
UL TEXT ceeeeetteeeei ettt ettt ettt e e e e ettt e e e e s e e e sbeat e e eeeeeeesaannnssneeeeeeeeenenes 57
00} 151 =1 s | 58
N[0 58
|05 21111) (TSRO 58
UL VIA ettt ettt et e e e e e sttt e eee e e e e e asabbttaeeeeesessannnsnneenes 58
00} 151 =1 s | £~ 58
N[0 P 59
|05 €211 01) (=TSSP 59
UL WIRE. ...ttt ettt ettt e ettt e e e ettt e e st e e e ettt ettt e eeeeeeeaeeeesaaassnnnnn 59
@) 11 1 £~ J TP 60

Page 5 of 136

EAGLE User Language Version 5.7

WITE SEYL.ceiiiiiiiiiieeeee ettt e e e e e s st e e e eeeeeeeeeeeeeeeaeeeannannaaes 60
F N I L A gl o7 R UUURN 60
|05 211115 (TOR U PP PPPPPRRURN 60
D55 13 1 (o) o - UUPPRRPPPNt 61
(@) a1y w=1 oVl DLT 1 0V L 6 o) o - J U 61
Variable Definitions........uuuureieeeiieeiiiiiiiieeeeeeeeeessiierreeeeeeeeessseaarrreeeeeeeesssnnrnreaeeeaeeeens 61
10521101) (=TSSP OUUPPPPPRPRRN 62
FUNCHION DefiNMitiONS. .ccccuviviieeeeeieeeeeciiiie e e e e eeeeirrre e e e e e e e e e aatabaaeeeeeeeaeaaaeaaennns 62
The special function MaiN()......ueeeeeeieieeiiiiiiiieeee e e e e e e e e 63
|05 21111 0) (=TSSP 63
(0513 =110 ¢ TP PP 63
BIitWiSE OPEIALOLS. ...uuuuuuuiiuiiiiiiiiiii e e s e et e e s e e e eanaa e ee 64
LOZICAl OPIALOTS. ceteeiiiieeiiiiiiiieeeeeeeereiiitttteeeeeeesssiartaeeeeeessasssssssraeeeeeesssssssnseseeeeees 64
COmMPATISON OPETALTOTS. .. .uuueeeerreeeeeteeeeiiirtrteeeeeeeeeenrerreeeeeeeeeeeinrrraeeeeeeesasenaaaeeeeeeeas 64
EValuation OPerators....cccceeeieeieieeieeeeeeeeeee eeaae e e aaees 64
ATTTRMETIC OPETATOTS. .. i eeeeaeeanannseaeessnen 65
SETITIZ OPETALOTS. .. vvvvuevvvveueaaeeeteataeaeeuaaaeeseaseeeasaeseeseseseeseessssseassesnsessnnsseesssnssnsseeessnnn 66
B X DT @SSIOTIS. ¢ eeieeeeitiiiiieee e et e et ettt e e e e e e eeettaaaa e e e e e e eeeeesassasasaeeeeaaeanasnnssessnnnsessnnnes 66
Arithmetic EXPIeSSION.ueiiiiiiiiiieieeiitee et e ettt e et e e et e e e et e e s e enreeeeeeeeeeeas 66
|05 211010 (=TSP PPUUPPPPPPPPRRRN 66
ASSIZNMENT EXPIESSION. . eiiiiiiiiiiiieeeeeeeeeiiiieee e e e e eeetetiieee e e e eeetetennae e e eenaeeeenaneeeennns 66
EXAMIPLES. ..ceiiniiiieee ettt ettt e e e e e e e et 66
ST FXPTESSION. ...ttt eaae e betaeeaaeaeaeeeeeeaeseesaenaneeeeeeennnn 67
EXAIMNPIES. ceeeiiieieeiiieteee ettt ettt e e e e s s st e e e e e e e e e e e eeeeeeaeaaas 67
COMIMA EXPIOSSION. ... e e s e e e e e e e e eaaanes 67
|05 211115 (TSRO PP PPPPPPPPTUR 67
(@00} aTa BN (0] o =1 B 254 03 4 =11] 10) o HN PSPPSR 67
125 €111 o) (TN SST 67
0T Uad (o) o N 1 | SRR 67
I35 €110 o) (TS 67
S ALEIMIEIILS. .. ettt eeeeeeiitieee e e e e e e ettttaa e e e e e eeeeettaaaaa e e eeeeeeenesanasanneseeeeesnssnnnnnneeesnnneennnnns 67
COmMPOUNA StAtEIMENL.....uuuvviieeeeeeeeeeeiirtireeeeeeeeeeeirrrrreeeeeeeeaassnrsrrreeeessessssssssssaseeseens 68
I3 q0) (eI T0) s B #: 1LS) 101 o 1 U OO RPUPPPORPPOR 68
(@00} aTu o) B] =110 1<) 0|7 68
) USRIt 69
COMEITIULE ceettvttiiiieeeeeeeeeeetttieeaeeeeeeeeeaaaaeessaeeeeeeeessesnsnnssseeeeessssssnsnnsessseesessssssnnnsesessnnnes 69
(& Lo T 14 o 11 LT PRRUPPPIRt 69
I35 €111 o) (TSR 69
(0] SRR SUUPPPRPRPN 69
125 €111 o) (TS 70
11 U] 1 TR PPTPPPRPRPN 70

Page 6 of 136

EAGLE User Language Version 5.7

<] 6 0 PN 70
112 116 o DR 71
125 €111 o) (TSR 71
WL et e e e e e e e e et e e e e e e e e e e aaa b e eeeeeerararaeraraaarran 72
|05 211110 (TOR U OO PRSP P PP PPPPPRRRN 72
123011 o - J Rt 72
BUIItIN COMNSLANES. ...uuuvuuveeeerirreeeereateeeueesssssneessssresrereesrererrrrrerraan..eesssssnaeeesssssmnneees 72
BUILEIN VATIADIES.cceiiiiiiiceeeee e e e e e e e eeeeeeeeeeeeessaaaeeesssaneaes 73
BUILEIN FUNCHIONS. .. eiieeeeeetiiiceeee ettt e e ee e e et tareeeeeeeeeeeeasasaeeeeeeeeessessannaneeeses 73
CharaCter FUNCHIOMNS. ..uvuuueeeeeeeeeeieiiiieeeeeeeeeeeerttieeeeeeeerressssnnaaeeeeeessssssssnnnaeeeeessssaneees 75
ST T () TN 76
CharaCter CAtEGOTIES. cueiierrruurirriieeeeeeeerieiiirrteeeeeeeeesssitrareeeeeeeessssaasasaseeeseseeaneenees 76
|05 211115 (TSRO PO PPPPRRRR 76
[0 T (O TN 77
File Handling FUNCHONS.cciitiiiiiiiiiiiieeee ettt ee ettt e e e e e e s sseeeeeeeeeeeeees 77
R 1SS w a0 Y @ TR PP PP PTPRN 77
|05 21101 5) (TSSO PP 78
151 1724 (0] 7 () S UPUR PN 78
NOtE fOr WINAOWS USETIS....uuuuuuunnnnnnnnunnnnnnunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnsnnnnnnnnnnnns 78
|05 211010 (=TSSP 79
Filename FUNCHIONS.ovvviiiiiieeeeeeeeeeeeeiiieeeeeeeeeeeeetteeeeeeeeeeesesssaaeeeeeeessssssrnnnneees 79
|25 211010 (TSRO PPPPPRR 79
FIledata FUNCHIOMS. ..uuuuueeeeeeeeeeiiiiiieeeeeeeeeeeeettteeeeeeeeeeeeaasaaeeeeeesssnneesssaneesssnneesssnneeses 79
|05 211010 (TSRS PPPPRRR 79
File INPUL FUNCHOMNS. ...iiiiiiiiiiiiiiiiiieeeee ettt e et e e e e e s e s snreeeeeeeeeeeeeaeaenes 80
151 (S (<= o 1 O TR 80
EXAMIPLE. .ttt et e e e 80
Mathematical FUNCHONS.eiiiiiiiiiiiiiiieeeeeeeeeeeeiiceeee e e eeeeeetareeeeeeeeeesesansaanaeeeeeasanes 80
EITOT IVI@SSAZES. . ceevuueiiiiiieeieiiieeeeetiiee e ettt e e ettt e e eettaeeseetanaseeersnnseeeennnnseesennnns 81
Absolute, Maximum and Minimum FUNCionS............uuuuiieeeeeeeeereiiiiieeeeeeeeeveeeeeaenn. 81
125 €110 o) (TS 82
ROUNAING FUNCHOMNS. .. .vvtiiiiiiieeeiiiiieeee e e e ceeciiite e e e e e e e e e eettreeeeeeeesessnaasaseeeeeaeaseneenes 82
|05 21111) (TSR PPPPR 82
TrigoNOMELTiC FUNCHIONS. ..uuuiiiieeiiiiiiiieee e e eeeeeiiiiee e e e e e et eettbiee e e e e eeeeeeranaaeseeennneeeens 82
[@00) 1 1] 21 1 1 £~ J OSSPSR PPRPRRRt 83
|05 211010 (TSRS 83
EXponential FUNCHIONS.cc.uuiiiiiieiiieiieiiiiieeeee e e seeeiiert e e e e e e et sss e e e e e e e e aeeaanenns 83
N[0 < 83
|05 211110 (TSRO PPPPPRRR 83
MiSCellaneous FUNCHIONS. ..vuuuuiieeeeieeieiiiiiiieeeeeeeeeeeetticeeeeeeeeeeeeeraraeeeeeeeeerrssneesssaneees 83
EXAT() tvvvrrrrrrrrrrrrereererreerreeerrereeearr——.——————————ar——a——————arrrar—raa—r————————a—————t—a————————————————————————— 84
L@00) 2] =1 0 1 £~ JS SRRt 84

Page 7 of 136

EAGLE User Language Version 5.7

JANZUAZE () evrreeeeeeieeeiiiiiitee et e ettt e et e e e s ettt et e e eeeeesssaabbbaeeeeeeeesasaaaaeaaeeeeaaeaaaeeee 84
|05 211115 (TOR U PO PPPPPRURN 85
JOOKUP () eeeeeeeeeeeeeeeeee s e e e e e e e e e s e e e e e e e e eeaaeaaeasaaaaasasaaasaanaaanes 85
EXAIMNPIE. ..ttt e e et e e e e e e e et e e e e eee s 86
021 1 () USRI 87
L000) 1] 21 o L 1 J PP PP PPPPION 87
SOTT() ettt ettt ettt ettt et e et e et st s e a et s ta s tan e an et sttt et et st tane et etnstasannas 87
SOTING @ SINELE ATTAY...eeeeiiiieeeeiiiiiieeeeeeeeeercirrreeeeeeeeesssnrrreeeeeeeessssnsrrraeeeeaeesaes 87
SOTTING @ SET Of ATTAYS...uuuuvrririeeeeieeiiiiiireeeeeeeeeseerrrreeeeeeesesesarrrrreeeeeeesssasasesseens 88
SEATUIS () e oo eueeereeeeeeeeee ettt et et e e e e ettt et e e e e e e et e et e e e e e e e e ab b bt e e et e ettt b e b bt e e es 88
)11 111 FE T PPPPRPR 89
INput/OUtPUt TeAITECHION.eeveeeeeiiieee ettt ettt e e et e e e 89
Background XECULION.ccuuuiiiiiieeeeeeeeeiiiieeeee e e e eesriirtreeeeeeeeeeeeeeeeeeeeesesssnnnnnnes 89
|25 211110 (TSRO PP PPPPPRRR 90
UNIL COMVETSIONS. ..eeeeeiiiiiniieeeeeeeeetttteuieeeeeeeeeetteannaaeaeeeeeeeternnnnnnsaeeeeeeeeesssnnnnnaeseeeees 90
|05 211110 (TSROSO PPPPRR 90
Printing FUNCHIOMS. ..uuvtiiiiiiiiiiiiiiiiitiititetetteeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesanaeeeeeeennnansnes 90
12181016 { () FUUU U P PP PPPPORUURRPRPTPRPIN 91
FOITNAL SETITIE. .. e e e e et e e e e e eenne e e 91
FOTMAt SPECIfIETS. ceiiiieiiiiiiiieeeeee ettt e e e e e e e irrae e e e e e e e s s e aaeaaaaes 91
CONVETrSiON tYPE ChaATACTETS. ...uuveiiieeeeeeiieiiiiiieeeeeeeeeesriiirreeeeeeesesssserreeeeeeeeeeeees 91
Flag CharaCtersS. . .cueiiiiieeeiiiiieeeee ettt e e e e e e e s rrr e e e e e e e e ssaaaaaes 92
Width SPECITIETS. ...ueviiiieeiiieiiieeeee et e e e e e e e e e e e eeeeeeeaaeeaaaaaas 92
PreCiSiON SPECIIEIS. . ciiiiiiiiieiiiiiiieeee ettt e e e e e e s sbeaeeeeeeeeesenaas 92
Default preciSion VAlUES.........ceiiiiereiiiiiiieeeee ettt e e eearre e e e e e e s 93
How precision specification (.n) affects CONVersion..........ccccceceeerereccvvvreeeeeerennn. 93
Binary ZeTo CharaCterS......ceecuuuiiiiiieeeieeeeiiiieteee ettt e e e e e e e e e e e e eeeeeeeeaeeeaaaaas 93
|05 211115 (TSRO PP PPPPPPPPTUR 93
) 81016 1 () F ST U 93
FOTMAL STTITIZ. .ceeeiiiiiiiiiieeeeeeeeitiiiiieee e e e eeeeettttiee e e e e eeeetaaasasaaeesessnnssessnnssessnnssesnnns 94
Binary zero Characters........ccccoeveiiiiiiiiiiee e 94
125 €111 o) (TSR 94
STIINE FUNCHIOMNS. cettttiiiieeeieieeiiiiiiieee e e eeeettriieee e e s e e eeeettbaaaseseeeeeenssssnnnsseseeeessnssnnnnnns 94
18 (¢ 11 o () 1R TUPPPRPRP 94
|05 21111) (TSR PPPPR 95
S0 0] 121 PO U P PP S PP PUUPUPSPPPPPPPPP 95
|05 €211 01) (=TSSP 95
] 8 4131) FOTTT PR UPRRRPRRPPR 95
|05 211110 (TSROSO PPPPRRR 96
8 472 4 O FUTTT PR 96
|05 211010 (TSRS PPPPPRR 96
8 5 4 01 4 () TP 96
|05 211010 (TSRO PO PP PPPPRURRN 96

Page 8 of 136

EAGLE User Language Version 5.7

16 0 410 4 (O F TR 97
|05 211115 (TOR U PO PPPPPRURN 97
10 8] 0] L1 () F PR 97
125 €111 o) (TSR 97
1 410 4 () FOTT TP 98
I35 €110 o) (TS 98
8 551 015] O FEUTTR TR RO PRPRUPRPPRRY 98
|05 21111) (TSR PPPPSR 98
8 g 10 Ya L () FUTTRUOTR TP PRPRUPRPRR 98
|05 21111 0) (=TSSP 99
] 0 410) [T PP 99
|05 211010 (TSRO PPPPPRR 99
S u U] o) o () F PP PPPPPPPRRR 99
EXAMIPLE. .ttt ettt e s 100
18 0.4 4 () FUTS TR 100
EXAIMNPIE. .ttt e e e e e e st e e e e e e e s bbb e e e ae s 100
TIME FUNCHIONS. ¢ttt aeeaaaeeaeeeeeeeannaaeeeees 100
5100 L<) () F TP 101
125 ¢ 1111 o) (TSRS 101
EIITEEITIS () ettt ettt ettt ettt e e et ea st e eneeansansenesansaneanesansansanesanssnsanesnnsensnssnenssnenns 101
125 ¢ 1101 o) (TSRS 101
TimME COMVETSIONIS. ..uueeeeeeeitiiiiiieeeeeeeeeetttieieeeeeeeeeetetaaaaaaaeeeeeeeesnnssassnnseeesnnnsersnnnnns 101
|05 21111) (=TSSP 102
(0] 0} 1161 ul 1 U b s Tt 6 o) o - J ST 102
CLEGTOUP () ettt ettt et e e et e e e et e et e e e e e e e e e e e e eeeeanas 102
EXAMIPLE..ccnniitiiieeeee ettt ettt e e e 103
INGTOUP () ervreeeeeeeeeiiiirittteee et e eeeiette et e et s e e erretteeeeeeeeeaaanarsereeeeeeasasasaaaeeeeeeeeeeeenenns 103
EXAMIPLE. .ttt ettt e et e e e 103
SEEZTOUP () eeeeeereereeeeriertteeeteeteeteeeteeeeteeeeteeteeeeeeeeeeeteeeteetteetteettaetteetttettaetteetaeeetaeesnnnnns 104
EXAIMNPIE. .ttt e e e e e e et e e e e e e e st e e e e b e aaaas 104
BUiltin StatemMenNTS...ccceeieeeeeeeeeeeceeeeeeeee e e ee e e e e e e e e e e e e e e e ee e e e e e e e aanne e e e eeeasnnanns 104
DOATA () ettt ettt ettt et ettt ettt aaaaaaaan 105
Check if there is @ board..........cooeeuiiiiiiiiii e 105
Accessing board from a schematiC..........ccccuvviiiieiiiiiciiiieeee e, 105
125 ¢ 1111 o) (T TR 105
AOVICESEE() e ettt ettt et e et e et e e e e e e et e e te s e e eneeae s e e e eeeeeenaans 106
Check if there is @ dEVICE SEt.....ciiirruiieiiriiiiieeeriieee ettt 106
125 ¢ 1101 o) TR 106
IIDTATY () eeteeeeet ettt ettt e et e e ettt e et e e e e e e e e e e e e e eeeeanans 106
Check if there is @ liDrary......ccc.uuviiiiiiiiieeciieee e 107
|05 21111) (=TSSP 107
OUEPUL() tetttuuuieeeeeteeeetitiuaeaeeeeeeetttaaaeaeaeseeeeeetesnnnsaaaeseeeeeensnnnassnsseseesenssssnneesnnneensnnns 107

Page 9 of 136

EAGLE User Language Version 5.7

| LI o Ya [T 107
Nested OULPUL STATETTIETIES. ...eeeeetierreeiiiitieeeeeeeeesseiiirrteeeeeeeeaaaeeeeeeeeereeeersesesnnnnns 108
|25 21101 0) (TSROSO PPPPRRROR 108
PACKAZE ()i as 108
Check if there is @ PaCKage.......ccceuuiiiiiieeeeeeccccte e e e e e e e e eeeens 108
125 ¢ 1111 o) (TSRS 108
SCIIEIIIATIC) ettt ettt ettt et e et e et e e e e e e e e et et e s e e e e n e e r it e e aans 109
Check if there iS @ SCHEMALIC. ...u.iiiveeeeeeirieeeeeeeeeeeeeieeee e eeaeeeaeeraeeraeennneens 109
Accessing schematic from a board..........ccccvvviieiiiiiiiiciiieeee e, 109
ACCESS the CUITENE SNEET....civeeiiieeiiie ettt e et e et e eraeeeesneenneennes 109
125 ¢ 1101 o) T TUR 109
] aLT<1 1 (@ FUTT TR PRPRP 110
ChecCk if there 1S @ ST ...vuueieiee ettt e e e et e et s e e e ees 110
|05 21111) (=TSSP 110
507481070 [PP 110
Check if there is @ SYMDOL.......ccciiiiieiiiiiiiiieec e e e e e eeeees 111
|05 21111) (=TSSP 111
D=1 o} o< P PP UUPPPPPRPIN 111
Predefined Dialo@s......c..uvuiiiieeiiiiiiiiiiiieeeee e e eeeeiteeeee e e s e e searreeeeeeeeeessaersreeeeeeeee 111
AIGDITECLOTY () e eueeeerrreeeeeeeeeeeiiiitt et e e e e ettt e e e e e e e s e saibrtteeeeeesssssnsnsnereeaeeeeeeeeaeeenes 111
|25 21101 0) (TSROSO RPPPPPPRRRRN 112
dlgFileOpen(), dIFIleSave().....cceeeeuurrriiieeeiieieiiiieeeee ettt e e e e e e e e e e e e e e eeeeeeenes 112
|25 21101 0) (TSROSO PPPPRRSR 113
AIgMeESSAZEBOX().eeiiiiiiiiiiiiiiiiiiiiieccceeee e e e e e 113
125 ¢ 1111 o) (T TR 114
D E=1 (0T @] o) 1Tt 3 114
a1 = O | P SUUPPPPRPRPN 114
|05 21111) (=TSSP PP 115
AIGCRECKBOX. .. vtttiieeieieeeiiiiie e e e e eeeectrtre e e e e e e e e s eebtrreeeeeeeeesssssassaaeeeaaaaaaasaaseeeeenenes 115
|05 21111) (=TSSP 115
AIZCOMDOBOX.eetieiieiiitee ettt ettt e ettt e e ettt e e e e e e e e e e e e e eeeeeeaan 116
EXAMIPLE..ccnniiiiiie ettt et e e 116
(a1 o DT 1[0 .S PPPUUPPPRRPRPN 116
EXAINPIES. ceeiiiiiieeiiiitteeee e e ettt e e e e e e ettt e e e e e e s e s s s e e e eeeeeeeeeeeeeraaeraananns 117
AlGGTIALAYOUL. c..ueiiiiteeeeeeeeeeeeiiieetee e e e ettt e e e e e e s e s sttt e eeeeessssasnssneaeeeeeeeseneenes 117
|25 211010 (TSRS P U UORPPPPPPRPRRN 117
AL GTOUP . ettt ettt e e et e e ettt e e s e e e e e e eanneeeeeeeas 118
EXAMIPLE..ccnniiiiiieee et e e 118
a1 Ead 12100 4 =) o) L SRR 118
125 ¢ 1111 o) (TR TUR 118
a1 Lo 3V 2§ S PR 119
125 ¢ 1101 o) T TUR 119

Page 10 of 136

EAGLE User Language Version 5.7

AIGLADEL. ...ceeiiieeeeeeee et e e e e e e s s sa e e e e e e e e e eeaeeeeees 119
|25 21101 0) (TSROSO PPPPRRSR 119
a1 e 5 270) PP 120
125 ¢ 1111 o) (T UR 120
ALGLISTVIEW ..ttt ettt e ettt e e e e e e e ettt e e e e e e s s s ee s e e e e eeeeeeaaaeeees 120
EXAIMNPIE. ..ttt e e e et e e e e e e e s e e e e aaaaas 121
AlGPUSHBULLOMN. .. uviiiiieieeeeciiiiiiteee e e e eeeeiiite e e e e e e e e e s arrereeeeeeeesssasananaaaeeaasasaasaeeeens 121
|05 21111) (=TSSP PP 122
AIGRAIOBULLON.ttieeeeiiiiee ettt ettt ettt e e ettt e e e et e e e e sibbeeessabbeeeessanbaeeeeeans 122
EXAMIPLE. .ttt ettt et e e s e e e e 123
AIGREAIEIt. .. uvveiieieeeieeiiiitieeee e ettt e e e e e e sttt e e e e e e s s s abebaaseeseeeeeaeaaaanaenes 123
|25 21101 0) (TSROSO PPPRRSR 123
Al SPACIIIE . ceeeeeeiieeiiiiiieiee ettt e e e e e ettt e e e e e e e e e s sabbaeeeeeeeesasaaaaaaeeeeaaaaaeenenes 123
|25 21111 0] (=TSSP PP 124
AIGSPINBOX. ccciiieeiiiiiitieee ettt ettt e e e e e s s st e et e e e e e e s s abbataeeeeeeesenannes 124
EXAIMNPIE. .ttt e e e e e e st e e e e e e e s bbb e e e ae s 124
(a1 o] 0 1<) (ol s DO PP PPPPUPPPPRRTPPPIR 124
|25 21101 0) (TSROSO PPPPRRSR 125
a1 Eets i § T e 125
125 ¢ 1111 o) (TSRS 125
a1 o £=10) =T o T 125
125 ¢ 1101 o) TR 126
AlGTADWIAGET. . eeeeeiiieeeiiiiieeeee ettt e e e e e et e e e e e e e e e e saeaereaeeeeeeeesssssssseenesees 126
|05 21111) (=TSSP 126
AIGTEXEEIL. ...ttt e ettt e e e e e e e e eabaaeeeeeeeeessnsssasaaeeeassesssnnnnsnes 126
|05 21111) (=TSSP 127
AlGTEXEVIEW ...ttt et e eeee ettt e e e e ettt e e e e e e s e s s asbtaaeeeeeeessssssnnnssaesessseeeeneeees 127
|25 21101 0) (TSROSO PP PP 127
AIGVBOXLAYOUL. ..cuettitieeiiiieeeeittee ettt e e ettt e e e ettt e e e e bbt e e e esnrbeeesesnnneeeeanns 127
EXAMIPLE..cceieiiieeeee ettt e e s e 128
Layout INfOTMAtiON.ccieerriiieieiiiieeeeeiieeeeeire e e e eeirreeesetreeeessareeesesnnneeeeeeeeseaans 128
GIid LaYOUL COMEEXL.retiierrrirreiiirirtieeeeeereriiiirttteeeeeeessssiuussneesnansaassaseseeeeeeeeeenees 128
Horizontal Layout CONEXL........uuiiieriiirrriiiiiiieeeeeeeeensiiiiirteeeeeeessssssensseeeeeesessnns 128
Vertical LayOut COMEEXt...uueiiieerrruriireeeeeeeeennriiirtteeeeeesessssirsereeeeeeessssssnsnsesseeeees 129
MiXing LayOUL COMEOXES. . uueeeereeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e eenaees 129
Dialog FUNCHIONS. ...utiiiiiiiiiiiiiitteeee ettt e e e et e e e e e e e s e s sibabaeeeeeeeeeeeaeeeeenes 129
ALGACCEPE() e nanne e e e e eaannnnes 129
125 €111 o) (TSRS 129
AIGREAISPIAY () ecvvenvrerrereereeteeteeeeete ettt ettt eete et et e te e eeteeaeebeeabeesaseereeeaseeenseenneas 130
125 ¢ 1101 o) TR 130
AIGRESEL() evvrrreeeeeeieeiiiiiiiteeeeeeeeeeeiitrtteeeeeeeeassentrrrteeeeeseessssnrssaeeaesesssasaasasaseeeeeeeeeenns 130
|05 21111) (=TSSP 131

Page 11 of 136

EAGLE User Language Version 5.7

(a1 o 2GS [T () OO OO PPPPPPPPPPPRRPPPIR 131

|25 21101 0) (TSROSO PPPPRRSR 131
ESCAPE CRATACTET e e e e e e e aaae e e e e eaasnnnnes 131
A Complete EXAmMPIe....cccceeeeieeeeeeeeeeceeceeeeeeeee e e e e e e e e e e e e e e e e eaaa e e e e e e eaaaeeeeaeeaaes 132
SUPPOTEEd HTIML tAES...ciiiiieiuiiiiiieeeeeeeeeeiiiirrteeeeeeeeeesearrrrseeeeeeessssssnsnrraeeeeseesaeesaees 133

Page 12 of 136

EAGLE User Language Version 5.7

User Language

The EAGLE User Language can be used to access the EAGLE data structures and to create a
wide variety of output files.

To use this feature you have to write a User Language Program (ULP), and then execute it.
The following sections describe the EAGLE User Language in detail:

Syntax lists the rules a ULP file has to follow
Data Types defines the basic data types

Object Types defines the EAGLE objects
Definitions shows how to write a definition
Operators lists the valid operators

Expressions shows how to write expressions

Statements defines the valid statements
Builtins lists the builtin constants, functions etc.
. shows how to implement a graphical frontent to a
Dialogs ULP
Writing a ULP

A User Language Program is a plain text file which is written in a C-like syntax. User
Language Programs use the extension .ulp. You can create a ULP file with any text editor
(provided it does not insert any additional control characters into the file) or you can use
the builtin text editor.

A User Language Program consists of two major items, definitions and statements.
Definitions are used to define constants, variables and functions to be used by statements.
A simple ULP could look like this:

#usage "Add the characters in the word 'Hello'\n"
"Usage: RUN sample.ulp"
// Definitions:
string hello = "Hello";
int count(string s)
.
int ¢ = 0,
for (int 1 = 0; s[i]; ++1)
c += s[i];
return c;
}
// Statements:
output("sample") {
printf("Count is: %d\n", count(hello));
}

If the #usage directive is present, its value will be used in the Control Panel to display a
description of the program.

If the result of the ULP shall be a specific command that shall be executed in the editor
window, the exit () function can be used to send that command to the editor window.

Page 13 of 136

EAGLE User Language Version 5.7

Executing a ULP

User Language Programs are executed by the RUN command from an editor window's
command line.

A ULP can return information on whether it has run successfully or not. You can use the
exit () function to terminate the program and set the return value.

A return value of ® means the ULP has ended "normally" (i.e. successfully), while any other
value is considered as an abnormal program termination.

The default return value of any ULP is 0.

When the RUN command is executed as part of a script file, the script is terminated if the
ULP has exited with a return value other than 0.

A special variant of the exit () function can be used to send a command to the editor
window as a result of the ULP.

Syntax
The basic building blocks of a User Language Program are

Whitespace
Comments

Directives

Keywords
Identifiers

Constants
Punctuators

All of these have to follow certain syntactical rules, which are described in their respective
sections.

Whitespace

Before a User Language Program can be executed, it has to be read in from a file. During
this read in process, the file contents is parsed into tokens and whitespace.

Any spaces (blanks), tabs, newline characters and comments are considered whitespace and
are discarded.

The only place where ASCII characters representing whitespace are not discarded is within
literal strings, like in
string s = "Hello World";

where the blank character between '0' and 'W' remains part of the string.

If the final newline character of a line is preceded by a backslash (\), the backslash and
newline character are both discarded, and the two lines are treated as one line:

"Hello \
World"

Page 14 of 136

EAGLE User Language Version 5.7

is parsed as "Hello World"

Comments

When writing a User Language Program it is good practice to add some descriptive text,
giving the reader an idea about what this particular ULP does. You might also want to add
your name (and, if available, your email address) to the ULP file, so that other people who
use your program could contact you in case they have a problem or would like to suggest
an improvement.

There are two ways to define a comment. The first one uses the syntax

/* some comment text */

which marks any characters between (and including) the opening /* and the closing */ as
comment. Such comments may expand over more than one lines, as in
/* This is a
multi line comment
*/

but they do not nest. The first */ that follows any /* will end the comment.

The second way to define a comment uses the syntax

int i; // some comment text

which marks any characters after (and including) the // and up to (but not including) the
newline character at the end of the line as comment.

Directives

The following directives are available:

#include

#irequire
#usage

#include

A User Language Program can reuse code in other ULP files through the #include
directive. The syntax is

#include "filename"

The file filename is first looked for in the same directory as the current source file (that is
the file that contains the #include directive). If it is not found there, it is searched for in
the directories contained in the ULP directory path.

The maximum include depth is 10.

Each #include directive is processed only once. This makes sure that there are no
multiple definitions of the same variables or functions, which would cause errors.

Page 15 of 136

EAGLE User Language Version 5.7

Portability note

¥py If filename contains a directory path, it is best to always use the forward slash as
directory separator (even under Windows!). Windows drive letters should be
avoided. This way a User Language Program will run on all platforms.

#require

Over time it may happen that newer versions of EAGLE implement new or modified User
Language features, which can cause error messages when such a ULP is run from an older
version of EAGLE. In order to give the user a dedicated message that this ULP requires at
least a certain version of EAGLE, a ULP can contain the #require directive. The syntax is

#require version

The version must be given as a real constant of the form
V.RRrr

where V is the version number, RR is the release number and rr is the (optional) revision
number (both padded with leading zeroes if they are less than 10). For example, if a ULP
requires at least EAGLE version 4.11r06 (which is the beta version that first implemented
the #require directive), it could use

#require 4.1106

The proper directive for version 5.1.2 would be
#require 5.0102

#usage

Every User Language Program should contain information about its function, how to use it
and maybe who wrote it.
The directive

#usage text [, text...]

implements a standard way to make this information available.

If the #usage directive is present, its text (which has to be a string constant) will be used
in the Control Panel to display a description of the program.

In case the ULP needs to use this information in, for example, a digMessageBox(), the text
is available to the program through the builtin constant usage.

Only the #usage directive of the main program file (that is the one started with the RUN
command) will take effect. Therefore pure include files can (and should!) also have
#usage directives of their own.

It is best to have the #usage directive at the beginning of the file, so that the Control Panel
doesn't have to parse all the rest of the text when looking for the information to display.

Page 16 of 136

EAGLE User Language Version 5.7

If the usage information shall be made available in several langauges, the texts of the
individual languages have to be separated by commas. Each of these texts has to start with
the two letter code of the respective language (as delivered by the language() function),
followed by a colon and any number of blanks. If no suitable text is found for the language
used on the actual system, the first given text will be used (this one should generally be
English in order to make the program accessible to the largest number of users).

Example

#usage "en: A sample ULP\n"

"Implements an example that shows how to use the EAGLE User
Language\n"

"Usage: RUN sample.ulp\n"

"Author: john@home.org",

"de: Beispiel eines ULPs\n"

"Implementiert ein Beispiel das zeigt, wie man die EAGLE User
Language benutzt\n"

"Aufruf: RUN sample.ulp\n"

"Author: john@home.org"

Keywords
The following keywords are reserved for special purposes and must not be used as normal
identifier names:

break

continue
default
do

In addition, the names of builtins and object types are also reserved and must not be used
as identifier names.

Identifiers

An identifier is a name that is used to introduce a user defined constant, variable or
function.

Identifiers consist of a sequence of letters (a b c..., A B C...), digits (1 2 3...) and
underscores (_). The first character of an identifier must be a letter or an underscore.

Page 17 of 136

EAGLE User Language Version 5.7

Identifiers are case-sensitive, which means that

int Number, number;

would define two different integer variables.

The maximum length of an identifier is 100 characters, and all of these are significant.

Constants

Constants are literal data items written into a User Language Program. According to the
different data types, there are also different types of constants.

Character constants
Integer constants
Real constants
String constants

Character Constants

A character constant consists of a single character or an escape sequence enclosed in single
quotes, like

lal

1 \n 1
The type of a character constant is char.

Integer Constants

Depending on the first (and possibly the second) character, an integer constant is assumed
to be expressed in different base values:

. constant interpreted
first second

as
0] 1-7 octal (base 8)

0] X, X hexadecimal (base 16)
1-9 decimal (base 10)

The type of an integer constant is int.

Examples
16 decimal
020 octal

Ox10 hexadecimal

Real Constants

A real constant follows the general pattern
[-]int.frac[e|E[x]exp]

Page 18 of 136

EAGLE User Language Version 5.7

which stands for

optional sign

decimal integer

decimal point

decimal fraction

e or E and a signed integer exponent

You can omit either the decimal integer or the decimal fraction (but not both). You can omit
either the decimal point or the letter e or E and the signed integer exponent (but not both).

The type of an real constant is real.

Examples

Constant Value
23.45e6 23.45x1076

.0 0.0

0. 0.0

1. 1.0

-1.23 -1.23

2e-5 2.0x107-5
3E+10 3.0x10710

.O9E34 0.09x10" 34

String Constants

A string constant consists of a sequence of characters or escape sequences enclosed in
double quotes, like

"Hello world\n"

The type of a string constant is string.
String constants can be of any length (provided there is enough free memory available).

String constants can be concatenated by simply writing them next to each other to form
larger strings:

string s = "Hello" " world\n";

It is also possible to extend a string constant over more than one line by escaping the
newline character with a backslash (\):

string s = "Hello \
world\n";

Escape Sequences
An escape sequence consists of a backslash (\), followed by one or more special characters:

Sequence Value

Page 19 of 136

EAGLE User Language Version 5.7

\a audible bell

\b backspace

\f form feed

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\\ backslash

\' single quote

\" double quote

\O O'=. up to 3 octal
digits

\xH H = up to 2 hex digits

Any character following the initial backslash that is not mentioned in this list will be treated
as that character (without the backslash).

Escape sequences can be used in character constants and string constants.

Examples

1 \n 1

"A tab\tinside a text\n"
"Ring the bell\a\n"

Punctuators
The punctuators used in a User Language Program are

[] Brackets
() Parentheses

{} Braces

, Comma

; Semicolon
: Colon

= Equal sign

Other special characters are used as operators in a ULP.

Brackets

Brackets are used in array definitions

int ai[];

in array subscripts

n = ai[2];

and in string subscripts to access the individual characters of a string
string s = "Hello world";

Page 20 of 136

EAGLE User Language Version 5.7

char ¢ = s[2];

Parentheses

Parentheses group expressions (possibly altering normal operator precedence), isolate
conditional expressions, and indicate function calls and function parameters:

d=c* (a+b);

if (d == z) ++x;
func();
void func2(int n) { ... }
Braces
Braces indicate the start and end of a compound statement:
if (d == z) {
++X;
func();
}

and are also used to group the values of an array initializer:
int ai[] = { 1, 2, 3 };

Comma

The comma separates the elements of a function argument list or the parameters of a
function call:

int func(int n, real r, string s) { ... }
int i = func(1, 3.14, "abc");

It also delimits the values of an array initializer:
int ai[] = { 1, 2, 3 };

and it separates the elements of a variable definition:

int i, j, k;

Semicolon

The semicolon terminates a statement, as in

i=a+b;
and it also delimits the init, test and increment expressions of a for statement:

for (int n = 0; n < 3; ++n) {
func(n);

Page 21 of 136

EAGLE User Language Version 5.7

Colon

The colon indicates the end of a label in a switch statement:

switch (c) {
case 'a': printf("It was an 'a'\n"); break;
case 'b': printf("It was a 'b'\n"); break;
default: printf("none of them\n");
}

Equal Sign
The equal sign separates variable definitions from initialization lists:

int i = 10;
char c[] = { 'a', 'b', 'c' };

It is also used as an assignment operator.

Data Types

A User Language Program can define variables of different types, representing the different
kinds of information available in the EAGLE data structures.

The four basic data types are

char for single characters

int for integral values

real for floating point
values

string for textual information

Besides these basic data types there are also high level Object Types, which represent the
data structures stored in the EAGLE data files.

The special data type void is used only as a return type of a function, indicating that this
function does not return any value.

char

The data type char is used to store single characters, like the letters of the alphabet, or
small unsigned numbers.

A variable of type char has a size of 8 bit (one byte), and can store any value in the range
0..255.

See also Operators, Character Constants

int
The data type int is used to store signed integral values, like the coordinates of an object.

A variable of type int has a size of 32 bit (four byte), and can store any value in the range
-2147483648..2147483647.

Page 22 of 136

EAGLE User Language Version 5.7

See also Integer Constants

real
The data type real is used to store signed floating point values, like the grid distance.

A variable of type real has a size of 64 bit (eight byte), and can store any value in the
range +2.2e-308..+1.7e+308 with a precision of 15 digits.

See also Real Constants

string
The data type string is used to store textual information, like the name of a part or net.

A variable of type string is not limited in it's size (provided there is enough memory
available).

Variables of type string are defined without an explicit size. They grow automatically as
necessary during program execution.

The elements of a string variable are of type char and can be accessed individually by
using [index]. The first character of a string has the index 0:

string s = "Layout";
printf("Third char is: %c\n", s[2]);

This would print the character 'y'. Note that s[2] returns the third character of s!

See also Operators, Builtin Functions, String Constants

Implementation details
The data type string is actually implemented like native C-type zero terminated strings
(i.e. char[]). Looking at the following variable definition

string s = "abcde";

s[4] is the character 'e', and s[5] is the character '\O@', or the integer value 0x00. This
fact may be used to determine the end of a string without using the strlen() function, as
in

for (int i = 0; s[i]; ++1) {
// do something with s[i]

}
It is also perfectly ok to "cut off" part of a string by "punching" a zero character into it:
string s = "abcde";
s[3] = 0;

This will result in s having the value "abc". Note that everything following the zero
character will actually be gone, and it won't come back by restoring the original character.
The same applies to any other operation that sets a character to 0O, for instance --s[3].

Page 23 of 136

EAGLE User Language Version 5.7

Type Conversions

The result type of an arithmetic expression, such as a + b, where a and b are different
arithmetic types, is equal to the "larger" of the two operand types.

Arithmetic types are char, int and real (in that order). So if, e.g. a is of type int and b
is of type real, the result of the expression a + b would be real.

See also Typecast

Typecast

The result type of an arithmetic expression can be explicitly converted to a different
arithmetic type by applying a typecast to it.

The general syntax of a typecast is

type(expression)

where type is one of char, int or real, and expression is any arithmetic expression.

When typecasting a real expression to int, the fractional part of the value is truncated!

See also Type Conversions

Object Types
The EAGLE data structures are stored in three binary file types:

Library (*.lbr)
Schematic (*.sch)
Board (*.brd)

These data files contain a hierarchy of objects. In a User Language Program you can access
these hierarchies through their respective builtin access statements:

library(L) { ... }

schematic(S) { ... }

board(B) { ... }

These access statements set up a context within which you can access all of the objects
contained in the library, schematic or board.

The properties of these objects can be accessed through members.
There are two kinds of members:

Data members
Loop members
Data members immediately return the requested data from an object. For example, in

board(B) {
printf("%s\n", B.name);

}

Page 24 of 136

EAGLE User Language Version 5.7

the data member name of the board object B returns the board's name.
Data members can also return other objects, as in

board(B) {
printf("%f\n", B.grid.size);
}

where the board's grid data member returns a grid object, of which the size data member
then returns the grid's size.

Loop members are used to access multiple objects of the same kind, which are contained
in a higher level object:

board(B) {
B.elements(E) {
printf("%-8s %-8s\n", E.name, E.value);
}
}

This example uses the board's elements() loop member function to set up a loop through all
of the board's elements. The block following the B.elements(E) statement is executed in
turn for each element, and the current element can be referenced inside the block through
the name E.

Loop members process objects in alpha-numerical order, provided they have a name.

A loop member function creates a variable of the type necessary to hold the requested
objects. You are free to use any valid name for such a variable, so the above example might
also be written as

board(MyBoard) {
MyBoard.elements(TheCurrentElement) {
printf("%-8s %-8s\n", TheCurrentElement.name, TheCurrentElement.value);

b
b

and would do the exact same thing. The scope of the variable created by a loop member
function is limited to the statement (or block) immediately following the loop function call.

Object hierarchy of a Library:

LIBRARY
GRID
LAYER
DEVICESET

DEVICE
GATE
PACKAGE
CONTACT
PAD
SMD
CIRCLE
HOLE
RECTANGLE
FRAME
TEXT
WIRE

Page 25 of 136

EAGLE User Language

POLYGON
WIRE
SYMBOL
PIN
CIRCLE
RECTANGLE
FRAME
TEXT
WIRE
POLYGON
WIRE

Object hierarchy of a Schematic:

SCHEMATIC
GRID
LAYER
LIBRARY
SHEET
CIRCLE
RECTANGLE
FRAME
TEXT
WIRE
POLYGON
WIRE
PART
INSTANCE
ATTRIBUTE
BUS
SEGMENT
LABEL
TEXT
WIRE
WIRE
NET
SEGMENT
JUNCTION
PINREF
TEXT
WIRE

Object hierarchy of a Board:

BOARD
GRID
LAYER
LIBRARY
CIRCLE
HOLE
RECTANGLE
FRAME
TEXT
WIRE
POLYGON
WIRE
ELEMENT
ATTRIBUTE
SIGNAL

Page 26 of 136

Version 5.7

EAGLE User Language Version 5.7

CONTACTREF

POLYGON
WIRE

IA

IRE

<

=

UL_ARC

Data members
anglel real (start angle, 0.0...359.9)
angle2 real (end angle, 0.0...719.9)
cap int (CAP_...)
layer int
radius int
width int
x1, yl1 int (starting point)
X2, y2 int (end point)
XC, ycC int (center point)
See also UL_WIRE

Constants

CAP_FLAT flat arc ends

cAP_Rounp roundarc
ends

Note

Start and end angles are defined mathematically positive (i.e. counterclockwise), with
anglel < angle2. In order to assure this condition, the start and end point of an UL_ARC
may be exchanged with respect to the UL_WIRE the arc has been derived from.

Example

board(B) {
B.wires(W) {
if (W.arc)
printf("Arc: (%d %d), (%d %d), (%d %d)\n",
W.arc.x1, W.arc.yl, W.arc.x2, W.arc.y2, W.arc.xc, W.arc.yc);

UL_AREA

Data members
x1, y1 int (lower left corner)
int (upper right
corner)
See also UL_BOARD, UL_DEVICE, UL_PACKAGE, UL_SHEET, UL_SYMBOL

X2, y2

Page 27 of 136

EAGLE User Language Version 5.7

A UL_ARFA is an abstract object which gives information about the area covered by an
object. For a UL_DEVICE, UL_PACKAGE and UL_SYMBOL the area is defined as the
surrounding rectangle of the object definition in the library, so even if e.g. a UL_PACKAGE
is derived from a UL_ELEMENT, the package's area will not reflect the elements offset
within the board.

Example

board(B) {
printf("Area: (%d %d), (%d %d)\n",
B.area.x1, B.area.yl, B.area.x2, B.area.y2);
}

UL_ATTRIBUTE

Data members
int (O=variable, i.e. allows overwriting, 1=constant - see

constant
note)
defaultvalue string (see note)
display int (ATTRIBUTE_DISPLAY_FLAG_...)
name string
text UL_TEXT (see note)
value string

See also UL_DEVICE, UL_PART, UL _INSTANCE, UL_ELEMENT

Constants

nothing is

displayed
ATTRIBUTE_DISPLAY_FLAG_VALUE value is displayed
ATTRIBUTE_DISPLAY_FLAG_NAME name is displayed

A UL _ATTRIBUTE can be used to access the attributes that have been defined in the library
for a device, or assigned to a part in the schematic or board.

ATTRIBUTE_DISPLAY_FLAG_OFF

Note

display contains a bitwise or'ed value consisting of ATTRIBUTE_DISPLAY_FLAG_. ..
and defines which parts of the attribute are actually drawn. This value is only valid if
display is used in a UL_INSTANCE or UL_ELEMENT context.

In a UL_ELEMENT context constant only returns an actual value if f/b annotation is
active, otherwise it returns O.

The defaultvalue member returns the value as defined in the library (if different from
the actual value, otherwise the same as value). In a UL_ELEMENT context
defaultvalue only returns an actual value if f/b annotation is active, otherwise an empty
string is returned.

The text member is only available in a UL_INSTANCE or UL_ELEMENT context and

Page 28 of 136

EAGLE User Language Version 5.7

returns a UL_TEXT object that contains all the text parameters. The value of this text object
is the string as it will be displayed according to the UL _ATTRIBUTE's 'display' parameter. If
called from a different context, the data of the returned UL_TEXT object is undefined.

For global attributes only name and value are defined.

Example

schematic(SCH) {
SCH.parts(P) {
P.attributes(A) {
printf("%s = %s\n", A.name, A.value);

b
b

}
schematic(SCH) {

SCH.attributes(A) { // global attributes
printf("%s = %s\n", A.name, A.value);

b
b

UL_BOARD

Data members
area UL AREA
grid UL_GRID
name string (see note)
Loop members
attributes() UL_ATTRIBUTE (see note)

circles() UL_CIRCLE
classes() UL_CLASS
elements() UL_ELEMENT
frames() UL_FRAME
holes() UL _HOLE
layers() UL _LAYER
libraries() UL_LIBRARY
polygons() UL_POLYGON
rectangles() UL RECTANGLE
signals() UL_SIGNAL
texts() UL _TEXT
wires() UL_WIRE

See also UL_LIBRARY, UL SCHEMATIC

Note
The name member returns the full file name, including the directory.

The attributes() loop member loops through the global attributes.

Page 29 of 136

EAGLE User Language Version 5.7

Example

board(B) {
B.elements(E) printf("Element: %s\n", E.name);
B.signals(S) printf("Signal: %s\n", S.name);

UL_BUS

Data members

name string (BUS_NAME_LENGTH)
Loop members

segments() UL _SEGMENT
See also UL_SHEET

Constants

BUS_NAME_LENG max. length of a bus name (obsolete - as from version 4 bus names
TH can have any length)

Example

schematic(SCH) {
SCH.sheets(SH) {
SH.busses(B) printf("Bus: %s\n", B.name);

}

3
UL_CIRCLE
Data members

layer int

radius int
width int
X, VY int (center point)
See also UL_BOARD, UL_ PACKAGE, UL_SHEET, UL_SYMBOL

Example

board(B) {
B.circles(C) {
printf("Circle: (%d %d), r=%d, w=%d\n",
C.x, C.y, C.radius, C.width);
}

}

UL_CLASS

Data members
clearance[number] int (see note)

Page 30 of 136

EAGLE User Language Version 5.7

drill int
name string (see note)
number int
width int

See also Design Rules, UL_NET,?L_SIGNAL, UL_SCHEMATIC, UL_BOARD

Note

The clearance member returns the clearance value between this net class and the net
class with the given number. If the number (and the square brackets) is ommitted, the net
class's own clearance value is returned. If a number is given, it must be between 0 and the
number of this net class.

If the name member returns an empty string, the net class is not defined and therefore not
in use by any signal or net.

Example

board(B) {
B.signals(S) {
printf("%-10s %d %s\n", S.name, S.class.number, S.class.name);

b
b

UL_CONTACT

Data members

name string (CONTACT_NAME_LENGTH)
pad UL_PAD

signal string

smd UL_SMD

X, Y int (center point, see note)

See also UL_PACKAGE, UL_PAD, UL_SMD, UL_CONTACTREF, UL_PINREF

Constants

CONTACT_NAME_LENG max. recommended length of a contact name (used in formatted
TH output only)

Note

The signal data member returns the signal this contact is connected to (only available in
a board context).

The coordinates (X, Y) of the contact depend on the context in which it is called:

if the contact is derived from a UL_LIBRARY context, the coordinates of the contact
will be the same as defined in the package drawing
in all other cases, they will have the actual values from the board

Page 31 of 136

EAGLE User Language Version 5.7

Example

library(L) {
L.packages(PAC) {
PAC.contacts(C) {
printf("Contact: '%s', (%d %d)\n",
C.name, C.x, C.y);
}

b
b

UL_CONTACTREF

Data members
contact UL_CONTACT
element UL ELEMENT
See also UL_SIGNAL, UL PINREF

Example

board(B) {
B.signals(S) {
printf("Signal '%s'\n", S.name);
S.contactrefs(C) {
printf("\t%s, %s\n", C.element.name, C.contact.name);

}
}
}
UL_DEVICE
Data members
area UL_AREA
description string
headline string
library string
name string (DEVICE_NAME_LENGTH)
package UL_PACKAGE (see note)
prefix string (DEVICE_PREFIX_LENGTH)
technologies string (see note)
value string ("On" or "Off")

Loop members
attributes() UL_ATTRIBUTE (see note)
gates() UL _GATE

See also UL_DEVICESET, UL_LIBRARY, UL_PART

Constants

max. recommended length of a device name (used in formatted

DEVICE_NAME_LENGTH
output only)

Page 32 of 136

EAGLE User Language Version 5.7

DEVICE_PREFIX_LENG max. recommended length of a device prefix (used in formatted
TH output only)

All members of UL_DEVICE, except for name and technologies, return the same values
as the respective members of the UL _DEVICESET in which the UL_DEVICE has been
defined. The name member returns the name of the package variant this device has been
created for using the PACKAGE command. When using the description text keep in
mind that it may contain newline characters ('\n"').

Note

The package data member returns the package that has been assigned to the device
through a PACKAGE command. It can be used as a boolean function to check whether a
package has been assigned to a device (see example below).

The value returned by the technologies member depends on the context in which it is
called:

if the device is derived from a UL_DEVICESET, technologies will return a string
containing all of the device's technologies, separated by blanks

if the device is derived from a UL PART, only the actual technology used by the part
will be returned.

The attributes() loop member takes an additional parameter that specifies for which
technology the attributes shall be delivered (see the second example below).

Examples

library(L) {
L.devicesets(S) {
S.devices(D) {
if (D.package)
printf("Device: %s, Package: %s\n", D.name, D.package.name);
D.gates(G) {
printf("\t%s\n", G.name);
}
}
}
}

library(L) {
L.devicesets(DS) {
DS.devices(D) {
string t[];
int n = strsplit(t, D.technologies, ' ');
for (int 1 = 0; i < n; i++) {
D.attributes(A, t[i]) {
printf("%s = %s\n", A.name, A.value);

Page 33 of 136

EAGLE User Language Version 5.7

UL_DEVICESET

Data members

area UL_AREA

description string

headline string (see note)

library string

name string (DEVICE_NAME_LENGTH)
prefix string (DEVICE_PREFIX_LENGTH)
value string ("On" or "Off")

Loop members
devices() UL _DEVICE
gates() UL_GATE
See also UL_DEVICE, UL _LIBRARY, UL PART

Constants

max. recommended length of a device name (used in formatted
output only)
DEVICE_PREFIX_LENG max. recommended length of a device prefix (used in formatted
TH output only)

DEVICE_NAME_LENGTH

Note

The description member returns the complete descriptive text as defined with the
DESCRIPTION command, while the headline member returns only the first line of the
description, without any HTML tags. When using the description text keep in mind that
it may contain newline characters ('\n").

Example

library(L) {
L.devicesets(D) {
printf("Device set: %s, Description: %s\n", D.name, D.description);
D.gates(G) {
printf("\t%s\n", G.name);
}
}
}

UL_ELEMENT

Data members

angle real (0.0...359.9)
attribute[] string (see note)
column string (see note)
locked int

mirror int

Page 34 of 136

EAGLE User Language Version 5.7

name string (ELEMENT_NAME_LENGTH)
package UL_PACKAGE

row string (see note)

smashed int (see note)

spin int

value string (ELEMENT_VALUE_LENGTH)
X, Y int (origin point)

Loop members
attributes() UL_ATTRIBUTE
texts() UL_TEXT (see note)
See also UL_BOARD, UL_CONTACTREF

Constants

ELEMENT_NAME_LENGT max. recommended length of an element name (used in
H formatted output only)

ELEMENT_VALUE_LENG max. recommended length of an element value (used in
TH formatted output only)

Note

The attribute[] member can be used to query a UL_ELEMENT for the value of a given
attribute (see the second example below). The returned string is empty if there is no
attribute by the given name, or if this attribute is explicitly empty.

The texts() member only loops through those texts of the element that have been
detached using SMASH, and through the visible texts of any attributes assigned to this
element. To process all texts of an element (e.g. when drawing it), you have to loop
through the element's own texts() member as well as the texts() member of the
element's package.

angle defines how many degrees the element is rotated counterclockwise around its
origin.
The column() and row() members return the column and row location within the frame

in the board drawing. If there is no frame in the drawing, or the element is placed outside
the frame, a '?"' (question mark) is returned.

The smashed member tells whether the element is smashed. This function can also be used
to find out whether there is a detached text parameter by giving the name of that
parameter in square brackets, as in smashed["VALUE"]. This is useful in case you want to
select such a text with the MOVE command by doing MOVE R5>VALUE. Valid parameter
names are "NAME" and "VALUE", as well as the names of any user defined attributes. They
are treated case insensitive, and they may be preceded by a '>"' character.

Examples

board(B) {
B.elements(E) {
printf("Element: %s, (%d %d), Package=%s\n",

Page 35 of 136

EAGLE User Language Version 5.7

E.name, E.X, E.y, E.package.name);

b
b

board(B) {
B.elements(E) {
if (E.attribute["REMARK"])
printf("%s: %s\n", E.name, E.attribute("REMARK"));
}
}

UL_FRAME

Data members
columns int (-127...127)

rows int (-26...26)

border int (FRAME_BORDER_...)
layer int

x1, yi1 int (lower left corner)

X2, y2 int (upper right corner)
Loop members
texts() UL_TEXT
wires() UL_WIRE
See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SYMBOL

Constants

FRAME_BORDER_BOTTOM bottom border is

drawn
FRAME_BORDER_RIGHT right border is drawn
FRAME_BORDER_TOP top border is drawn
FRAME_BORDER_LEFT left border is drawn
Note
border contains a bitwise or'ed value consisting of FRAME_BORDER_. . . and defines

which of the four borders are actually drawn.

The texts() and wires() loop members loop through all the texts and wires the frame
consists of.

Example

board(B) {
B.frames(F) {
printf("Frame: (%d %d), (%d %d)\n",
F.x1, F.yl, F.x2, F.y2);
}

}

Page 36 of 136

EAGLE User Language Version 5.7

UL_GATE

Data members
addlevel int (GATE_ADDLEVEL_...)

name string (GATE_NAME_LENGTH)
swaplevel int

symbol UL_SYMBOL

X, VY int (origin point, see note)

See also UL_DEVICE

Constants

GATE_ADDLEVEL_MUST must
GATE_ADDLEVEL_CAN can
GATE_ADDLEVEL_NEXT next

GATE_ADDLEVEL_REQUEST request

GATE_ADDLEVEL_ALWAYS always

GATE_NAME_LENGT max. recommended length of a gate name (used in formatted
H output only)

Note

The coordinates of the origin point (x, y) are always those of the gate's position within the
device, even if the UL_GATE has been derived from a UL_INSTANCE.

Example

library(L) {
L.devices(D) {
printf("Device: %s, Package: %s\n", D.name, D.package.name);
D.gates(G) {
printf("\t%s, swaplevel=%d, symbol=%s\n",
G.name, G.swaplevel, G.symbol.name);
}

b
b

UL_GRID

Data members
distance real

dots int (O=lines, 1=dots)
multiple int

on int (O=off, 1=0n)
unit int (GRID_UNIT_...)

unitdist int (GRID_UNIT_...)
See also UL_BOARD, UL _LIBRARY, UL_SCHEMATIC, Unit Conversions

Page 37 of 136

EAGLE User Language Version 5.7

Constants
GRID_UNIT_MIC microns
GRID_UNIT_MM millimeter

GRID_UNIT_MIL mil
GRID_UNIT_INCH inch

Note

unitdist returns the grid unit that was set to define the actual grid size (returned by
distance), while unit returns the grid unit that is used to display values or interpret
user input.

Example

board(B) {
printf("Gridsize=%f\n", B.grid.distance);

}

UL_HOLE

Data members
diameter[layer] int (see note)

drill int
drillsymbol int
X, Y int (center point)

See also UL BOARD, UL _PACKAGE

Note

diameter[] is only defined vor layers LAYER_TSTOP and LAYER_BSTOP and returns the
diameter of the solder stop mask in the given layer.

drillsymbol returns the number of the drill symbol that has been assigned to this drill
diameter (see the manual for a list of defined drill symbols). A value of ® means that no
symbol has been assigned to this drill diameter.

Example

board(B) {
B.holes(H) {
printf("Hole: (%d %d), drill=%d\n",
H.x, H.y, H.drill);
}

}

UL_INSTANCE

Data members
angle real (0, 90, 180 and 270)

Page 38 of 136

EAGLE User Language Version 5.7

column string (see note)

gate UL_GATE

mirror int

name string (INSTANCE_NAME_LENGTH)
row string (see note)

sheet int (O=unused, >0=sheet number)
smashed int (see note)

value string (PART_VALUE_LENGTH)

X, Y int (origin point)

Loop members
attributes() UL_ATTRIBUTE (see note)
texts() UL_TEXT (see note)
xrefs() UL_GATE (see note)

See also UL _PART, UL_PINREF

Constants

INSTANCE_NAME_LEN max. recommended length of an instance name (used in

GTH formatted output only)

PART VALUE LENGTH Max. recommfended length of a part value (instances do not have
a value of their own!)

Note

The attributes() member only loops through those attributes that have been explicitly
assigned to this instance (including smashed attributes).

The texts() member only loops through those texts of the instance that have been
detached using SMASH, and through the visible texts of any attributes assigned to this
instance. To process all texts of an instance, you have to loop through the instance's own
texts() member as well as the texts () member of the instance's gate's symbol. If
attributes have been assigned to an instance, texts() delivers their texts in the form as
they are currently visible.

The column() and row() members return the column and row location within the frame
on the sheet on which this instance is invoked. If there is no frame on that sheet, or the
instance is placed outside the frame, a '?"' (question mark) is returned. These members
can only be used in a sheet context.

The smashed member tells whether the instance is smashed. This function can also be
used to find out whether there is a detached text parameter by giving the name of that
parameter in square brackets, as in smashed["VALUE"]. This is useful in case you want to
select such a text with the MOVE command by doing MOVE R5>VALUE. Valid parameter
names are "NAME", "VALUE", "PART" and "GATE", as well as the names of any user defined
attributes. They are treated case insensitive, and they may be preceded by a '>" character.

The xrefs () member loops through the contact cross-reference gates of this instance.
These are only of importance if the ULP is going to create a drawing of some sort (for
instance a DXEF file).

Page 39 of 136

EAGLE User Language Version 5.7

Example

schematic(S) {
S.parts(P) {
printf("Part: %s\n", P.name);
P.instances(I) {
if (I.sheet != 0)
printf("\t%s used on sheet %d\n", I.name, I.sheet);

b
b
b

UL_JUNCTION

Data members

diameter int

X, Y int (center point)
See also UL_SEGMENT

Example

schematic(SCH) {
SCH.sheets(SH) {
SH.nets(N) {
N.segments(SEG) {
SEG. junctions(J) {
printf("Junction: (%d %d)\n", J.x, J.y);

UL_LABEL

Data members
angle real (0.0...359.9)

layer int

mirror int

spin int

text UL_TEXT

X, Y int (origin point)

xref int (O=plain, 1=cross-
reference)

Loop members
wires() UL_WIRE (see note)
See also UL_SEGMENT

Note

If xref returns a non-zero value, the wires() loop member loops through the wires that

Page 40 of 136

EAGLE User Language Version 5.7

form the flag of a cross-reference label. Otherwise it is an empty loop.

The angle, layer, mirror and spin members always return the same values as those of
the UL_TEXT object returned by the text member. The X and y members of the text return
slightly offset values for cross-reference labels (non-zero xref), otherwise they also return

the same values as the UL_LABEL.

xref is only meaningful for net labels. For bus labels it always returns 0.

Example

sheet(SH) {
SH.nets(N) {
N.segments(S) {
S.labels(L) {
printf("Label: %d %d '%s'\n", L.x, L.y, L.text.value);

}
}
}
}
UL_LAYER
Data members
color int
fill int
name string (LAYER_NAME_LENGTH)
number int
used int (O=unused, 1=used)

visible int (O=off, 1=0n)
See also UL_BOARD, UL_LIBRARY, UL_SCHEMATIC

Constants

LAYER_NAME_LENGT max. recommended length of a layer name (used in formatted
H output only)
LAYER_TOP layer numbers
LAYER_BOTTOM

LAYER_PADS

LAYER_VIAS

LAYER_UNROUTED
LAYER_DIMENSION

LAYER_TPLACE

LAYER_BPLACE

LAYER_TORIGINS

LAYER_BORIGINS

LAYER_TNAMES

LAYER_BNAMES

LAYER_TVALUES

Page 41 of 136

EAGLE User Language

LAYER_BVALUES
LAYER_TSTOP
LAYER_BSTOP
LAYER_TCREAM
LAYER_BCREAM
LAYER_TFINISH
LAYER_BFINISH
LAYER_TGLUE
LAYER_BGLUE
LAYER_TTEST
LAYER_BTEST
LAYER_TKEEPOUT
LAYER_BKEEPOUT
LAYER_TRESTRICT
LAYER_BRESTRICT
LAYER_VRESTRICT
LAYER_DRILLS
LAYER_HOLES
LAYER_MILLING
LAYER_MEASURES
LAYER_DOCUMENT
LAYER_REFERENCE
LAYER_TDOCU
LAYER_BDOCU
LAYER_NETS
LAYER_BUSSES
LAYER_PINS
LAYER_SYMBOLS
LAYER_NAMES
LAYER_VALUES
LAYER_INFO
LAYER_GUIDE
LAYER_USER

Example
board(B) {

lowest number for user defined layers (100)

B.layers(L) printf("Layer %3d %s\n", L.number, L.name);

UL_LIBRARY

Data members
description
grid

string (see note)
UL_GRID

Page 42 of 136

Version 5.7

EAGLE User Language Version 5.7

headline string

name string (LIBRARY_NAME_LENGTH, see note)
Loop members

devices() UL_DEVICE

devicesets() UL_DEVICESET

layers() UL _LAYER

packages() UL_PACKAGE

symbols() UL_SYMBOL

See also UL_BOARD, UL_SCHEMATIC

Constants

LIBRARY_NAME_LENG max. recommended length of a library name (used in formatted
TH output only)

The devices () member loops through all the package variants and technologies of all
UL _DEVICESETS: in the library, thus resulting in all the actual device variations available.
The devicesets() member only loops through the UL _DEVICESETSs, which in turn can
be queried for their UL _DEVICE members.

Note

The description member returns the complete descriptive text as defined with the
DESCRIPTION command, while the head1line member returns only the first line of the
description, without any HTML tags. When using the description text keep in mind that
it may contain newline characters ('\n'). The description and headline information
is only available within a library drawing, not if the library is derived form a UL_BOARD or
UL _SCHEMATIC context.

If the library is derived form a UL_BOARD or UL _SCHEMATIC context, name returns the
pure library name (without path or extension). Otherwise it returns the full library file
name.

Example

library(L) {
L.devices(D) printf("Dev: %s\n", D.name);
L.devicesets(D) printf("Dev: %s\n'", D.name);
L.packages(P) printf("Pac: %s\n", P.name);
L.symbols(S) printf("Sym: %s\n", S.name);
}

schematic(S) {
S.libraries(L) printf("Library: %s\n", L.name);

}

UL_NET

Data members
class UL_CLASS
column string (see note)

Page 43 of 136

EAGLE User Language Version 5.7

name string (NET_NAME_LENGTH)
row string (see note)

Loop members
pinrefs() UL_PINREF (see note)
segments() UL_SEGMENT (see note)
See also UL_SHEET, UL _SCHEMATIC

Constants

max. recommended length of a net name (used in formatted output

NET_NAME_LENGTH
only)

Note

The pinrefs() loop member can only be used if the net is in a schematic context.
The segments() loop member can only be used if the net is in a sheet context.

The column() and row() members return the column and row locations within the frame
on the sheet on which this net is drawn. Since a net can extend over a certain area, each of
these functions returns two values, separated by a blank. In case of column() these are
the left- and rightmost columns touched by the net, and in case of row() it's the top- and
bottommost row. If there is no frame on that sheet, "? ?" (two question marks) is
returned. If any part of the net is placed outside the frame, either of the values may be '?"'
(question mark). These members can only be used in a sheet context.

Example

schematic(S) {
S.nets(N) {
printf("Net: %s\n", N.name);
// N.segments(SEG) will NOT work here!

}

schematic(S) {
S.sheets(SH) {
SH.nets(N) {
printf("Net: %s\n", N.name);
N.segments(SEG) {
SEG.wires(W) {
printf("\tWire: (%d %d) (%d %d)\n",
W.x1, W.yl, W.x2, W.y2);

UL_PACKAGE

Data members
area UL_ARFA

Page 44 of 136

EAGLE User Language Version 5.7

description string

headline string

library string

name string (PACKAGE_NAME_LENGTH)
Loop members

circles() UL_CIRCLE

contacts() UL_CONTACT

frames() UL_FRAME

holes() UL_HOLE

polygons() UL_POLYGON

rectangles() UL _RECTANGLE

texts() UL_TEXT (see note)

wires() UL _WIRE

See also UL_DEVICE, UL_ELEMENT, UL_LIBRARY

Constants

PACKAGE_NAME_LENG max. recommended length of a package name (used in formatted
TH output only)

Note

The description member returns the complete descriptive text as defined with the
DESCRIPTION command, while the headline member returns only the first line of the
description, without any HTML tags. When using the description text keep in mind that
it may contain newline characters ('\n").

If the UL_PACKAGE is derived from a UL_ELEMENT, the texts() member only loops
through the non-detached texts of that element.

Example

library(L) {
L.packages(PAC) {
printf("Package: %s\n", PAC.name);
PAC.contacts(C) {
if (C.pad)
printf("\tPad: %s, (%d %d)\n",
C.name, C.pad.x, C.pad.y);
else if (C.smd)
printf("\tSmd: %s, (%d %d)\n",
C.name, C.smd.x, C.smd.y);
}

}

}
board(B) {
B.elements(E) {
printf("Element: %s, Package: %s\n", E.name, E.package.name);
}
}

Page 45 of 136

EAGLE User Language Version 5.7

UL_PAD

Data members
angle real (0.0...359.9)
diameter[layer] int
drill int
drillsymbol int
elongation int
flags int (PAD_FLAG_...)
name string (PAD_NAME_LENGTH)
shape[layer] int (PAD_SHAPE_. . .)
signal string
X, Y int (center point, see note)

See also UL _PACKAGE, UL_CONTACT, UL SMD

Constants

PAD_FLAG_STOP generate stop mask
PAD_FLAG_THERMALS generate thermals

PAD FLAG_FIRST use special "first pad

shape
PAD_SHAPE_SQUARE square
PAD_SHAPE_ROUND round
PAD_SHAPE_OCTAGON octagon
PAD_SHAPE_LONG long

PAD_SHAPE_OFFSET offset
PAD._ SHAPE ANNULUS annulus (only if supply layers are

used)
PAD_SHAPE THERMAL L};Ziglal (only if supply layers are
PAD_NAME_LENGT max. recommended length of a pad name (same as
H CONTACT_NAME_LENGTH)

Note
The parameters of the pad depend on the context in which it is accessed:

if the pad is derived from a UL LIBRARY context, the coordinates (x, y) and angle
will be the same as defined in the package drawing
in all other cases, they will have the actual values from the board

The diameter and shape of the pad depend on the layer for which they shall be retrieved,
because they may be different in each layer depending on the Design Rules. If one of the
layers LAYER TOP..LAYER BOTTOM, LAYER TSTOP or LAYER BSTOP is given as the
index to the diameter or shape data member, the resulting value will be calculated
according to the Design Rules. If LAYER PADS is given, the raw value as defined in the
library will be returned.

Page 46 of 136

EAGLE User Language Version 5.7

drillsymbol returns the number of the drill symbol that has been assigned to this drill
diameter (see the manual for a list of defined drill symbols). A value of @ means that no
symbol has been assigned to this drill diameter.

angle defines how many degrees the pad is rotated counterclockwise around its center.

elongation is only valid for shapes PAD SHAPE LONG and PAD SHAPE OFFSET and
defines how many percent the long side of such a pad is longer than its small side. This
member returns O for any other pad shapes.

The value returned by flags must be masked with the PAD_FLAG_ . . . constants to
determine the individual flag settings, as in

if (pad.flags & PAD_FLAG_STOP) {

}

Note that if your ULP just wants to draw the objects, you don't need to check these flags
explicitly. The diameter[] and shape[] members will return the proper data; for
instance, if PAD_FLAG_STOP is set, diameter [LAYER_TSTOP] will return 0, which
should result in nothing being drawn in that layer. The flags member is mainly for ULPs
that want to create script files that create library objects.

Example

library(L) {
L.packages(PAC) {
PAC.contacts(C) {
if (C.pad)
printf("Pad: '%s', (%d %d), d=%d\n",
C.name, C.pad.x, C.pad.y, C.pad.diameter[LAYER_BOTTOM]);

UL_PART

Data members
attribute[] string (see note)

device UL_DEVICE

deviceset UL_DEVICESET

name string (PART_NAME_LENGTH)
value string (PART_VALUE_LENGTH)

Loop members
attributes() UL_ATTRIBUTE (see note)
instances() UL_INSTANCE (see note)
See also UL_SCHEMATIC, UL_SHEET

Constants

PART_NAME_LENGTH max. recommended length of a part name (used in formatted

Page 47 of 136

EAGLE User Language Version 5.7

output only)
PART_VALUE_LENGT max. recommended length of a part value (used in formatted
H output only)

Note

The attribute[] member can be used to query a UL _PART for the value of a given
attribute (see the second example below). The returned string is empty if there is no
attribute by the given name, or if this attribute is explicitly empty.

When looping through the attributes() of a UL _PART, only the name, value,
defaultvalue and constant members of the resulting UL _ATTRIBUTE objects are
valid.

If the part is in a sheet context, the instances() loop member loops only through those
instances that are actually used on that sheet. If the part is in a schematic context, all
instances are looped through.

Example

schematic(S) {
S.parts(P) printf("Part: %s\n", P.name);
}

schematic(SCH) {
SCH.parts(P) {
if (P.attribute["REMARK"])
printf("%s: %s\n", P.name, P.attribute["REMARK"]);

}
}
UL_PIN
Data members
angle real (0, 90, 180 and 270)
contact UL_CONTACT (see note)

direction int (PIN_DIRECTION_...)
function int (PIN_FUNCTION_FLAG_...)

length int (PIN_LENGTH_...)

name string (PIN_NAME_LENGTH)
net string (see note)

swaplevel int

visible int (PIN_VISIBLE_FLAG_...)
X, Y int (connection point)

Loop members
circles() UL _CIRCLE
texts() UL_TEXT
wires() UL_WIRE
See also UL_SYMBOL, UL_PINREF, UL CONTACTREF

Page 48 of 136

EAGLE User Language

Constants

PIN_DIRECTION_NC
PIN_DIRECTION_IN
PIN_DIRECTION_OUT
PIN_DIRECTION_IO
PIN_DIRECTION_OC
PIN_DIRECTION_PWR
PIN_DIRECTION_PAS
PIN_DIRECTION_HIZ
PIN_DIRECTION_SUP

not connected

input

output (totem-pole)
in/output (bidirectional)
open collector

power input pin

passive

high impedance output

supply pin

PIN_FUNCTION_FLAG_NONE no symbol
PIN_FUNCTION_FLAG_DOT inverter symbol
PIN_FUNCTION_FLAG_CLK clock symbol

PIN_LENGTH_POINT
PIN_LENGTH_SHORT
PIN_LENGTH_MIDDLE
PIN_LENGTH_LONG

PIN_NAME_LENGTH

no wire

0.1 inch wire
0.2 inch wire
0.3 inch wire

PIN_VISIBLE_FLAG_OFF no name drawn
PIN_VISIBLE_FLAG_PAD pad name drawn
PIN_VISIBLE FLAG_PIN pin name drawn

Note

Version 5.7

max. recommended length of a pin name (used in formatted output
only)

The contact data member returns the contact that has been assigned to the pin through a
CONNECT command. It can be used as a boolean function to check whether a contact has
been assigned to a pin (see example below).

The coordinates (and layer, in case of an SMD) of the contact returned by the contact

data member depend on the context in which it is called:

if the pin is derived from a UL_PART that is used on a sheet, and if there is a

corresponding element on the board, the resulting contact will have the coordinates
as used on the board
in all other cases, the coordinates of the contact will be the same as defined in the

package drawing

The name data member always returns the name of the pin as it was defined in the library,
with any '@' character for pins with the same name left intact (see the PIN command for

details).

The texts loop member, on the other hand, returns the pin name (if it is visible) in the

same way as it is displayed in the current drawing type.

The net data member returns the name of the net to which this pin is connected (only
available in a schematic context).

Page 49 of 136

EAGLE User Language Version 5.7

Example

library(L) {
L.symbols(S) {
printf("Symbol: %s\n", S.name);
S.pins(P) {
printf("\tPin: %s, (%d %d)", P.name, P.x, P.y);
if (P.direction == PIN_DIRECTION_IN)
printf(" input");
if ((P.function & PIN_FUNCTION_FLAG_DOT) != 0)
printf(" inverted");
printf("\n");
}

L.devices(D) {
D.gates(G) {
G.symbol.pins(P) {
if (!P.contact)
printf("Unconnected pin: %s/%s/%s\n", D.name, G.name, P.name);

b
b
b
b

UL_PINREF

Data members
instance UL_INSTANCE
part UL _PART
pin UL _PIN
See also UL_SEGMENT, UL_CONTACTREF

Example

schematic(SCH) {
SCH.sheets(SH) {
printf("Sheet: %d\n", SH.number);
SH.nets(N) {
printf("\tNet: %s\n", N.name);
N.segments(SEG) {
SEG.pinrefs(P) {
printf("connected to: %s, %s, %s\n",
P.part.name, P.instance.name, P.pin.name);

UL_POLYGON

Data members
isolate int
layer int

Page 50 of 136

EAGLE User Language Version 5.7

orphans int (O=off, 1=0n)

pour int (POLYGON_POUR_...)
rank int

spacing int

thermals int (O=off, 1=0n)

width int

Loop members
contours() UL WIRE (see note)
fillings() UL _WIRE
wires() UL_WIRE
See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SIGNAL, UL_SYMBOL

Constants

POLYGON_POUR_SOLID solid
POLYGON_POUR_HATCH hatch

Note

The contours() and fillings() loop members loop through the wires that are used to
draw the calculated polygon if it is part of a signal and the polygon has been calculated by
the RATSNEST command. The wires() loop member always loops through the polygon
wires as they were drawn by the user. For an uncalculated signal polygon contours()
does the same as wires(), and fillings() does nothing.

If the contours() loop member is called without a second parameter, it loops through all
of the contour wires, regardless whether they belong to a positive or a negative polygon. If
you are interested in getting the positive and negative contour wires separately, you can call
contours() with an additional integer parameter (see the second example below). The
sign of that parameter determines whether a positive or a negative polygon will be handled,
and the value indicates the index of that polygon. If there is no polygon with the given
index, the statement will not be executed. Another advantage of this method is that you
don't need to determine the beginning and end of a particular polygon yourself (by
comparing coordinates). For any given index, the statement will be executed for all the
wires of that polygon. With the second parameter 0 the behavior is the same as without a
second parameter.

Polygon width

When using the fillings() loop member to get the fill wires of a solid polygon, make
sure the width of the polygon is not zero (actually it should be quite a bit larger than zero,
for example at least the hardware resolution of the output device you are going to draw
on). Filling a polygon with zero width may result in enormous amounts of data, since
it will be calculated with the smallest editor resolution of 1/10000mm!

Partial polygons

A calculated signal polygon may consist of several distinct parts (called positive polygons),

Page 51 of 136

EAGLE User Language Version 5.7

each of which can contain extrusions (negative polygons) resulting from other objects being
subtracted from the polygon. Negative polygons can again contain other positive polygons
and so on.

The wires looped through by contours () always start with a positive polygon. To find out
where one partial polygon ends and the next one begins, simply store the (x1,y1)
coordinates of the first wire and check them against (x2,y2) of every following wire. As
soon as these are equal, the last wire of a partial polygon has been found. It is also
guaranteed that the second point (x2,y2) of one wire is identical to the first point (x1,y1) of
the next wire in that partial polygon.

To find out where the "inside" and the "outside" of the polygon lays, take any contour wire
and imagine looking from its point (x1,y1) to (x2,y2). The "inside" of the polygon is always
on the right side of the wire. Note that if you simply want to draw the polygon you won't
need all these details.

Example

board(B) {
B.signals(S) {
S.polygons(P) {
int x0, yo, first = 1;
P.contours(W) {

if (first) {
// a new partial polygon is starting
X0 W.x1,
yo W.y1l;
}

// ..

// do something with the wire

/] .

if (first)
first = 0,

else if (W.x2 == x0 && W.y2 == y0) {
// this was the last wire of the partial polygon,
// so the next wire (if any) will be the first wire
// of the next partial polygon
first = 1;

board(B) {
B.signals(S) {
S.polygons(P) {
// handle only the "positive" polygons:

int i = 1;
int active;
do {

active = 0;
P.contours(W, i) {
active = 1;
// do something with the wire

Page 52 of 136

EAGLE User Language Version 5.7

i+1;
} while (active);
}
}
}

UL_RECTANGLE

Data members
angle real (0.0...359.9)
layer int
x1, y1 int (lower left corner)
int (upper right
corner)
See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SYMBOL

angle defines how many degrees the rectangle is rotated counterclockwise around its
center. The center coordinates are given by (x1+x2)/2 and (y1+y2)/2.

X2, y2

Example

board(B) {
B.rectangles(R) {
printf("Rectangle: (%d %d), (%d %d)\n",
R.x1, R.yl, R.x2, R.y2);
}

}

UL_SCHEMATIC

Data members

grid UL_GRID
name string (see note)

xreflabel string
Loop members
attributes() UL_ATTRIBUTE (see note)

classes() UL_CLASS
layers() UL _LAYER
libraries() UL_LIBRARY
nets() UL_NET
parts() UL_PART
sheets() UL_SHEET

See also UL_BOARD, UL_LIBRARY

Note

The name member returns the full file name, including the directory.

Page 53 of 136

EAGLE User Language Version 5.7

The xreflabel member returns the format string used to display cross-reference labels.

The attributes() loop member loops through the global attributes.

Example

schematic(S) {
S.parts(P) printf("Part: %s\n", P.name);

UL_SEGMENT

Loop members
junctions() UL _JUNCTION (see note)

labels() UL_LABEL

pinrefs() UL_PINREF (see note)

texts() UL_TEXT (deprecated, see note)
wires() UL _WIRE

See also UL BUS, UL_NET

Note
The junctions() and pinrefs() loop members are only available for net segments.

The texts() loop member was used in older EAGLE versions to loop through the labels of
a segment, and is only present for compatibility. It will not deliver the text of cross-
reference labels at the correct position. Use the 1labels () loop member to access a
segment's labels.

Example

schematic(SCH) {
SCH.sheets(SH) {
printf("Sheet: %d\n", SH.number);
SH.nets(N) {
printf("\tNet: %s\n", N.name);
N.segments(SEG) {
SEG.pinrefs(P) {
printf("connected to: %s, %s, %s\n",
P.part.name, P.instance.name, P.pin.name);

UL_SHEET

Data members
area UL_ARFA
number int

Page 54 of 136

EAGLE User Language Version 5.7

Loop members

busses() UL_BUS
circles() UL_CIRCLE
frames() UL_FRAME
nets() UL _NET
parts() UL_PART
polygons() UL_POLYGON
rectangles() UL RECTANGLE
texts() UL_TEXT
wires() UL_WIRE

See also UL_SCHEMATIC

Example

schematic(SCH) {
SCH.sheets(S) {
printf("Sheet: %d\n", S.number);

b
b

UL_SIGNAL

Data members
airwireshidden int

class E_CLASS
name string (SIGNAL_NAME_LENGTH)

Loop members
contactrefs() UL _CONTACTREF

polygons() UL_POLYGON
vias() UL VIA
wires() UL_WIRE

See also UL_BOARD

Constants

SIGNAL_NAME_LENG max. recommended length of a signal name (used in formatted
TH output only)

Example

board(B) {
B.signals(S) printf("Signal: %s\n", S.name);

UL_SMD

Data members
angle real (0.0...359.9)

Page 55 of 136

EAGLE User Language Version 5.7

dx[layer], dy[layer] int (size)

flags int (SMD_FLAG_...)
layer int (see note)

name string (SMD_NAME_LENGTH)
roundness int (see note)

signal string

X, Y int (center point, see note)

See also UL _PACKAGE, UL_CONTACT, UL_PAD

Constants

SMD_FLAG_STOP generate stop mask
SMD_FLAG_THERMALS generate thermals

SMD_FLAG_CREAM generate cream

mask
SMD_NAME_LENGT max. recommended length of an smd name (same as
H CONTACT_NAME_LENGTH)

Note
The parameters of the smd depend on the context in which it is accessed:

if the smd is derived from a UL _LIBRARY context, the coordinates (x, Yy), angle,
layer and roundness of the smd will be the same as defined in the package
drawing

in all other cases, they will have the actual values from the board

If the dx and dy data members are called with an optional layer index, the data for that
layer is returned according to the Design Rules. Valid layers are LAYER TOB LAYER TSTOP
and LAYER TCREAM for a via in the Top layer, and LAYER_ BOTTOM, LAYER_BSTOP and
LAYER BCREAM for a via in the Bottom layer, respectively.

angle defines how many degrees the smd is rotated counterclockwise around its center.

The value returned by flags must be masked with the SMD_FLAG_ . . . constants to
determine the individual flag settings, as in

if (smd.flags & SMD_FLAG_STOP) {

b

Note that if your ULP just wants to draw the objects, you don't need to check these flags
explicitly. The dx[] and dy[] members will return the proper data; for instance, if
SMD_FLAG_STOP is set, dX[LAYER_TSTOP] will return 0, which should result in nothing
being drawn in that layer. The flags member is mainly for ULPs that want to create script
files that create library objects.

Example

library(L) {
L.packages(PAC) {

Page 56 of 136

EAGLE User Language Version 5.7

PAC.contacts(C) {
if (C.smd)
printf("Smd: '%s', (%d %d), dx=%d, dy=%d\n",
C.name, C.smd.x, C.smd.y, C.smd.dx, C.smd.dy);

}
}
}

UL_SYMBOL

Data members
area UL_AREA
library string
name string (SYMBOL_NAME_LENGTH)

Loop members
circles() UL_CIRCLE
frames() UL_FRAME
rectangles() UL RECTANGLE
pins() UL_PIN
polygons() UL_POLYGON
texts() UL_TEXT (see note)
wires() UL_WIRE

See also UL_GATE, UL_LIBRARY

Constants

SYMBOL_NAME_LENG max. recommended length of a symbol name (used in formatted
TH output only)

Note

If the UL _SYMBOL is derived from a UL_INSTANCE, the texts() member only loops
through the non-detached texts of that instance.

Example

library(L) {
L.symbols(S) printf("Sym: %s\n", S.name);

by

UL_TEXT

Data members
angle real (0.0...359.9)

font int (FONT_...)
layer int
mirror int
ratio int
size int

Page 57 of 136

EAGLE User Language Version 5.7

spin int
value string
X, VY int (origin point)

Loop members
wires() UL_WIRE (see note)
See also UL_BOARD, UL_ PACKAGE, UL_SHEET, UL_SYMBOL

Constants

FONT_VECTOR vector font
FONT_PROPORTIONAL proportional font
FONT_FIXED fixed font

Note

The wires() loop member always accesses the individual wires the text is composed of
when using the vector font, even if the actual font is not FONT_VECTOR.

If the UL TEXT is derived from a UL_ELEMENT or UL _INSTANCE context, the member
values will be those of the actual text as located in the board or sheet drawing.

Example

board(B) {
B.texts(T) {
printf("Text: %s\n", T.value);

b
b

UL_VIA

Data members
diameter[layer] int

drill int

drillsymbol int

end int

flags int (VIA_FLAG_...)
shape[layer] int (VIA_SHAPE_...)
start int

X, VY int (center point)

See also UL_SIGNAL

Constants

VIA FLAG STop always generate stop
mask

VIA_SHAPE_SQUARE square
VIA_SHAPE_ROUND round
VIA_SHAPE_OCTAGON octagon

Page 58 of 136

EAGLE User Language Version 5.7

VIA_SHAPE_ANNULUS annulus
VIA_SHAPE_THERMAL thermal

Note

The diameter and shape of the via depend on the layer for which they shall be retrieved,
because they may be different in each layer depending on the Design Rules. If one of the
layers LAYER TOP..LAYER BOTTOM, LAYER TSTOP or LAYER BSTOP is given as the
index to the diameter or shape data member, the resulting value will be calculated
according to the Design Rules. If LAYER VIAS is given, the raw value as defined in the via
will be returned.

Note that diameter and shape will always return the diameter or shape that a via would
have in the given layer, even if that particular via doesn't cover that layer (or if that layer
isn't used in the layer setup at all).

start and end return the layer numbers in which that via starts and ends. The value of
start will always be less than that of end.

drillsymbol returns the number of the drill symbol that has been assigned to this drill
diameter (see the manual for a list of defined drill symbols). A value of @ means that no
symbol has been assigned to this drill diameter.

Example
board(B) {
B.signals(S) {
S.vias(V) {
printf("via: (%d %d)\n", V.x, V.y);
}
}
}
UL_WIRE
Data members
arc UL_ARC
cap int (CAP_...)
curve real
layer int
style int WIRE_STYLE_...)
width int

x1, yl1 int (starting point)

X2, y2 int (end point)
Loop members

pieces() UL_WIRE (see note)
See also UL _BOARD, UL_PACKAGE, UL_SEGMENT, UL_SHEET, UL_SIGNAL, UL_SYMBOL,
UL_ARC

Page 59 of 136

EAGLE User Language Version 5.7

Constants
CAP_FLAT flat arc ends
CAP_ROUND round arc
ends
WIRE_STYLE_CONTINUOUS continuous
WIRE_STYLE_LONGDASH longdaﬂl
WIRE_STYLE_SHORTDASH short dash
WIRE_STYLE_DASHDOT dash dot
Wire Style

A UL_WIRE that has a style other than WIRE_STYLE_CONTINUOUS can use the pieces()
loop member to access the individual segments that constitute for example a dashed wire.
If pieces() is called for a UL WIRE with WIRE_STYLE_CONTINUOUS, a single segment
will be accessible which is just the same as the original UL WIRE. The pieces() loop
member can't be called from a UL_WIRE that itself has been returned by a call to
pieces() (this would cause an infinite recursion).

Arcs at Wire level

Arcs are basically wires, with a few additional properties. At the first level arcs are treated
exactly the same as wires, meaning they have a start and an end point, a width, layer and
wire style. In addition to these an arc, at the wire level, has a cap and a curve parameter.
cap defines whether the arc endings are round or flat, and curve defines the "curvature" of
the arc. The valid range for curve is - 360..+360, and its value means what part of a full
circle the arc consists of. A value of 90, for instance, would result in a 90° arc, while 180
would give you a semicircle. The maximum value of 360 can only be reached theoretically,
since this would mean that the arc consists of a full circle, which, because the start and end
points have to lie on the circle, would have to have an infinitely large diameter. Positive
values for curve mean that the arc is drawn in a mathematically positive sense (i.e.
counterclockwise). If curve is 0, the arc is a straight line ("no curvature"), which is actually
a wire.

The cap parameter only has a meaning for actual arcs, and will always return CAP_ROUND
for a straight wire.

Whether or not an UL_WIRE is an arc can be determined by checking the boolean return
value of the arc data member. If it returns 0, we have a straight wire, otherwise an arc. If
arc returns a non-zero value it may be further dereferenced to access the UL_ARC specific
parameters start and end angle, radius and center point. Note that you may only need these
additional parameters if you are going to draw the arc or process it in other ways where the
actual shape is important.

Example

board(B) {
B.wires(W) {
printf("wire: (%d %d) (%d %d)\n",

Page 60 of 136

EAGLE User Language Version 5.7

W.x1, W.yl, W.x2, W.y2);

Definitions

The data items to be used in a User Language Program must be defined before they can be
used.

There are three kinds of definitions:

Constant Definitions
Variable Definitions
Function Definitions

The scope of a constant or variable definition goes from the line in which it has been
defined to the end of the current block, or to the end of the User Language Program, if the
definition appeared outside any block.

The scope of a function definition goes from the closing brace (}) of the function body to
the end of the User Language Program.

Constant Definitions
Constants are defined using the keyword enum, as in

enum { a, b, c };

which would define the three constants a, b and c, giving them the values 0, 1 and 2,
respectively.

Constants may also be initialized to specific values, like

enum { a, b =5, c };

where a would be 0, b would be 5 and ¢ would be 6.

Variable Definitions

The general syntax of a variable definition is

[numeric] type identifier [= initializer][, ...];

where type is one of the data or object types, identifier is the name of the variable,
and initializer is a optional initial value.

Multiple variable definitions of the same type are separated by commas (,).

If identifier is followed by a pair of brackets ([]), this defines an array of variables of
the given type. The size of an array is automatically adjusted at runtime.

The optional keyword numeric can be used with string arrays to have them sorted
alphanumerically by the sort() function.

Page 61 of 136

EAGLE User Language Version 5.7

By default (if no initializer is present), data variables are set to © (or "", in case of a
string), and object variables are "invalid".
Examples
int 1i; defines an int variable named i

. defines a string variable named s and initializes it to
string s = "Hello"; SUins

"Hello"

defines three real variables named a, b and c, initializing b to

real a, b = 1.0, c; the value 1.0

int n[] = { 1, 2, defines an array of int, initializing the first three elements to
3 }; 1,2 and 3
numeric strin
names[]; g defines a string array that can be sorted alphanumerically
4
UL_WIRE w; defines a UL_WIRE object named w

The members of array elements of object types can't be accessed directly:
UL_SIGNAL signals[];

UL_SIGNAL s = signals[0];
printf("%s'", s.name);

Function Definitions

You can write your own User Language functions and call them just like the Builtin
Functions.

The general syntax of a function definition is
type identifier(parameters)

{

statements

}

where type is one of the data or object types, identifier is the name of the function,
parameters is a list of comma separated parameter definitions, and statements is a
sequence of statements.

Functions that do not return a value have the type void.

A function must be defined before it can be called, and function calls can not be recursive
(a function cannot call itself).

The statements in the function body may modify the values of the parameters, but this will
not have any effect on the arguments of the function call.

Execution of a function can be terminated by the return statement. Without any return
statement the function body is executed until it's closing brace (}).

A call to the exit () function will terminate the entire User Language Program.

Page 62 of 136

EAGLE User Language Version 5.7

The special function main()

If your User Language Program contains a function called main(), that function will be
explicitly called as the main function, and it's return value will be the return value of the
program.

Command line arguments are available to the program through the global Builtin Variables
argc and argv.

Example

int CountDots(string s)

int dots = 0;
for (int i = @; s[i]; ++1)
if (s[i] == '".")
++dots;
return dots;
}
string dotted = "This.has.dots...";
output("test") {
printf("Number of dots: %d\n",
CountDots(dotted));
}

Operators

The following table lists all of the User Language operators, in order of their precedence
(Unary having the highest precedence, Comma the lowest):

Unary 1~ 4+ - 4+ --
Multiplicative * / %

Additive + -

Shift << >>
Relational < <= > >=
Equality == I=

Bitwise AND &

Bitwise XOR A

Bitwise OR 1

Logical AND &&

Logical OR 11

Conditional 2

Assignment = *= /= %= 4= -= &= A= |= <<= >>=
Comma 2z

Associativity is left to right for all operators, except for Unary, Conditional and Assignment,
which are right to left associative.

The normal operator precedence can be altered by the use of parentheses.

Page 63 of 136

EAGLE User Language Version 5.7

Bitwise Operators

Bitwise operators work only with data types char and int.

Unary

~ Bitwise (1's) complement
Binary

<< Shift left

>> Shift right

& Bitwise AND

A Bitwise XOR

| Bitwise OR
Assignment

&= Assign bitwise AND
N= Assign bitwise XOR
|= Assign bitwise OR
<<= Assign left shift
>>= Assign right shift

Logical Operators
Logical operators work with expressions of any data type.

Unary

! Logical NOT
Binary

&& Logical AND
| | Logical OR

Using a string expression with a logical operator checks whether the string is empty.

Using an Object Type with a logical operator checks whether that object contains valid data.

Comparison Operators
Comparison operators work with expressions of any data type, except Object Types.

< Less than

<= Less than or equal to

> Greater than

o= Greater than or equal
to

== Equalto

= Notequal to

Evaluation Operators

Evaluation operators are used to evaluate expressions based on a condition, or to group a
sequence of expressions and have them evaluated as one expression.

?: Conditional

Page 64 of 136

EAGLE User Language Version 5.7

, Comma

The Conditional operator is used to make a decision within an expression, as in
int a;

// ...code that calculates 'a'

string s = a ? "True" : "False";

which is basically the same as

int a;
string s;
// ...code that calculates 'a'
if (a)
s = "True";
else
s = "False";

but the advantage of the conditional operator is that it can be used in an expression.

The Comma operator is used to evaluate a sequence of expressions from left to right, using
the type and value of the right operand as the result.

Note that arguments in a function call as well as multiple variable declarations also use
commas as delimiters, but in that case this is not a comma operator!

Arithmetic Operators

Arithmetic operators work with data types char, int and real (except for ++, - -, % and
%=).

Unary

+ Unary plus

- Unary minus

++ Pre- or postincrement

-- Pre- or postdecrement
Binary

* Multiply

/ Divide

% Remainder (modulus)

+ Binary plus

- Binary minus

Assignment

= Simple assignment

*= Assign product

/= Assign quotient

%= Assign remainder (modulus)
+= Assign sum

= Assign difference
See also String Operators

Page 65 of 136

EAGLE User Language Version 5.7

String Operators

String operators work with data types char, int and string. The left operand must
always be of type string.

Binary

+ Concatenation

Assignment

= Simple assignment

+= Append to string

The + operator concatenates two strings, or adds a character to the end of a string and
returns the resulting string.

The += operator appends a string or a character to the end of a given string.

See also Arithmetic Operators

Expressions

An expression can be one of the following:

Arithmetic Expression
Assignment Expression
String Expression
Comma Expression
Conditional Expression
Function Call

Expressions can be grouped using parentheses, and may be recursive, meaning that an
expression can consist of subexpressions.

Arithmetic Expression

An arithmetic expression is any combination of numeric operands and an arithmetic
operator or a bitwise operator.

Examples

a-+b
c++
m<< 1

Assignment Expression

An assignment expression consists of a variable on the left side of an assignment operator,
and an expression on the right side.

Examples

a = x + 42
b += ¢

Page 66 of 136

EAGLE User Language Version 5.7

s = "Hello"

String Expression

A string expression is any combination of string and char operands and a string operator.

Examples
s + ".brd"
t + 1 X 1

Comma Expression

A comma expression is a sequence of expressions, delimited by the comma operator

Comma expressions are evaluated left to right, and the result of a comma expression is the
type and value of the rightmost expression.

Example

i++, j++, k++

Conditional Expression

A conditional expression uses the conditional operator to make a decision within an
expression.

Example

int a;

// ...code that calculates 'a'
string s = a ? "True" : "False",;

Function Call

A function call transfers the program flow to a user defined function or a builtin function.
The formal parameters defined in the function definition are replaced with the values of the
expressions used as the actual arguments of the function call.

Example
int p = strchr(s, 'b');

Statements

A statement can be one of the following:

Compound Statement
Control Statement

Page 67 of 136

EAGLE User Language Version 5.7

- Expression Statement
« Builtin Statement

. Constant Definition

- Variable Definition

Statements specify the flow of control as a User Language Program executes. In absence of
specific control statements, statements are executed sequentially in the order of appearance
in the ULP file.

Compound Statement

A compound statement (also known as block) is a list (possibly empty) of statements
enclosed in matching braces ({}). Syntactically, a block can be considered to be a single
statement, but it also controls the scoping of identifiers. An identifier declared within a
block has a scope starting at the point of declaration and ending at the closing brace.

Compound statements can be nested to any depth.

Expression Statement

An expression statement is any expression followed by a semicolon.

An expression statement is executed by evaluating the expression. All side effects of this
evaluation are completed before the next statement is executed. Most expression
statements are assignments or function calls.

A special case is the empty statement, consisting of only a semicolon. An empty statement
does nothing, but it may be useful in situations where the ULP syntax expects a statement
but your program does not need one.

Control Statements

Control statements are used to control the program flow.

Iteration statements are

do...while
for
while

Selection statements are

if...else
switch

Jump statements are

break
continue
return

Page 68 of 136

EAGLE User Language Version 5.7

break

The break statement has the general syntax

break;

and immediately terminates the nearest enclosing do...while, for, switch or while
statement. This also applies to loop members of object types.

Since all of these statements can be intermixed and nested to any depth, take care to ensure
that your break exits from the correct statement.

continue

The continue statement has the general syntax

continue;

and immediately transfers control to the test condition of the nearest enclosing do...while,
while, or for statement, or to the increment expression of the nearest enclosing for
statement.

Since all of these statements can be intermixed and nested to any depth, take care to ensure
that your continue affects the correct statement.

do...while

The do...while statement has the general syntax

do statement while (condition);

and executes the statement until the condition expression becomes zero.

The condition is tested after the first execution of statement, which means that the
statement is always executed at least one time.

If there is no break or return inside the statement, the statement must affect the
value of the condition, or condition itself must change during evaluation in order to
avoid an endless loop.

Example

string s = "Trust no one!";
int i = -1;
do {

++1;

} while (s[i]);

for

The for statement has the general syntax
for ([init]; [test]; [inc]) statement

Page 69 of 136

EAGLE User Language Version 5.7

and performs the following steps:

1. If an initializing expression init is present, it is executed.

2. If a test expression is present, it is executed. If the result is nonzero (or if there is
no test expression at all), the statement is executed.

3. If an inc expression is present, it is executed.

4. Finally control returns to step 2.

If there is no break or return inside the statement, the inc expression (or the
statement) must affect the value of the test expression, or test itself must change
during evaluation in order to avoid an endless loop.

The initializing expression init normally initializes one or more loop counters. It may also
define a new variable as a loop counter. The scope of such a variable is valid until the end
of the active block.

Example

string s = "Trust no one!";
int sum = 0;
for (int i = 0; s[i]; ++1i)
sum += s[i]; // sums up the characters in s

if...else

The if...else statement has the general syntax

if (expression)
t_statement

[else
f_statement]

The conditional expression is evaluated, and if its value is nonzero the t_statement is
executed. Otherwise the f_statement is executed in case there is an else clause.

An else clause is always matched to the last encountered if without an else. If this is
not what you want, you need to use braces to group the statements, as in

if (a == 1) {
if (b == 1)
printf("a == 1 and b == 1\n");

else
printf("a != 1\n");

return

A function with a return type other than void must contain at least one return statement
with the syntax

return expression;

where expression must evaluate to a type that is compatible with the function's return

Page 70 of 136

EAGLE User Language Version 5.7

type. The value of expression is the value returned by the function.

If the function is of type void, a return statement without an expression can be used
to return from the function call.

switch

The switch statement has the general syntax

switch (sw_exp) {
case case_exp: case_statement

[default: def_statement]
}

and allows for the transfer of control to one of several case-labeled statements, depending
on the value of sw_exp (which must be of integral type).

Any case_statement can be labeled by one or more case labels. The case_exp of each
case label must evaluate to a constant integer which is unique within it's enclosing
switch statement.

There can also be at most one default label.

After evaluating sw_exp, the case_exp are checked for a match. If a match is found,
control passes to the case_statement with the matching case label.

If no match is found and there is a default label, control passes to def_statement.
Otherwise none of the statements in the switch is executed.

Program execution is not affected when case and default labels are encountered.
Control simply passes through the labels to the following statement.

To stop execution at the end of a group of statements for a particular case, use the break
statement.

Example

string s = "Hello World";

int vowels = 0, others = 0;

for (int 1 = 0; s[i]; ++1)
switch (toupper(s[i])) {

case 'A':
case 'E':
case 'I':
case '0':
case 'U': ++vowels;

break;
default: ++others;

printf("There are %d vowels in '%s'\n", vowels, s);

Page 71 of 136

EAGLE User Language Version 5.7

while

The while statement has the general syntax

while (condition) statement

and executes the statement as long as the condition expression is not zero.

The condition is tested before the first possible execution of statement, which means
that the statement may never be executed if condition is initially zero.

If there is no break or return inside the statement, the statement must affect the
value of the condition, or condition itself must change during evaluation in order to
avoid an endless loop.

Example
string s = "Trust no one!";
int 1 = 0;
while (s[i1])
++1;

Builtins

Builtins are Constants, Variables, Functions and Statements that provide additional
information and allow for data manipulations.

Builtin Constants
Builtin Variables
Builtin Functions
Builtin Statements

Builtin Constants

Builtin constants are used to provide information about object parameters, such as
maximum recommended name length, flags etc.

Many of the object types have their own Constants section which lists the builtin constants
for that particular object (see e.g. UL_PIN).

The following builtin constants are defined in addition to the ones listed for the various
object types:

EAGLE_VERSION EAGLE program version number (int)

EAGLE_RELEASE EAGLE program release number (int)

EAGLE_SIGNATUR a string containing EAGLE program name, version and copyright
E information

the minimum positive real number such that 1.0 +
REAL_EPSILON REAL_EPSILON != 1.0

REAL_MAX the largest possible real value
REAL_MIN the smallest possible (positive!) real value

Page 72 of 136

EAGLE User Language Version 5.7

the smallest representable number is - REAL_MAX

INT_MAX the largest possible int value

INT_MIN the smallest possible int value

PI the value of "pi" (3.14..., real)

usage a string containing the text from the #usage directive

These builtin constants contain the directory paths defined in the directories dialog, with
any of the special variables (BHOME and $EAGLEDIR) replaced by their actual values. Since
each path can consist of several directories, these constants are string arrays with an
individual directory in each member. The first empty member marks the end of the path:

path_lbr[] Libraries
path_drul] Design Rules
User Language
path_ulp[] Programf °
path_scr[] Scripts
path_cam][] CAM Jobs
path_epf[] Projects
When using these constants to build a full file name, you need to use a directory separator,
as in
string s = path_1lbr[0] + '/' + "mylib.lbr";

The libraries that are currently in use through the USE command:

used_libraries|[]

Builtin Variables

Builtin variables are used to provide information at runtime.

int argc number of arguments given to the RUN command
arguments given to the RUN command (argv[0] is the full ULP file

string argv[] name)

Builtin Functions

Builtin functions are used to perform specific tasks, like printing formatted strings, sorting
data arrays or the like.

You may also write your own functions and use them to structure your User Language
Program.

The builtin functions are grouped into the following categories:

Character Functions
File Handling Functions
Mathematical Functions
Miscellaneous Functions
Printing Functions
String Functions

Time Functions

Page 73 of 136

EAGLE User Language Version 5.7

Object Functions

Alphabetical reference of all builtin functions:

bs
acos
asin

L

Irer

)
o

u

D | |0
—

iledir
fileerror

ileext
fileglob
filename
fileread

filesetext()

ilesize
filetime
oor
rac

ingrou

isalnum
isalpha

iscntrl
isdigit
isgraph

islower()
isprint
ispunct
isspace
isupper
isxdigit
anguage

E

1

i

E

L

L

.

il

i

[—

ooku

8 B
RREE
@

rintf
round
setgrou

i

Page 74 of 136

EAGLE User Language Version 5.7

3 2.
EE
- |

2]
—
—
=3
—t
—

w»n |[\n |[tnn |[\nn |»n
SEERE
= EELR
e = a2

9]
—t
—~
—
s
—

strrchr
strrstr
strsplit
strstr
strsub
trto
trt

L

O

strxstr

system

t2da
t2dayofweek()
t2hour
t2minute
t2month

t2second()
t2string()

t2strin

L

]

i

Character Functions

Character functions are used to manipulate single characters.

The following character functions are available:

isalnum()
isalpha()
isentrl()
isdigit()
isgraph()

Page 75 of 136

EAGLE User Language Version 5.7

islower()
isprint()

ispunct()
isspace()

isupper
isxdigit()
tolower()

toupper

is...()

Function
Check whether a character falls into a given category.
Syntax
int isalnum(char c);
int isalpha(char c);
int iscntrl(char c);
int isdigit(char c);
int isgraph(char c);
int islower(char c);
int isprint(char c);
int ispunct(char c);
int isspace(char c);
int isupper(char c);
int isxdigit(char c);
Returns
The is. .. functions return nonzero if the given character falls into the category, zero
otherwise.

Character categories

isalnum letters (A to Z or a to z) or digits (0 to 9)

isalpha letters (A to Z or a to z)

iscntrl delete characters or ordinary control characters (Ox7F or 0x00 to Ox1F)
isdigit digits (0 to 9)

isgraph printing characters (except space)

islower lowercase letters (a to z)

isprint printing characters (0x20 to OX7E)

ispunct punctuation characters (iscntrl or isspace)

space, tab, carriage return, new line, vertical tab, or formfeed (0x09 to
Ox0D, 0x20)

isupper uppercase letters (A to Z)

isxdigit hex digits (0to 9,Ato F, ato f)

isspace

Example

char ¢ = 'A';

Page 76 of 136

EAGLE User Language Version 5.7

if (isxdigit(c))

printf("%c is hex\n", c);
else

printf("%c is not hex\n", c);

to...()

Function
Convert a character to upper- or lowercase.
Syntax
char tolower(char c);
char toupper(char c);
Returns
The tolower function returns the converted character if c is uppercase. All other
characters are returned unchanged.
The toupper function returns the converted character if ¢ is lowercase. All other
characters are returned unchanged.

See also strupr, strlwr

File Handling Functions

Filename handling functions are used to work with file names, sizes and timestamps.

The following file handling functions are available:

fileerror()
fileglob()
filedir()
fileext()
filename()
fileread ()
filesetext()
filesize()
filetime()

See output() for information about how to write into a file.

fileerror()

Function
Returns the status of I/0 operations.
Syntax
int fileerror();
Returns
The fileerror function returns 0 if everything is ok.

See also output, printf, fileread

Page 77 of 136

EAGLE User Language Version 5.7

fileerror checks the status of any I/O operations that have been performed since the
last call to this function and returns 0 if everything was ok. If any of the I/0 operations has
caused an error, a value other than @ will be returned.

You should call fileerror before any I/0 operations to reset any previous error state,
and call it again after the I/O operations to see if they were successful.

When fileerror returns a value other than 0 (thus indicating an error) a proper error
message has already been given to the user.

Example

fileerror();
output("file.txt", "wt") {
printf("Test\n");

}
if (fileerror())
exit(1);

fileglob()

Function
Perform a directory search.
Syntax
int fileglob(string &array[], string pattern);
Returns
The fileglob function returns the number of entries copied into array.

See also dlgFileOpen(), dlgFileSave()

fileglob performs a directory search using pattern.

pattern may contain '*' and '?' as wildcard characters. If pattern ends witha '/"',
the contents of the given directory will be returned.

Names in the resulting array that end with a ' /' are directory names.

The array is sorted alphabetically, with the directories coming first.

1 1

The special entries and '..' (for the current and parent directories) are never

returned in the array.

If pattern doesn't match, or if you don't have permission to search the given directory, the
resulting array will be empty.

Note for Windows users

iy The directory delimiter in the array is always a forward slash. This makes sure
User Language Programs will work platform independently. In the pattern the
backslash ('\") is also treated as a directory delimiter.

Sorting filenames under Windows is done case insensitively.

Page 78 of 136

EAGLE User Language Version 5.7

Example

string al];
int n = fileglob(a, "*.brd");

Filename Functions

Function
Split a filename into its separate parts.
Syntax
string filedir(string file);
string fileext(string file);
string filename(string file);
string filesetext(string file, string newext);
Returns
filedir returns the directory of file (including the drive letter under Windows).
fileext returns the extension of file.
filename returns the file name of file (including the extension).
filesetext returns file with the extension set to newext.

See also Filedata Functions

Example

if (board) board(B) {
output(filesetext(B.name, ".out")) {

}

Filedata Functions

Function
Gets the timestamp and size of a file.
Syntax
int filesize(string filename);
int filetime(string filename);
Returns
filesize returns the size (in byte) of the given file.
filetime returns the timestamp of the given file in a format to be used with the
time functions.

See also time, Filename Functions

Example

board(B)
printf("Board: %s\nSize: %d\nTime: %s\n",
B.name, filesize(B.name),

Page 79 of 136

EAGLE User Language Version 5.7

t2string(filetime(B.name)));

File Input Functions
File input functions are used to read data from files.

The following file input is available:

fileread()

See output() for information about how to write into a file.

fileread()

Function
Reads data from a file.
Syntax
int fileread(dest, string file);
Returns
fileread returns the number of objects read from the file.
The actual meaning of the return value depends on the type of dest.

See also lookup, strsplit, fileerror

If dest is a character array, the file will be read as raw binary data and the return value
reflects the number of bytes read into the character array (which is equal to the file size).

If dest is a string array, the file will be read as a text file (one line per array member) and
the return value will be the number of lines read into the string array. Newline characters
will be stripped.

If dest is a string, the entire file will be read into that string and the return value will be
the length of that string (which is not necessarily equal to the file size, if the operating
system stores text files with "cr/1f" instead of a "newline" character).

Example

char b[];

int nBytes = fileread(b, "data.bin");
string lines[];

int nLines = fileread(lines, "data.txt");
string text;

int nChars = fileread(text, "data.txt");

Mathematical Functions
Mathematical functions are used to perform mathematical operations.

The following mathematical functions are available:

abs()
acos()

Page 80 of 136

EAGLE User Language Version 5.7

SERREEEREBRER
LEREERRERLE

—
=}
o
=
[a®

5 H B .
EEEE
(@)

Error Messages
If the arguments of a mathematical function call lead to an error, the error message will
show the actual values of the arguments. Thus the statements

-1.0;
sqrt(2 * x);

real x
real r

will lead to the error message

Invalid argument in call to 'sqrt(-2)'

Absolute, Maximum and Minimum Functions

Function

Absolute, maximum and minimum functions.
Syntax

type abs(type x);

type max(type x, type y);

type min(type Xx, type y);
Returns

abs returns the absolute value of x.

max returns the maximum of x and y.

min returns the minimum of X and y.

The return type of these functions is the same as the (larger) type of the arguments.
type must be one of char, int or real.

Page 81 of 136

EAGLE User Language

Example

real x = 2.567, y = 3.14;
printf("The maximum is %f\n", max(x, y));

Rounding Functions

Function
Rounding functions.
Syntax
real ceil(real x);
real floor(real x);
real frac(real Xx);
real round(real x);

real trunc(real x);

Returns
celil returns the smallest integer not less than X.
floor returns the largest integer not greater than x.
frac returns the fractional part of x.
round returns X rounded to the nearest integer.
trunc returns the integer part of x.

Example

real x = 2.567;
printf("The rounded value of %f is %f\n", x, round(x));

Trigonometric Functions

Function
Trigonometric functions.

Syntax
real acos(real x);
real asin(real Xx);
real atan(real x);
real cos(real x);
real sin(real x);
real tan(real x);

Returns
acos returns the arc cosine of X.
asin returns the arc sine of x.
atan returns the arc tangent of X.
cos returns the cosine of x.
sin returns the sine of X.
tan returns the tangent of X.

Page 82 of 136

Version 5.7

EAGLE User Language Version 5.7

Constants

1

the value of "pi'

Pl (3.14..)

Example

real x = PI / 2;
printf("The sine of %f is %f\n", x, sin(x));

Exponential Functions

Function
Exponential Functions.

Syntax
real exp(real x);
real log(real x);
real logl@(real x);
real pow(real x, real y);
real sqrt(real x);

Returns
exp returns the exponential e to the power of X.
log returns the natural logarithm of x.
10910 returns the base 10 logarithm of x.
pow returns the value of X to the power of y.
sqrt returns the square root of x.

Note

The "n-th" root can be calculated using the pow function with a negative exponent.

Example

real x = 2.1;
printf("The square root of %f is %f\n", x, sqrt(x));

Miscellaneous Functions

Miscellaneous functions are used to perform various tasks.

The following miscellaneous functions are available:

exit()
language()
lookup()
palette()
sort()
status()
system()

Page 83 of 136

EAGLE User Language Version 5.7

Unit Conversions

exit()

Function

Exits from a User Language Program.
Syntax

void exit(int result);

void exit(string command);

See also RUN

The exit function terminates execution of a User Language Program.

If an integer result is given it will be used as the return value of the program.

If a string command is given, that command will be executed as if it were entered into the
command line immediately after the RUN command. In that case the return value of the
ULP is set to EXIT_SUCCESS.

Constants

return value for successful program execution (value
0)
EXIT_FAILURE return value for failed program execution (value -1)

EXIT_SUCCESS

language()

Function
Returns the language code of the system in use.

Syntax
string language();

Returns
language returns a string consisting of two lowercase characters that identifies the
language used on the current system. If no such language setting can be determined,
an empty string will be returned.

The 1language function can be used to make a ULP use different message string,
depending on which language the current system is using.

In the example below all the strings used in the ULP are listed in the string array I18N[],
preceeded by a string containing the various language codes supported by this ULP. Note
the vtab characters used to separate the individual parts of each string (they are important
for the 1lookup function) and the use of the commas to separate the strings. The actual
work is done in the function tr (), which returns the translated version of the given string.
If the original string can't be found in the I18N array, or there is no translation for the
current language, the original string will be used untranslated.

The first language defined in the I18N array must be the one in which the strings used
throughout the ULP are written, and should generally be English in order to make the
program accessible to the largest number of users.

Page 84 of 136

EAGLE User Language

Example

string I18N[] = {
llen\vll
"de\V"
Ilit\vll

14

"I18N Demo\v"

"Beispiel fiur Internationalisierung\v"
"Esempio per internazionalizzazione\v"

"Hello world!\v"
"Hallo Welt!\v"
"Ciao mondo!\v"

"+0k\v"
|I+0k\vll
"+Approvazione\v"

"-Cancel\v"
"-Abbrechen\v"
"-Annullamento\v"
}i
int Language = strstr(I18N[@], language()) / 3;
string tr(string s)
{
string t =
return t ?
}
dlgDialog(tr("I18N Demo")) {
dlgHBoxLayout dlgSpacing(350);
dlgLabel(tr("Hello world!"));
dlgHBoxLayout {
dlgPushButton(tr("+0k")) dlgAccept();
dlgPushButton(tr("-Cancel")) dlgReject();

}
H

lookup(I18N, s, Language, '\v');
t s,

lookup()

Function
Looks up data in a string array.

Syntax
string lookup(string array[], string key,
char separator]);
string lookup(string array[], string key,
char separator]);

Returns

Version 5.7

int field_index[,

string field_name[,

lookup returns the value of the field identified by field_index or field_name.
If the field doesn't exist, or no string matching key is found, an empty string is

returned.

See also fileread, strsplit

Page 85 of 136

EAGLE User Language Version 5.7

An array that can be used with 1ookup () consists of strings of text, each string
representing one data record.

Each data record contains an arbitrary number of fields, which are separated by the
character separator (defaultis '\t', the tabulator). The first field in a record is used as
the key and is numbered 0.

All records must have unique key fields and none of the key fields may be empty -
otherwise it is undefined which record will be found.

If the first string in the array contains a "Header" record (i.e. a record where each field
describes its contents), using 1ookup with a field_name string automatically determines
the index of that field. This allows using the 1ookup function without exactly knowing
which field index contains the desired data.

It is up to the user to make sure that the first record actually contains header information.

If the key parameter in the call to 1ookup () is an empty string, the first string of the
array will be used. This allows a program to determine whether there is a header record
with the required field names.

If a field contains the separator character, that field must be enclosed in double quotes
(asin "abc;def", assuming the semicolon ('; ') is used as separator). The same applies
if the field contains double quotes ("), in which case the double quotes inside the field have
to be doubled (as in "abc; ""def""; ghi", which would be abc; "def";ghi).

It is best to use the default "tab" separator, which doesn't have these problems (no
field can contain a tabulator).

Here's an example data file ('; ' has been used as separator for better readability):

Name;Manufacturer;Code;Price
7400;Intel;I-01-234-97;%$0.10
68HC12;Motorola;M68HC1201234;%$3.50

Example

string OrderCodes[];
if (fileread(OrderCodes, "ordercodes") > 0) {
if (lookup(OrdercCodes, "", "Code", ';')) {
schematic(SCH) {
SCH.parts(P) {
string OrderCode;
// both following statements do exactly the same:

OrderCode = lookup(OrderCodes, P.device.name, "Code", ';');
OrderCode = lookup(OrderCodes, P.device.name, 2, ';');
}
}
}
else

dlgMessageBox("Missing 'Code' field in file 'ordercodes');

}

Page 86 of 136

EAGLE User Language Version 5.7

palette()

Function
Returns color palette information.
Syntax
int palette(int index[, int type]);
Returns
The palette function returns an integer ARGB value in the form Oxaarrggbb, or the
type of the currently used palette (depending on the value of index).

The palette function returns the ARGB value of the color with the given index (which
may be in the range 0..PALETTE_ENTRIES-1). If type is not given (or is -1) the palette
assigned to the current editor window will be used. Otherwise type specifies which color
palette to use (PALETTE BLACK, PALETTE WHITE or PALETTE COLORED).

The special value -1 for index makes the function return the type of the palette that is
currently in use by the editor window.

If either index or type is out of range, an error message will be given and the ULP will be
terminated.

Constants

PALETTE_TYPES the number of palette types (3)
PALETTE_BLACK the black background palette (0)
PALETTE_WHITE the white background palette (1)

PALETTE_COLORED the colored background palette (2)
PALETTE_ENTRIES the number of colors per palette

(64)
sort()
Function
Sorts an array or a set of arrays.
Syntax

void sort(int number, arrayl[, array2,...]);

The sort function either directly sorts a given array1, or it sorts a set of arrays (starting
with array?2), in which case array1 is supposed to be an array of int, which will be used
as a pointer array.

In any case, the number argument defines the number of items in the array(s).

Sorting a single array

If the sort function is called with one single array, that array will be sorted directly, as in
the following example:

string A[];
int n = 0;

Page 87 of 136

EAGLE User Language Version 5.7

A[n++] = "wWorld",

A[n++] = "Hello";

A[n++] = "The truth is out there...";
sort(n, A);

for (int 1 = 0; i < n; ++1)
printf(A[i]);

Sorting a set of arrays

If the sort function is called with more than one array, the first array must be an array of
int, while all of the other arrays may be of any array type and hold the data to be sorted.
The following example illustrates how the first array will be used as a pointer:
numeric string Nets[], Parts[], Instances[], Pins[];
int n = 0;
int index[];
schematic(S) {
S.nets(N) N.pinrefs(P) {
Nets[n] = N.name;
Parts[n] = P.part.name;
Instances[n] = P.instance.name;
Pins[n] = P.pin.name;
+4n;

}

sort(n, index, Nets, Parts, Instances, Pins);
for (int i = 0; i < n; ++i)
printf("%-8s %-8s %-8s %-8s\n",
Nets[index[i]], Parts[index[i]],
Instances[index[i]], Pins[index[i]]);

}

The idea behind this is that one net can have several pins connected to it, and in a netlist
you might want to have the net names sorted, and within one net you also want the part
names sorted and so on.

Note the use of the keyword numeric in the string arrays. This causes the strings to be
sorted in a way that takes into account a numeric part at the end of the strings, which leads
to IC1, IC2,... IC9, IC10 instead of the alphabetical order IC1, IC10, IC2,...1C9.

When sorting a set of arrays, the first (index) array must be of type int and need not be
initialized. Any contents the index array might have before calling the sort function will
be overwritten by the resulting index values.

status()

Function

Displays a status message in the status bar.
Syntax

void status(string message);

See also dlgMessageBox()

The status function displays the given message in the status bar of the editor window in

Page 88 of 136

EAGLE User Language Version 5.7

which the ULP is running.

system()

Function
Executes an external program.
Syntax
int system(string command);
Returns
The system function returns the exit status of the command. This is typically 0 if
everything was ok, and non-zero in case of an error.

The system function executes the external program given by the command string, and
waits until the program ends.

As a security precaution, you will be prompted with the command string before the
command is executed, in order to make sure there is no "evil" ULP that executes unwanted
external commands. If this dialog is canceled, the system() call will return - 1. If the
dialog is confirmed, any future system() calls in the current EAGLE session with exactly
the same command string will be executed without any further confirmation dialog.

Input/Output redirection

If the external program shall read its standard input from (or write its standard output to) a
particular file, input/output needs to be redirected.

On Linux and Mac OS X this is done by simply adding a '<' or '>" to the
. command line, followed by the desired file name, as in

P

‘ system("program < infile > outfile");

which runs program and makes it read from infile and write to outfile.
jl; y On Windows you have to explicitly run a command processor to do this, as in
i

system("cmd.exe /c program < infile > outfile");
(on DOS based Windows systems use command . com instead of cmd . exe).

Background execution

The system function waits until the given program has ended. This is useful for programs
that only run for a few seconds, or completely take over the user's attention.

A If an external program runs for a longer time, and you want the system call to return
' immediately, without waiting for the program to end, you can simply add an '&' to
~—~~ the command string under Linux and Mac OS X, as in

system("program &");

Page 89 of 136

EAGLE User Language Version 5.7

¥py Under Windows you need to explicitly run a command processor to do this, as in

i
L

system("cmd.exe /c start program");

(on DOS based Windows systems use command . com instead of cmd . exe).

Example

int result = system("simulate -f filename'");

This would call a simulation program, giving it a file which the ULP has just created. Note
that simulate here is just an example, it is not part of the EAGLE package!

Unit Conversions

Function
Converts internal units.
Syntax
real u2inch(int n);
real u2mic(int n);
real u2mil(int n);
real u2mm(int n);
Returns
u2inch returns the value of n in inch.
u2mic returns the value of n in microns (1/1000mm).
u2mil returns the value of n in mil (1/1000inch).
u2mm returns the value of n in millimeters.

See also UL_GRID

EAGLE stores all coordinate and size values as int values with a resolution of 1/10000mm
(0.1w). The above unit conversion functions can be used to convert these internal units to
the desired measurement units.

Example

board(B) {
B.elements(E) {
printf("%s at (%f, %f)\n", E.name,
u2mm(E.x), u2mm(E.y));
}

3

Printing Functions
Printing functions are used to print formatted strings.

The following printing functions are available:

printf()

Page 90 of 136

EAGLE User Language Version 5.7

sprintf()
printf()

Function
Writes formatted output to a file.
Syntax
int printf(string format[, argument, ...]);
Returns
The printf function returns the number of characters written to the file that has
been opened by the most recent output statement.

In case of an error, printf returns -1.

See also sprintf, output, fileerror

Format string

The format string controls how the arguments will be converted, formatted and printed.
There must be exactly as many arguments as necessary for the format. The number and
type of arguments will be checked against the format, and any mismatch will lead to an
error message.

The format string contains two types of objects - plain characters and format specifiers:

Plain characters are simply copied verbatim to the output
Format specifiers fetch arguments from the argument list and apply formatting to
them

Format specifiers
A format specifier has the following form:
% [flags] [width] [.prec] type

Each format specification begins with the percent character (%). After the % comes the
following, in this order:

an optional sequence of flag characters, [flags]
an optional width specifier, [width]

an optional precision specifier, [. prec]

the conversion type character, type

Conversion type characters

signed decimal int

unsigned octal int

unsigned decimal int

unsigned hexadecimal int (with a, b,...)
unsigned hexadecimal int (with A, B,...)

X X € O

Page 91 of 136

EAGLE User Language Version 5.7

signed real value of the form [-]dddd.dddd

signed real value of the form [-]d.dddde[+]ddd

same as e, but with E for exponent

signed real value in either e or f form, based on given value and
precision

same as ¢, but with E for exponent if e format used

single character

character string

% the % character is printed

n O O « m @ —h

Flag characters

The following flag characters can appear in any order and combination.

" the formatted item is left-justified within the field; normally, items are right-justified

"+ asigned, positive item will always start with a plus character (+); normally, only
negative items begin with a sign
a signed, positive item will always start with a space character; if both "+" and "
are specified, "+" overrides " "

Width specifiers
The width specifier sets the minimum field width for an output value.

Width is specified either directly, through a decimal digit string, or indirectly, through an
asterisk (*). If you use an asterisk for the width specifier, the next argument in the call
(which must be an int) specifies the minimum output field width.

In no case does a nonexistent or small field width cause truncation of a field. If the result of
a conversion is wider than the field width, the field is simply expanded to contain the
conversion result.

At least n characters are printed. If the output value has less than n characters, the
output is padded with blanks (right-padded if " -" flag given, left-padded otherwise).
At least n characters are printed. If the output value has less than n characters, it is
filled on the left with zeroes.

+~ The argument list supplies the width specifier, which must precede the actual
argument being formatted.

n

On

Precision specifiers

A precision specifier always begins with a period (.) to separate it from any preceding
width specifier. Then, like width, precision is specified either directly through a decimal
digit string, or indirectly, through an asterisk (*). If you use an asterisk for the precision
specifier, the next argument in the call (which must be an int) specifies the precision.

none Precision set to default.

.0 For int types, precision is set to default; for real types, no decimal point is printed.

.n n characters or n decimal places are printed. If the output value has more than n
characters the output might be truncated or rounded (depending on the type

Page 92 of 136

EAGLE User Language Version 5.7

character).
N The argument list supplies the precision specifier, which must precede the actual
argument being formatted.

Default precision values

douxx 1

eef 6

gG all significant digits
C no effect

S print entire string

How precision specification (. n) affects conversion

.n specifies that at least n characters are printed. If the input argument has less
douxX than n digits, the output value is left-padded with zeros. If the input argument has
more than n digits, the output value is not truncated.

.n specifies that n characters are printed after the decimal point, and the last digit

eEf printed is rounded.

gG .n specifies that at most n significant digits are printed.
C .n has no effect on the output.

S .n specifies that no more than n characters are printed.

Binary zero characters

Unlike sprintf, the printf function can print binary zero characters (0x00).

char c = 0x00;
printf("%c", c);

Example

int i = 42;

real r = 3.14;

char ¢ = 'A'";

string s = "Hello",;
printf("Integer: %8d\n", 1i);
printf("Hex: %8X\n", 1i);
printf("Real: %8f\n", r);
printf("Char: %-8c\n", c);
printf("String: %-8s\n", s);

sprintf()

Function

Writes formatted output into a string.
Syntax

int sprintf(string result, string format[, argument, ...]);
Returns

The sprintf function returns the number of characters written into the result

Page 93 of 136

EAGLE User Language Version 5.7
string.
In case of an error, sprintf returns -1.

See also printf

Format string

See printf.

Binary zero characters

Note that sprintf can not return strings with embedded binary zero characters (0x00). If
the resulting string contains a binary zero character, any characters following that zero
character will be dropped. Use printf if you need to output binary data.

Example

string result;
int number = 42;
sprintf(result, "The number is %d", number);

String Functions
String functions are used to manipulate character strings.

The following string functions are available:

strchr()
strjoin()
strlen()
strlwr
strrchr()
strrstr()
strsplit()
strstr()
strsub()
strtod()
strtol()
strupr()
strxstr()

L

strchr()

Function

Scans a string for the first occurrence of a given character.
Syntax

int strchr(string s, char c[, int index]);
Returns

Page 94 of 136

EAGLE User Language Version 5.7

The strchr function returns the integer offset of the character in the string, or -1 if
the character does not occur in the string.

See also strrchr, strstr

If index is given, the search starts at that position. Negative values are counted from the
end of the string.

Example

string s = "This is a string";
char ¢ = 'a';
int pos = strchr(s, c);
if (pos >= 0)
printf("The character %c is at position %d\n", c, pos);
else
printf("The character was not found\n");

strjoin()

Function

Joins a string array to form a single string.
Syntax

string strjoin(string array[], char separator);
Returns

The strjoin function returns the combined entries of array.

See also strsplit, lookup, fileread

strjoin joins all entries in array, delimited by the given separator and returns the
resulting string.

If separator is the newline character ("\n") the resulting string will be terminated with
a newline character. This is done to have a text file that consists of N lines (each of which is
terminated with a newline) and is read in with the fileread) function and split into an
array of N strings to be joined to the original string as read from the file.

Example

string a[] = { "Field 1", "Field 2", "Field 3" };
string s = strjoin(a, ':');

strlen()

Function
Calculates the length of a string.
Syntax
int strlen(string s);
Returns
The strlen function returns the number of characters in the string.

Page 95 of 136

EAGLE User Language Version 5.7

Example

string s = "This is a string";
int 1 = strlen(s);
printf("The string is %d characters long\n", 1);

striwr()

Function
Converts uppercase letters in a string to lowercase.
Syntax
string strlwr(string s);
Returns
The strlwr function returns the modified string. The original string (given as
parameter) is not changed.

See also strupr, tolower

Example

string s = "This Is A String";

string r = strlwr(s);

printf("Prior to strlwr: %s - after strlwr: %s\n", s, r);

strrchr()
Function

Scans a string for the last occurrence of a given character.
Syntax

int strrchr(string s, char c[, int index]);
Returns

The strrchr function returns the integer offset of the character in the string, or -1 if
the character does not occur in the string.

See also strchr, strrstr

If index is given, the search starts at that position. Negative values are counted from the
end of the string.

Example
string s = "This is a string";
char ¢ = 'a';

int pos = strrchr(s, c);
if (pos >= 0)

printf("The character %c is at position %d\n", c, pos);
else

printf("The character was not found\n");

Page 96 of 136

EAGLE User Language Version 5.7

strrstr()

Function
Scans a string for the last occurrence of a given substring.
Syntax
int strrstr(string si1, string s2[, int index]);
Returns
The strrstr function returns the integer offset of the first character of s2 in s1, or
-1 if the substring does not occur in the string.

See also strstr, strrchr

If index is given, the search starts at that position. Negative values are counted from the
end of the string.

Example

string s1 = "This is a string", s2 = "is a";
int pos = strrstr(sl, s2);
if (pos >= 0)

printf("The substring starts at %d\n", pos);
else

printf("The substring was not found\n");

strsplit()

Function

Splits a string into separate fields.
Syntax

int strsplit(string &array[], string s, char separator);
Returns

The strsplit function returns the number of entries copied into array.

See also strjoin, lookup, fileread

strsplit splits the string s at the given separator and stores the resulting fields in the
array.

If separator is the newline character ("\n") the last field will be silently dropped if it is
empty. This is done to have a text file that consists of N lines (each of which is terminated
with a newline) and is read in with the fileread() function to be split into an array of N
strings. With any other separator an empty field at the end of the string will count, so
"a:b:c:" will result in 4 fields, the last of which is empty.

Example

string al];
int n = strsplit(a, "Field 1:Field 2:Field 3", ':');

Page 97 of 136

EAGLE User Language Version 5.7

strstr()

Function
Scans a string for the first occurrence of a given substring.
Syntax
int strstr(string s1, string s2[, int index]);
Returns
The strstr function returns the integer offset of the first character of s2 in s1, or -1
if the substring does not occur in the string.

See also strrstr, strchr, strxstr

If index is given, the search starts at that position. Negative values are counted from the
end of the string.

Example

string s1 = "This is a string", s2 = "is a";
int pos = strstr(si, s2);
if (pos >= 0)

printf("The substring starts at %d\n", pos);
else

printf("The substring was not found\n");

strsub()

Function
Extracts a substring from a string.
Syntax
string strsub(string s, int start[, int length]);
Returns
The strsub function returns the substring indicated by the start and length
value.

The value for 1ength must be positive, otherwise an empty string will be returned. If
length is ommitted, the rest of the string (beginning at start) is returned.

If start points to a position outside the string, an empty string is returned.

Example
string s = "This is a string";
string t = strsub(s, 4, 7);

printf("The extracted substring is: %s\n", t);

strtod()

Function

Page 98 of 136

EAGLE User Language Version 5.7

Converts a string to a real value.

Syntax
real strtod(string s);

Returns
The strtod function returns the numerical representation of the given string as a
real value. Conversion ends at the first character that does not fit into the format of
a real constant. If an error occurs during conversion of the string 0.0 will be
returned.

See also strtol

Example

string s = "3.1415",;
real r = strtod(s);
printf("The value is %f\n", r);

strtol()

Function
Converts a string to an integer value.

Syntax
int strtol(string s);

Returns
The strtol function returns the numerical representation of the given string as an
int value. Conversion ends at the first character that does not fit into the format of
an integer constant. If an error occurs during conversion of the string 0 will be
returned.

See also strtod

Example

string s = "1234";
int i = strtol(s);
printf("The value is %d\n", 1i);

strupr()

Function
Converts lowercase letters in a string to uppercase.
Syntax
string strupr(string s);
Returns
The strupr function returns the modified string. The original string (given as
parameter) is not changed.

Page 99 of 136

EAGLE User Language Version 5.7

See also strlwr, toupper

Example
string s = "This Is A String";
string r = strupr(s);

printf("Prior to strupr: %s - after strupr: %s\n", s, r);

strxstr()

Function
Scans a string for the first occurrence of a given regular expression.
Syntax
int strxstr(string s1, string s2[, int index[, int &length]]);
Returns
The strxstr function returns the integer offset of the substring in s1 that matches
the regular expression in s2, or -1 if the regular expression does not match in the
string.

See also strstr, strchr, strrstr

If index is given, the search starts at that position. Negative values are counted from the
end of the string.

If length is given, the actual length of the matching substring is returned in that variable.

Regular expressions allow you to find a pattern within a text string. For instance, the regular
expression "i.*a" would find a sequence of characters that starts with an 'i', followed by any
character (.") any number of times ("*"), and ends with an 'a'. It would match on "is a" as
well as "is this a" or "ia".

Details on regular expressions can be found, for instance, in the book Mastering Regular
Expressions by Jeffrey E. E Friedl.

Example
string s1 = "This is a string", s2 = "i.*a";
int len = 0;
int pos = strxstr(s1, s2, 0, len);
if (pos >= 0)
printf("The substring starts at %d and is %d charcaters long\n", pos, len);
else
printf("The substring was not found\n");

Time Functions
Time functions are used to get and process time and date information.

The following time functions are available:

« t2day()
. t2dayofweek()

Page 100 of 136

EAGLE User Language Version 5.7

t2hour()
t2minute()
t2month()
t2second ()
t2string()
t2year()
ime()

timems|()

—t

time()

Function
Gets the current system time.
Syntax
int time(void);
Returns
The time function returns the current system time as the number of seconds elapsed
since a system dependent reference date.

See also Time Conversions, filetime, timems()

Example

int CurrentTime = time();

timems()

Function
Gets the number of milliseconds since the start of the ULP.
Syntax
int timems(void);
Returns
The timems function returns the number of milliseconds since the start of the ULP

After 86400000 milliseconds (i.e. every 24 hours), the value starts at 0 again.

See also time

Example

int elapsed = timems();

Time Conversions

Function
Convert a time value to day, month, year etc.
Syntax

Page 101 of 136

EAGLE User Language

int
int
int
int
int
int
int

t2day(int t);
t2dayofweek(int t);
t2hour(int t);
t2minute(int t);
t2month(int t);
t2second(int t);
t2year(int t);

string t2string(int t);

Returns

t2day returns the day of the month (1..31)

t2dayofweek returns the day of the week (@ =sunday..6)

t2hour returns the hour (0..23)

t2minute returns the minute (0..59)
t2month returns the month (0..11)
t2second returns the second (0..59)
t2year returns the year (including century!)

t2string returns a formatted string containing date and time

See also time

Example

int t = time();
printf("It is now %02d:%02d:%02d\n",
t2hour(t), t2minute(t), t2second(t));

Object Functions

Object functions are used to access common information about objects.

The following object functions are available:

clrgroup()
ingroup()
setgroup()

clrgroup()

Function

Clears the group flags of an object.

Syntax

void clrgroup(object);

See also ingroup(), setgroup(), GROUP command

The clrgroup() function clears the group flags of the given object, so that it is no longer
part of the previously defined group.

Page 102 of 136

Version 5.7

EAGLE User Language Version 5.7

When applied to an object that contains other objects (like a UL_BOARD or UL_NET) the
group flags of all contained objects are cleared recursively.

Example

board(B) {
B.elements(E)
clrgroup(E);

ingroup()
Function
Checks whether an object is in the group.
Syntax
int ingroup(object);
Returns
The ingroup function returns a non-zero value if the given object is in the group.

See also clrgroup(), setgroup(), GROUP command

If a group has been defined in the editor, the ingroup () function can be used to check
whether a particular object is part of the group.

Objects with a single coordinate that are individually selectable in the current drawing (like
UL_TEXT, UL VIA, UL _CIRCLE etc.) return a non-zero value in a call to ingroup() if that
coordinate is within the defined group.

A UL _WIRE returns 0, 1, 2 or 3, depending on whether none, the first, the second or both
of its end points are in the group.

A UL_RECTANGLE and UL_FRAME returns a non-zero value if one or more of its corners
are in the group. The value has bit O set for the upper right corner, bit 1 for the upper left,
bit 2 for the bottom left, and bit 3 for the bottom right corner.

Objects that have no coordinates (like UL_NET, UL_SEGMENT, UL_SIGNAL etc.) return a
non-zero value if one or more of the objects within them are in the group.

UL_CONTACTREF and UL _PINREE though not having coordinates of their own, return a
non-zero value if the referenced UL_CONTACT or UL_PIN, respectively, is within the group.

Example

output("group.txt") {
board(B) {
B.elements(E) {
if (ingroup(E))
printf("Element %s is in the group\n", E.name);
}
}
}

Page 103 of 136

EAGLE User Language Version 5.7

setgroup()

Function
Sets the group flags of an object.
Syntax
void setgroup(object[, int flags]);

See also clrgroup(), ingroup(), GROUP command

The setgroup() function sets the group flags of the given object, so that it becomes part
of the group.

If no flags are given, the object is added to the group as a whole (i.e. all of its selection
points, in case it has more than one).

If flags has a non-zero value, only the group flags of the given points of the object are set.
For a UL_WIRE this means that '1' sets the group flag of the first point, '2"' that of the
second point, and '3' sets both. Any previously set group flags remain unchanged by a call
to setgroup().

When applied to an object that contains other objects (like a UL BOARD or UL _NET) the
group flags of all contained objects are set recursively.

Example

board(B) {
B.elements(E)
setgroup(E);
}

Builtin Statements

Builtin statements are generally used to open a certain context in which data structures of
files can be accessed.
The general syntax of a builtin statement is

name(parameters) statement

where name is the name of the builtin statement, parameters stands for one or more
parameters, and statement is the code that will be executed inside the context opened by
the builtin statement.

Note that statement can be a compound statement, as in

board(B) {
B.elements(E) printf("Element: %s\n", E.name);
B.Signals(S) printf("Signal: %s\n", S.name);

The following builtin statements are available:

board()

Page 104 of 136

EAGLE User Language Version 5.7

« deviceset()
. library()

- output()

- package()

- schematic()
. sheet()

« symbol()

board()

Function
Opens a board context.
Syntax
board(identifier) statement

See also schematic, library

The board statement opens a board context if the current editor window contains a board
drawing. A variable of type UL_BOARD is created and is given the name indicated by
identifier.

Once the board context is successfully opened and a board variable has been created, the
statement is executed. Within the scope of the statement the board variable can be
accessed to retrieve further data from the board.

If the current editor window does not contain a board drawing, an error message is given
and the ULP is terminated.

Check if there is a board

By using the board statement without an argument you can check if the current editor
window contains a board drawing. In that case, board behaves like an integer constant,
returning 1 if there is a board drawing in the current editor window, and 0 otherwise.

Accessing board from a schematic

If the current editor window contains a schematic drawing, you can still access that
schematic's board by preceding the board statement with the prefix project, as in

project.board(B) { ... }

This will open a board context regardless whether the current editor window contains a
board or a schematic drawing. However, there must be an editor window containing that
board somewhere on the desktop!

Example

if (board)
board(B) {
B.elements(E)
printf("Element: %s\n", E.name);

Page 105 of 136

EAGLE User Language Version 5.7

}

deviceset()

Function
Opens a device set context.
Syntax
deviceset(identifier) statement

See also package, symbol, library

The deviceset statement opens a device set context if the current editor window contains
a device drawing. A variable of type UL_DEVICESET is created and is given the name
indicated by identifier.

Once the device set context is successfully opened and a device set variable has been
created, the statement is executed. Within the scope of the statement the device set
variable can be accessed to retrieve further data from the device set.

If the current editor window does not contain a device drawing, an error message is given
and the ULP is terminated.

Check if there is a device set

By using the deviceset statement without an argument you can check if the current
editor window contains a device drawing. In that case, deviceset behaves like an integer
constant, returning 1 if there is a device drawing in the current editor window, and 0
otherwise.

Example

if (deviceset)
deviceset(D) {
D.gates(G)
printf("Gate: %s\n", G.name);
3

library()

Function
Opens a library context.
Syntax
library(identifier) statement

See also board, schematic, deviceset, package, symbol

The 1library statement opens a library context if the current editor window contains a
library drawing. A variable of type UL_LIBRARY is created and is given the name indicated
by identifier.

Page 106 of 136

EAGLE User Language Version 5.7

Once the library context is successfully opened and a library variable has been created, the
statement is executed. Within the scope of the statement the library variable can be
accessed to retrieve further data from the library.

If the current editor window does not contain a library drawing, an error message is given
and the ULP is terminated.

Check if there is a library

By using the 1ibrary statement without an argument you can check if the current editor
window contains a library drawing. In that case, 1ibrary behaves like an integer constant,
returning 1 if there is a library drawing in the current editor window, and 0@ otherwise.

Example

if (library)
library(L) {
L.devices(D)
printf("Device: %s\n", D.name);

}

output()

Function
Opens an output file for subsequent printf() calls.
Syntax
output(string filename[, string mode]) statement

See also printf, fileerror

The output statement opens a file with the given filename and mode for output through
subsequent printf() calls. If the file has been successfully opened, the statement is
executed, and after that the file is closed.

If the file cannot be opened, an error message is given and execution of the ULP is
terminated.

By default the output file is written into the Project directory.

File Modes

The mode parameter defines how the output file is to be opened. If no mode parameter is
given, the default is "wt".

a append to an existing file, or create a new file if it does not exist

create a new file (overwriting an existing file)

open file in text mode

open file in binary mode

delete this file when ending the EAGLE session (only works together with
w)

O T t =

Page 107 of 136

EAGLE User Language Version 5.7

F force using this file name (normally *.brd, *.sch and *.lbr are rejected)

Mode characters may appear in any order and combination. However, only the last one of a
and w or t and b, respectively, is significant. For example a mode of "abtw" would open a
file for textual write, which would be the same as "wt".

Nested Output statements

output statements can be nested, as long as there are enough file handles available, and
provided that no two active output statements access the same file.

Example

void PrintText(string s)
printf("This also goes into the file: %s\n", s);

output("file.txt", "wt") {
printf("Directly printed\n");
PrintText("via function call");

}

package()

Function
Opens a package context.
Syntax
package(identifier) statement

See also library, deviceset, symbol

The package statement opens a package context if the current editor window contains a
package drawing. A variable of type UL_PACKAGE is created and is given the name
indicated by identifier.

Once the package context is successfully opened and a package variable has been created,
the statement is executed. Within the scope of the statement the package variable can
be accessed to retrieve further data from the package.

If the current editor window does not contain a package drawing, an error message is given
and the ULP is terminated.

Check if there is a package

By using the package statement without an argument you can check if the current editor
window contains a package drawing. In that case, package behaves like an integer
constant, returning 1 if there is a package drawing in the current editor window, and 0
otherwise.

Example
if (package)

Page 108 of 136

EAGLE User Language Version 5.7

package(P) {
P.contacts(C)
printf("Contact: %s\n", C.name);
}

schematic()

Function
Opens a schematic context.
Syntax
schematic(identifier) statement

See also board, library, sheet

The schematic statement opens a schematic context if the current editor window contains
a schematic drawing. A variable of type UL_SCHEMATIC is created and is given the name
indicated by identifier.

Once the schematic context is successfully opened and a schematic variable has been
created, the statement is executed. Within the scope of the statement the schematic
variable can be accessed to retrieve further data from the schematic.

If the current editor window does not contain a schematic drawing, an error message is
given and the ULP is terminated.

Check if there is a schematic

By using the schematic statement without an argument you can check if the current
editor window contains a schematic drawing. In that case, schematic behaves like an
integer constant, returning 1 if there is a schematic drawing in the current editor window,
and O otherwise.

Accessing schematic from a board

If the current editor window contains a board drawing, you can still access that board's
schematic by preceding the schematic statement with the prefix project, as in

project.schematic(S) { ... }

This will open a schematic context regardless whether the current editor window contains a
schematic or a board drawing. However, there must be an editor window containing that
schematic somewhere on the desktop!

Access the current Sheet

Use the sheet statement to directly access the currently loaded sheet.

Example

if (schematic)
schematic(S) {

Page 109 of 136

EAGLE User Language Version 5.7

S.parts(P)
printf("Part: %s\n", P.name);
}

sheet()

Function
Opens a sheet context.
Syntax
sheet(identifier) statement

See also schematic

The sheet statement opens a sheet context if the current editor window contains a sheet
drawing. A variable of type UL_SHEET is created and is given the name indicated by
identifier.

Once the sheet context is successfully opened and a sheet variable has been created, the
statement is executed. Within the scope of the statement the sheet variable can be
accessed to retrieve further data from the sheet.

If the current editor window does not contain a sheet drawing, an error message is given
and the ULP is terminated.

Check if there is a sheet

By using the sheet statement without an argument you can check if the current editor
window contains a sheet drawing. In that case, sheet behaves like an integer constant,
returning 1 if there is a sheet drawing in the current editor window, and 0 otherwise.

Example

if (sheet)
sheet(S) {
S.parts(P)
printf("Part: %s\n", P.name);

symbol()

Function
Opens a symbol context.
Syntax
symbol(identifier) statement

See also library, deviceset, package

The symbol statement opens a symbol context if the current editor window contains a
symbol drawing. A variable of type UL_SYMBOL is created and is given the name indicated
by identifier.

Page 110 of 136

EAGLE User Language Version 5.7

Once the symbol context is successfully opened and a symbol variable has been created, the
statement is executed. Within the scope of the statement the symbol variable can be
accessed to retrieve further data from the symbol.

If the current editor window does not contain a symbol drawing, an error message is given
and the ULP is terminated.

Check if there is a symbol

By using the symbol statement without an argument you can check if the current editor
window contains a symbol drawing. In that case, symbol behaves like an integer constant,
returning 1 if there is a symbol drawing in the current editor window, and © otherwise.

Example

if (symbol)
symbol(S) {
S.pins(P)
printf("Pin: %s\n", P.name);

}

Dialogs
User Language Dialogs allow you to define your own frontend to a User Language Program.

The following sections describe User Language Dialogs in detail:

Predefined Dialogs describes the ready to use standard dialogs
Dialog Objects defines the objects that can be used in a dialog

. explains how to define the location of objects within a
Layout Information dialog
Dialog Functions describes special functions for use with dialogs
A Complete Example shows a complete ULP with a data entry dialog
Predefined Dialogs

Predefined Dialogs implement the typical standard dialogs that are frequently used for
selecting file names or issuing error messages.

The following predefined dialogs are available:

dlgDirectory()
dlgFileOpen()
dlgFileSave()
dlgMessageBox()

See Dialog Objects for information on how to define your own complex user dialogs.

digDirectory()

Function
Displays a directory dialog.

Page 111 of 136

EAGLE User Language Version 5.7

Syntax
string dlgDirectory(string Title[, string Start])

Returns
The d1lgDirectory function returns the full pathname of the selected directory.
If the user has canceled the dialog, the result will be an empty string.

See also dlgFileOpen

The dlgDirectory function displays a directory dialog from which the user can select a
directory.

Title will be used as the dialog's title.

If Start is not empty, it will be used as the starting point for the dlgDirectory.

Example

string dirName;
dirName = dlgDirectory("Select a directory", "");

digFileOpen(), digFileSave()

Function
Displays a file dialog.

Syntax
string dlgFileOpen(string Title[, string Start[, string
Filter]])
string dlgFileSave(string Title[, string Start[, string
Filter]])

Returns
The d1gFileOpen and dlgFileSave functions return the full pathname of the
selected file.
If the user has canceled the dialog, the result will be an empty string.

See also dlgDirectory

The d1gFileOpen and d1lgFileSave functions display a file dialog from which the user
can select a file.

Title will be used as the dialog's title.

If Start is not empty, it will be used as the starting point for the file dialog. Otherwise the
current directory will be used.

Only files matching Filter will be displayed. If Filter is empty, all files will be
displayed.

Filter can be either a simple wildcard (as in "*.brd"), a list of wildcards (as in
"*.bmp *.jpg") or may even contain descriptive text, as in

"Bitmap files (*.bmp)". If the "File type" combo box of the file dialog shall contain
several entries, they have to be separated by double semicolons, as in

Page 112 of 136

EAGLE User Language Version 5.7

"Bitmap files (*.bmp);;O0Other images (*.jpg *.png)".

Example
string fileName;
fileName = dlgFileOpen("Select a file", "", "*.brd");
digMessageBox()
Function
Displays a message box.
Syntax

int dlgMessageBox(string Message[, button_list])

Returns
The d1gMessageBox function returns the index of the button the user has selected.
The first button in button_list has index 0.

See also status()

The d1lgMessageBox function displays the given Message in a modal dialog and waits
until the user selects one of the buttons defined in button_list.

If Message contains any HTML tags, the characters '<', '>' and '&' must be given as "&lIt;",
">" and "&", respectively, if they shall be displayed as such.

button_list is an optional list of comma separated strings, which defines the set of
buttons that will be displayed at the bottom of the message box.

A maximum of three buttons can be defined. If no button_1list is given, it defaults to
n o K n X

The first button in button_list will become the default button (which will be selected if
the user hits ENTER), and the last button in the list will become the "cancel button", which
is selected if the user hits ESCape or closes the message box. You can make a different
button the default button by starting its name with a '+"', and you can make a different
button the cancel button by starting its name with a ' - '. To start a button text with an
actual '+"' or '-"' it has to be escaped.

If a button text contains an '&"', the character following the ampersand will become a
hotkey, and when the user hits the corresponding key, that button will be selected. To have
an actual '&"' character in the text it has to be escaped.

The message box can be given an icon by setting the first character of Message to
', ' - for an Information
"1'' - for a Warning
'":' -for an Error
If, however, the Message shall begin with one of these characters, it has to be escaped.

GR On Mac OS X only the character ' : ' will actually result in showing an icon. All
' others are ignored.

Page 113 of 136

EAGLE User Language

Example

if (dlgMessageBox('"!Are you sure?", "&Yes", "&No") == 0) {
// let's do it!
}

Dialog Objects

A User Language Dialog is built from the following Dialog Objects:

dlgCell a grid cell context

dlgCheckBox a checkbox

dlgComboBox a combo box selection field

dleDialo the basic container of any

L1408 dialog

dlgGridLayout a grid based layout context

dlgGroup a group field

dlgHBoxLayout a horizontal box layout context

dlgIntEdit an integer entry field

dlglabel a text label

dlglistBox

dlglistView
dlgPushButton

dlgRadioButton

dlgRealEdit
dlgSpacing
dlgSpinBox
dlgStretch
dlgStringEdit
dlgTabPage
dlgTabWidget
dlgTextEdit

dlgTextView
dlgVBoxLayout

digCell

Function

a list box

a list view

a push button

a radio button

a real entry field

a layout spacing object
a spin box selection field
a layout stretch object

a string entry field

a tab page

a tab page container

a text entry field

a text viewer field

a vertical box layout context

Defines a cell location within a grid layout context.

Syntax

dlgCell(int row, int column[, int row2, int column2])
Statement

Version 5.7

See also dlgGridLayout, dlgHBoxLayout, dlgVBoxLayout, Layout Information, A Complete

Example

The d1gCell statement defines the location of a cell within a grid layout context.

The row and column indexes start at 0, so the upper left cell has the index (0, 0).

Page 114 of 136

EAGLE User Language Version 5.7

With two parameters the dialog object defined by statement will be placed in the single
cell addresses by row and column. With four parameters the dialog object will span over
all cells from row/column to row2/column2.

By default a d1gCell contains a digHBoxLayout, so if the cell contains more than one
dialog object, they will be placed next to each other horizontally.

Example

string Text;

dlgGridLayout {
dlgCell(®, ©) dlgLabel("Cell 0,0");
dlgCell(1, 2, 4, 7) dlgTextEdit(Text);
}

dlgCheckBox

Function
Defines a checkbox.
Syntax
dlgCheckBox(string Text, int &Checked) [statement]

See also dlgRadioButton, dilgGroup, Layout Information, A Complete Example

The d1gCheckBox statement defines a check box with the given Text.

If Text contains an '&', the character following the ampersand will become a hotkey, and
when the user hits Alt+hotkey, the checkbox will be toggled. To have an actual '&'
character in the text it has to be escaped.

dlgCheckBox is mainly used within a dlgGroup, but can also be used otherwise.
All check boxes within the same dialog must have different Checked variables!

If the user checks a d1gCheckBox, the associated Checked variable is set to 1, otherwise
it is set to 0. The initial value of Checked defines whether a checkbox is initially checked.
If Checked is not equal to 0, the checkbox is initially checked.

The optional statement is executed every time the d1gCheckBox is toggled.

Example

int mirror = 0O;
int rotate = 1;
int flip = 0,
dlgGroup("Orientation") {
dlgCheckBox("&Mirror", mirror);
dlgCheckBox("&Rotate", rotate);
dlgCheckBox("&Flip", flip);

b

Page 115 of 136

EAGLE User Language Version 5.7

dligComboBox

Function
Defines a combo box selection field.
Syntax
dlgComboBox(string array[], int &Selected) [statement]

See also dlgListBox, dlglabel, Layout Information, A Complete Example

The d1gComboBox statement defines a combo box selection field with the contents of the
given array.

Selected reflects the index of the selected combo box entry. The first entry has index 0.

Each element of array defines the contents of one entry in the combo box. None of the
strings in array may be empty (if there is an empty string, all strings after and including
that one will be dropped).

The optional statement is executed whenever the selection in the d1gComboBox
changes.

Before the statement is executed, all variables that have been used with dialog objects
are updated to their current values, and any changes made to these variables inside the
statement will be reflected in the dialog when the statement returns.

If the initial value of Selected is outside the range of the array indexes, it is set to 0.

Example

string Colors[] = { "red", "green", "blue", "yellow" };

int Selected = 2; // initially selects "blue"

dlgComboBox(Colors, Selected) dlgMessageBox("You have selected " +
Colors[Selected]);

digDialog

Function
Executes a User Language Dialog.
Syntax
int dlgDialog(string Title) block ;
Returns
The d1lgbialog function returns an integer value that can be given a user defined
meaning through a call to the d1gAccept () function.
If the dialog is simply closed, the return value will be 0.

See also dlgGridLayout, dlgHBoxLayout, dlgVBoxLayout, dlgAccept, dlgReset, dlgReject, A_
Complete Example

The dlgDialog function executes the dialog defined by block. This is the only dialog
object that actually is a User Language builtin function. Therefore it can be used anywhere
where a function call is allowed.

Page 116 of 136

EAGLE User Language Version 5.7

The block normally contains only other dialog objects, but it is also possible to use other
User Language statements, for example to conditionally add objects to the dialog (see the
second example below).

By default a d1gDialog contains a dlgVBoxLayout, so a simple dialog doesn't have to
worry about the layout.

A dlgDialog should at some point contain a call to the d1gAccept () function in order
to allow the user to close the dialog and accept its contents.

If all you need is a simple message box or file dialog you might want to use one of the
Predefined Dialogs instead.

Examples

int Result = dlgbialog("Hello") {
dlgLabel("Hello world");
dlgPushButton("+0K") dlgAccept();
Iy

int haveButton = 1;

dlgbialog("Test") {
dlgLabel("Start");
if (haveButton)

dlgPushButton("Here") dlgAccept();

Iy

dlgGridLayout

Function

Opens a grid layout context.
Syntax

dlgGridLayout statement

See also dlgCell, digHBoxLayout, dlgVBoxLayout, Layout Information, A Complete
Example
The dlgGridLayout statement opens a grid layout context.

The only dialog object that can be used directly in statement is dlgCell, which defines the
location of a particular dialog object within the grid layout.

The row and column indexes start at O, so the upper left cell has the index (0, 0).

The number of rows and columns is automatically extended according to the location of
dialog objects that are defined within the grid layout context, so you don't have to explicitly
define the number of rows and columns.

Example

dlgGridLayout {
dlgCell(0, 0) dlgLabel("Row ©/Col 0");
dlgCell(1, ©) dlgLabel("Row 1/Col 0");
1");
1")

dlgCell(®, 1) dlgLabel("Row ©/Col 1'
dlgCell(1, 1) dlgLabel("Row 1/Col

l4

Page 117 of 136

EAGLE User Language Version 5.7

}

digGroup

Function
Defines a group field.
Syntax
dlgGroup(string Title) statement

See also dlgCheckBox, dleRadioButton, Layout Information, A Complete Example

The d1gGroup statement defines a group with the given Title.

By default a d1gGroup contains a dlgVBoxLayout, so a simple group doesn't have to worry
about the layout.

d1gGroup is mainly used to contain a set of radio buttons or check boxes, but may as well
contain any other objects in its statement.
Radio buttons within a d1gGroup are numbered starting with 0.

Example

int align = 1;

dlgGroup("Alignment") {
dlgRadioButton("&Top", align);
dlgRadioButton("&Center", align);
dlgRadioButton("&Bottom", align);

}

digHBoxI ayout

Function

Opens a horizontal box layout context.
Syntax

dlgHBoxLayout statement

See also dlgGridLayout, dlgVBoxLayout, Layout Information, A Complete Example

The d1lgHBoxLayout statement opens a horizontal box layout context for the given
statement.

Example

dlgHBoxLayout {
dlgLabel("Box 1");
dlgLabel("Box 2");
dlgLabel("Box 3");
}

Page 118 of 136

EAGLE User Language Version 5.7

digIntEdit

Function
Defines an integer entry field.
Syntax
dlgIntEdit(int &Value, int Min, int Max)

See also dlgRealEdit, dlgStringEdit, digLabel, Layout Information, A Complete Example
The d1gIntEdit statement defines an integer entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be limited to these
values.

Example

int Value = 42;

dlgHBoxLayout {
dlgLabel("Enter a &Number between 0 and 99");
dlgIntEdit(Value, 0, 99);
}

digLabel

Function
Defines a text label.
Syntax
dlgLabel(string Text [, int Update])

See also Layout Information, A Complete Example, dlgRedisplay()

The dlgLabel statement defines a label with the given Text.
Text can be either a string literal, as in "Hello", or a string variable.

If Text contains any HTML tags, the characters '<', '>' and '&' must be given as "&lIt;",
">" and "&", respectively, if they shall be displayed as such.

If the Update parameter is not ® and Text is a string variable, its contents can be
modified in the statement of, e.g., a dlgPushButton, and the label will be automatically
updated. This, of course, is only useful if Text is a dedicated string variable (not, e.g., the
loop variable of a for statement).

If Text contains an '&', and the object following the label can have the keyboard focus,
the character following the ampersand will become a hotkey, and when the user hits
Alt+hotkey, the focus will go to the object that was defined immediately following the
dlgLabel. To have an actual '&' character in the text it has to be escaped.

Example

string 0S = "Windows";
dlgHBoxLayout {

Page 119 of 136

EAGLE User Language Version 5.7

dlgLabel(0S, 1);
dlgPushButton("&Change 0S") { 0S = "Linux"; }
}

digListBox

Function
Defines a list box selection field.
Syntax
dlgListBox(string array[], int &Selected) [statement]

See also dlgComboBox, digListView, diglabel, Layout Information, A Complete Example

The dlgListBox statement defines a list box selection field with the contents of the given
array.

Selected reflects the index of the selected list box entry. The first entry has index 0.

Each element of array defines the contents of one line in the list box. None of the strings
in array may be empty (if there is an empty string, all strings after and including that one
will be dropped).

The optional statement is executed whenever the user double clicks on an entry of the
dlgListBox.

Before the statement is executed, all variables that have been used with dialog objects
are updated to their current values, and any changes made to these variables inside the
statement will be reflected in the dialog when the statement returns.

If the initial value of Selected is outside the range of the array indexes, no entry will be
selected.

Example

string Colors[] = { "red", "green", "blue", "yellow" };

int Selected = 2; // initially selects "blue"

dlgListBox(Colors, Selected) dlgMessageBox("You have selected " +
Colors[Selected]);

digListView

Function
Defines a multi column list view selection field.

Syntax
dlgListView(string Headers, string array[], int &Selected],
int &Sort]) [statement |

See also dlglistBox, dlgl.abel, Layout Information, A Complete Example

The d1gListView statement defines a multi column list view selection field with the
contents of the given array.

Page 120 of 136

EAGLE User Language Version 5.7

Headers is the tab separated list of column headers.

Selected reflects the index of the selected list view entry in the array (the sequence in
which the entries are actually displayed may be different, because the contents of a
dlgListView can be sorted by the various columns). The first entry has index 0.

If no particular entry shall be initially selected, Selected should be initialized to -1.

Sort defines which column should be used to sort the list view. The leftmost column is
numbered 1. The sign of this parameter defines the direction in which to sort (positive
values sort in ascending order). If Sort is © or outside the valid number of columns, no
sorting will be done. The returned value of Sort reflects the column and sort mode
selected by the user by clicking on the list column headers. By default d1lgListView sorts
by the first column, in ascending order.

Each element of array defines the contents of one line in the list view, and must contain
tab separated values. If there are fewer values in an element of array than there are
entries in the Headers string the remaining fields will be empty. If there are more values in
an element of array than there are entries in the Headers string the superfluous
elements will be silently dropped. None of the strings in array may be empty (if there is
an empty string, all strings after and including that one will be dropped).

A list entry that contains line feeds (' \n") will be displayed in several lines accordingly.

The optional statement is executed whenever the user double clicks on an entry of the
dlgListView.

Before the statement is executed, all variables that have been used with dialog objects
are updated to their current values, and any changes made to these variables inside the
statement will be reflected in the dialog when the statement returns.

If the initial value of Selected is outside the range of the array indexes, no entry will be
selected.

If Headers is an empty string, the first element of the array is used as the header string.
Consequently the index of the first entry is then 1.

The contents of a d1lgListView can be sorted by any column by clicking on that column's

header. Columns can also be swapped by "click&dragging" a column header. Note that none
of these changes will have any effect on the contents of the array. If the contents shall be

sorted alphanumerically a numeric string[] array can be used.

Example

string Colors[] = { "red\tThe color RED", "green\tThe color GREEN", "blue\tThe
color BLUE" };

int Selected = 0; // initially selects "red"

dlgListView("Name\tDescription", Colors, Selected) dlgMessageBox("You have
selected " + Colors[Selected]);

digPushButton

Function

Page 121 of 136

EAGLE User Language Version 5.7

Defines a push button.
Syntax
dlgPushButton(string Text) statement

See also Layout Information, Dialog Functions, A Complete Example
The d1gPushButton statement defines a push button with the given Text.

If Text contains an '&', the character following the ampersand will become a hotkey, and
when the user hits Alt+hotkey, the button will be selected. To have an actual '&'
character in the text it has to be escaped.

If Text starts with a '+"' character, this button will become the default button, which will
be selected if the user hits ENTER.

If Text starts with a ' - ' character, this button will become the cancel button, which will
be selected if the user closes the dialog.

CAUTION: Make sure that the statement of such a marked cancel button contains a
call to digReject()! Otherwise the user may be unable to close the dialog at all!

To have an actual '+' or '-' character as the first character of the text it has to be

escaped.

If the user selects a d1gPushButton, the given statement is executed.

Before the statement is executed, all variables that have been used with dialog objects
are updated to their current values, and any changes made to these variables inside the
statement will be reflected in the dialog when the statement returns.

Example

int defaultwidth = 10;
int defaultHeight = 20;
int width = 5;
int height = 7;
dlgPushButton("&Reset defaults") {
width = defaultWidth;
height = defaultHeight;

}
dlgPushButton("+&Accept") dlgAccept();
dlgPushButton("-Cancel") { if (dlgMessageBox("Are you sure?", "Yes", "No") == 0)
dlgReject(); }

digRadioButton

Function
Defines a radio button.
Syntax
dlgRadioButton(string Text, int &Selected) [statement |

See also dlgCheckBox, dlgGroup, Layout Information, A Complete Example

The d1gRadioButton statement defines a radio button with the given Text.

Page 122 of 136

EAGLE User Language Version 5.7

If Text contains an '&', the character following the ampersand will become a hotkey, and
when the user hits Alt+hotkey, the button will be selected. To have an actual '&'
character in the text it has to be escaped.

dlgRadioButton can only be used within a dlgGroup.
All radio buttons within the same group must use the same Selected variable!

If the user selects a d1gRadioButton, the index of that button within the d1gGroup is
stored in the Selected variable.

The initial value of Selected defines which radio button is initially selected. If Selected
is outside the valid range for this group, no radio button will be selected. In order to get the
correct radio button selection, Selected must be set before the first dlgRadioButton is
defined, and must not be modified between adding subsequent radio buttons. Otherwise it
is undefined which (if any) radio button will be selected.

The optional statement is executed every time the dlgRadioButton is selected.

Example

int align = 1;

dlgGroup("Alignment") {
dlgRadioButton("&Top", align);
dlgRadioButton("&Center", align);
dlgRadioButton("&Bottom", align);

}

digRealEdit

Function
Defines a real entry field.
Syntax
dlgRealEdit(real &Vvalue, real Min, real Max)

See also dlgIntEdit, dlgStringEdit, diglabel, Layout Information, A Complete Example

The d1lgRealEdit statement defines a real entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be limited to these
values.

Example

real Value = 1.4142;

dlgHBoxLayout {
dlgLabel("Enter a &Number between @ and 99");
dlgRealEdit(VvValue, 0.0, 99.0);

by

dlgSpacing

Function

Page 123 of 136

EAGLE User Language Version 5.7

Defines additional space in a box layout context.
Syntax
dlgSpacing(int Size)

See also dlgHBoxLayout, dlgVBoxLayout, dlgStretch, Layout Information, A Complete
Example

The d1lgSpacing statement defines additional space in a vertical or horizontal box layout
context.

Size defines the number of pixels of the additional space.

Example

dlgVvBoxLayout {
dlgLabel("Label 1");
dlgSpacing(40);
dlgLabel("Label 2");
}

dlgSpinBox

Function
Defines a spin box selection field.
Syntax
dlgSpinBox(int &Value, int Min, int Max)

See also dlgIntEdit, dlgl.abel, Layout Information, A Complete Example

The d1gSpinBox statement defines a spin box entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be limited to these
values.

Example

int value = 42;

dlgHBoxLayout {
dlgLabel("&Select value");
dlgSpinBox(Value, 0, 99);

digStretch

Function

Defines an empty stretchable space in a box layout context.
Syntax

dlgStretch(int Factor)

See also dlgHBoxLayout, dlgVBoxLayout, dlgSpacing, Layout Information, A Complete
Example

Page 124 of 136

EAGLE User Language Version 5.7

The d1lgStretch statement defines an empty stretchable space in a vertical or horizontal
box layout context.

Factor defines the stretch factor of the space.

Example

dlgHBoxLayout {
dlgStretch(1);
dlgPushButton("+0K") { dlgAccept(); };
dlgPushButton("Cancel") { dlgReject(); };

}

digStringEdit

Function
Defines a string entry field.
Syntax
dlgStringEdit(string &Text)

See also dlgRealEdit, dlgIntEdit, dleTextEdit, dlglabel, Layout Information, A Complete
Example

The d1gStringEdit statement defines a text entry field with the given Text.

Example

string Name = "Linus";

dlgHBoxLayout {
dlgLabel("Enter &Name");
dlgStringEdit (Name);

dlgTabPage

Function
Defines a tab page.
Syntax
dlgTabPage(string Title) statement

See also dlgTabWidget, Layout Information, A Complete Example

The d1gTabPage statement defines a tab page with the given Title containing the given
statement.

If Title contains an '&"', the character following the ampersand will become a hotkey,
and when the user hits Alt+hotkey, this tab page will be opened. To have an actual '&'
character in the text it has to be escaped.

Tab pages can only be used within a dlgTabWidget.

By default a d1gTabPage contains a dlgVBoxLayout, so a simple tab page doesn't have to

Page 125 of 136

EAGLE User Language Version 5.7

worry about the layout.

Example

dlgTabwidget {
dlgTabPage("Tab &1") {
dlgLabel("This is page 1");

}

dlgTabPage("Tab &2") {
dlgLabel("This is page 2");
}

3

digTabWidget

Function

Defines a container for tab pages.
Syntax

dlgTabwidget statement

See also dlgTabPage, Layout Information, A Complete Example

The d1gTabwWidget statement defines a container for a set of tab pages.

statement must be a sequence of one or more dlgTabPage objects. There must be no
other dialog objects in this sequence.

Example

dlgTabwidget {
dlgTabPage("Tab &1") {
dlgLabel("This is page 1");

}

dlgTabPage("Tab &2") {
dlgLabel("This is page 2");
}

}

digTextEdit

Function

Defines a multiline text entry field.
Syntax

dlgTextEdit(string &Text)

See also dlgStringEdit, dlgTextView, dlglabel, Layout Information, A Complete Example

The d1gTextEdit statement defines a multiline text entry field with the given Text.

The lines in the Text have to be delimited by a newline character (' \n'). Any whitespace
characters at the end of the lines contained in Text will be removed, and upon return there
will be no whitespace characters at the end of the lines. Empty lines at the end of the text

Page 126 of 136

EAGLE User Language Version 5.7

will be removed entirely.

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgvBoxLayout {

dlgLabel("&Edit the text");

dlgTextEdit(Text);

}

digTextView

Function
Defines a multiline text viewer field.
Syntax
dlgTextView(string Text)
dlgTextView(string Text, string &Link) statement

See also dlgTextEdit, dlglabel, Layout Information, A Complete Example

The d1gTextView statement defines a multiline text viewer field with the given Text.
The Text may contain HTML tags.

If Link is given and the Text contains hyperlinks, statement will be executed every time
the user clicks on a hyperlink, with the value of Link set to whatever the
tag defines as the value of href. If, after the execution of statement, the Link variable is
not empty, the default handling of hyperlinks will take place. This is also the case if Link
contains some text before dlgTextView is opened, which allows for an initial scrolling to a
given position.

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgvBoxLayout {

dlgLabel("&View the text");

dlgTextView(Text);

}

digVBoxLayout

Function

Opens a vertical box layout context.
Syntax

dlgVBoxLayout statement

See also dlgGridLavout, dlgHBoxLayout, Layout Information, A Complete Example

The dlgVBoxLayout statement opens a vertical box layout context for the given
statement.

Page 127 of 136

EAGLE User Language Version 5.7

By default a dlgDialog contains a d1gVBoxLayout, so a simple dialog doesn't have to
worry about the layout.

Example

dlgvBoxLayout {
dlgLabel("Box 1")
dlgLabel("Box 2")
dlgLabel("Box 3")

.
l4
.
l4

14

Layout Information

All objects within a User Language Dialog a placed inside a layout context.

Layout contexts can be either grid, horizontal or vertical.

Grid Layout Context

Objects in a grid layout context must specify the grid coordinates of the cell or cells into
which they shall be placed. To place a text label at row 5, column 2, you would write

dlgGridLayout {
dlgCell(5, 2) dlgLabel("Text");
}

If the object shall span over more than one cell you need to specify the coordinates of the
starting cell and the ending cell. To place a group that extends from row 1, column 2 up to
row 3, column 5, you would write
dlgGridLayout {
dlgCell(1, 2, 3, 5) dlgGroup("Title") {
/7.

}
b

Horizontal Layout Context
Objects in a horizontal layout context are placed left to right.

The special objects dlgStretch and dlgSpacing can be used to further refine the distribution
of the available space.

To define two buttons that are pushed all the way to the right edge of the dialog, you would
write

dlgHBoxLayout {
dlgStretch(1);
dlgPushButton("+0K") dlgAccept();
dlgPushButton("Cancel") dlgReject();

b

Page 128 of 136

EAGLE User Language Version 5.7

Vertical Layout Context

Objects in a vertical layout context follow the same rules as those in a horizontal layout
context, except that they are placed top to bottom.

Mixing Layout Contexts

Vertical, horizontal and grid layout contexts can be mixed to create the desired layout
structure of a dialog. See the Complete Example for a demonstration of this.

Dialog Functions

The following functions can be used with User Language Dialogs:

dlgAccept() closes the dialog and accepts its contents
dleRedisplav() ;r;lrtrllee;ilately redisplays the dialog after changes to any
dlgReset() resets all dialog objects to their initial values
dlgReject() closes the dialog and rejects its contents
digAccept()
Function

Closes the dialog and accepts its contents.
Syntax

void dlgAccept([int Result 1);

See also dlgReject, dlgDialog, A Complete Example

The d1gAccept function causes the digDialog to be closed and return after the current
statement sequence has been completed.

Any changes the user has made to the dialog values will be accepted and are copied into
the variables that have been given when the dialog objects were defined.

The optional Result is the value that will be returned by the dialog. Typically this should
be a positive integer value. If no value is given, it defaults to 1.

Note that d1gAccept () does return to the normal program execution, so in a sequence
like

dlgPushButton("0OK") {
dlgAccept();
dlgMessageBox("Accepting!");
}

the statement after d1gAccept () will still be executed!

Example

int Result = dlgbDialog("Test") {
dlgPushButton("+0K") dlgAccept(42);
dlgPushButton("Cancel") dlgReject();

Page 129 of 136

EAGLE User Language Version 5.7

iy

digRedisplay()

Function

Redisplays the dialog after changing values.
Syntax

void dlgRedisplay(void);

See also dlgReset, dlgDialog, A Complete Example

The d1lgRedisplay function can be called to immediately refresh the dlgDialog after
changes have been made to the variables used when defining the dialog objects.

You only need to call d1lgRedisplay() if you want the dialog to be refreshed while still
executing program code. In the example below the status is changed to "Running..." and
dlgRedisplay() has to be called to make this change take effect before the "program
action" is performed. After the final status change to "Finished." there is no need to call
dlgRedisplay(), since all dialog objects are automatically updated after leaving the
statement.

Example

string Status = "Idle";
int Result = dlgbDialog("Test") {
dlgLabel(Status, 1); // note the '1' to tell the label to be

updated!
dlgPushButton("+0K") dlgAccept(42);
dlgPushButton("Cancel") dlgReject();
dlgPushButton("Run") {
Status = "Running...";
dlgRedisplay();
// some program action here...
Status = "Finished.";
}
i
digReset()
Function
Resets all dialog objects to their initial values.
Syntax

void dlgReset(void);

See also dlgReject, dlgDialog, A Complete Example

The d1lgReset function copies the initial values back into all dialog objects of the current
dlgDialog.
Any changes the user has made to the dialog values will be discarded.

Calling d1gReject () implies a call to d1gReset ().

Page 130 of 136

EAGLE User Language Version 5.7

Example

int Number = 1;

int Result = dlgDialog("Test") {
dlgIntEdit (Number);
dlgPushButton("+0K") dlgAccept(42);
dlgPushButton("Cancel") dlgReject();
dlgPushButton("Reset") dlgReset();
Iy

digReject()

Function

Closes the dialog and rejects its contents.
Syntax

void dlgReject([int Result 1);

See also dlgAccept, dlgReset, dlgDialog, A Complete Example

The d1gReject function causes the dlgDialog to be closed and return after the current
statement sequence has been completed.

Any changes the user has made to the dialog values will be discarded. The variables that
have been given when the dialog objects were defined will be reset to their original values
when the dialog returns.

The optional Result is the value that will be returned by the dialog. Typically this should
be O or a negative integer value. If no value is given, it defaults to ©.

Note that d1gReject () does return to the normal program execution, so in a sequence
like

dlgPushButton("Cancel") {
dlgReject();
dlgMessageBox("Rejecting!");
}

the statement after d1gReject () will still be executed!

Calling d1gReject () implies a call to d1gReset ().

Example

int Result = dlgbDialog("Test") {
dlgPushButton("+0K") dlgAccept(42);
dlgPushButton("Cancel") dlgReject();
i

Escape Character

Some characters have special meanings in button or label texts, so they need to be escaped
if they shall appear literally.

Page 131 of 136

EAGLE User Language Version 5.7

To do this you need to prepend the character with a backslash, as in
dlgLabel("Miller \\& Co.");

This will result in "Miller & Co." displayed in the dialog.

Note that there are actually two backslash characters here, since this line will first go
through the User Language parser, which will strip the first backslash.

A Complete Example

Here's a complete example of a User Language Dialog.

int hor = 1;

int ver = 1;

string fileName;

int Result = dlgbDialog("Enter Parameters") {

dlgHBoxLayout {

dlgStretch(1);
dlgLabel("This is a simple dialog");
dlgStretch(1);

}
dlgHBoxLayout {
dlgGroup("Horizontal") {
dlgRadioButton("&Top", hor);
dlgRadioButton("&Center", hor);
dlgRadioButton("&Bottom", hor);

}

dlgGroup("Vertical") {
dlgRadioButton("&Left", ver);
dlgRadioButton("C&enter", ver);
dlgRadioButton("&Right", ver);

b

}
dlgHBoxLayout {
dlgLabel("File &name:");
dlgStringEdit(fileName);
dlgPushButton("Bro&wse") {
fileName = dlgFileOpen("Select a file", fileName);

}

}

dlgGridLayout {
dlgCell(@, 0) dlgLabel("Row 0/Col ©
dlgCell(1, 0) dlgLabel("Row 1/Col 0'
dlgCell(®, 1) dlgLabel("Row 0/Col 1
dlgCell(1, 1) dlgLabel("Row 1/Col 1

}

dlgSpacing(10);

dlgHBoxLayout {
dlgStretch(1);
dlgPushButton("+0K") dlgAccept();
dlgPushButton("Cancel") dlgReject();
}

Iy

Page 132 of 136

EAGLE User Language Version 5.7

Supported HTML tags

EAGLE supports a subset of the tags used to format HTML pages. This can be used to
format the text of several User Language Dialog objects, in the #usage directive or in the
description of library objects.

Text is considered to be HTML if the first line contains a tag. If this is not the case, and you
want the text to be formatted, you need to enclose the entire text in the
<html>...</html> tag.

The following table lists all supported HTML tags and their available attributes:

Tag Description
An HTML document. It understands the following attributes

bgcolor - The background color, for example

bgcolor="yellow" or bgcolor="#0000FF".
<html>...</html> - background - The background pixmap, for example

background="granit.xpm".

text - The default text color, for example text="red".

1ink - The link color, for example 1ink="green".

<hl>...</h1> A top-level heading.
<h2>...</h2> A sub-level heading.
<h3>...</h3> A sub-sub-level heading.

<p>..</D> A left-aligned paragraph. Adjust the alignment with the align
p=..=/P attribute. Possible values are 1eft, right and center.

<center>...</center
/ A centered paragraph.

>
<blockquote>...</blo An indented paragraph, useful for quotes.
ckquote>
An un-ordered list. You can also pass a type argument to define the
.. bullet style. The default is type=disc, other types are circle
and square.
An ordered list. You can also pass a type argument to define the
... enumeration label style. The default is type="1", other types are
Ilall and IIAII.
) . A list item. This tag can only be used within the context of 01 or
... ul

For larger chunks of code. Whitespaces in the contents are
preserved. For small bits of code, use the inline-style code.
An anchor or link. It understands the following attributes:

<pre>..</pre>

href - The reference target as in
name - The anchor name, as in

<a>..

Page 133 of 136

EAGLE User Language Version 5.7

... Emphasized (same as <i>...</1i>).
istrong>...</strong Strong (same as ...).
<i>..</i> Italic font style.

... Bold font style.

<u>..</u> Underlined font style.
<big>...</big> A larger font size.

<small>...</small> A smaller font size.
Indicates Code. (same as <tt>...</tt>. For larger chunks of
code, use the block-tag pre.
<tt>..</tt> Typewriter font style.
Customizes the font size, family and text color. The tag understands
the following attributes:

<code>...</code>

color - The text color, for example color="red" or
color="#FFO000".

... - size - The logical size of the font. Logical sizes 1 to 7 are
supported. The value may either be absolute, for example
size=3, or relative like size=-2. In the latter case, the
sizes are simply added.
face - The family of the font, for example face=times.

An image. This tag understands the following attributes:

src - The image name, for example .

Supported image formats are:

".bmp" (Windows Bitmap Files)

".pbm" (Portable Bitmap Files)

".pgm" (Portable Grayscale Bitmap Files)

".png" (Portable Network Graphics Files)

".ppm" (Portable Pixelmap Files)

".xbm" (X Bitmap Files)

".xpm" (X Pixmap Files)

width - The width of the image. If the image does not fit to
the specified size, it will be scaled automatically.

height - The height of the image.

align - Determines where the image is placed. Per default,
an image is placed inline, just like a normal character.
Specify left or right to place the image at the respective
side.

<img...>

<hr> A horizonal line.

 A line break.
<nobr>...</nobr> No break. Prevents word wrap.

Page 134 of 136

EAGLE User Language Version 5.7

A table definition. The default table is frameless. Specify the
boolean attribute border in order to get a frame. Other attributes
are:

bgcolor - The background color.
width - The table width. This is either absolute in pixels or
relative in percent of the column width, for example
<table>...</table> width=80%.

- border - The width of the table border. The defaultis 0 (=
no border).
cellspacing - Additional space around the table cells. The
default is 2.
cellpadding - Additional space around the contents of
table cells. Default is 1.

A table row. Can only be used within table. Understands the

attribute
<tr>..</tr>
bgcolor - The background color.

A table data cell. Can only be used within tr. Understands the
attributes

bgcolor - The background color.

width - The cell width. This is either absolute in pixels or
relative in percent of the entire table width, for example
width=50%.

colspan - Defines how many columns this cell spans. The
default is 1.

rowspan - Defines how many rows this cell spans. The
default is 1.

align - Alignment, possible values are left, right and
center. The default is left-aligned.

<td>...</td>

A table header cell. Like td but defaults to center-alignment and a
bold font.

Marks the author of this text.

<th>...</th>

<author>...</author

>

<dl>...</dl> A definition list.

<dt>...</dt> A definition tag. Can only be used within d1.
<dd>...</dd> Definition data. Can only be used within d1.
Tag Meaning

< <

> >

& &

Page 135 of 136

EAGLE User Language Version 5.7
 non-breaking space

ä a
ö
ü
Ä
Ö
Ü
ß
©
°
µ
±

CO PR CEQO:PiE O ®

S

Page 136 of 136

	User Language
	Writing a ULP
	Executing a ULP
	Syntax
	Whitespace
	Comments
	Directives
	#include
	Portability note

	#require
	#usage
	Example

	Keywords
	Identifiers
	Constants
	Character Constants
	Integer Constants
	Examples

	Real Constants
	Examples

	String Constants
	Escape Sequences
	Examples

	Punctuators
	Brackets
	Parentheses
	Braces
	Comma
	Semicolon
	Colon
	Equal Sign
	Data Types
	char
	int
	real
	string
	Implementation details

	Type Conversions
	Typecast
	Object Types
	UL_ARC
	Constants
	Note
	Example

	UL_AREA
	Example

	UL_ATTRIBUTE
	Constants
	Note
	Example

	UL_BOARD
	Note
	Example

	UL_BUS
	Constants
	Example

	UL_CIRCLE
	Example

	UL_CLASS
	Note
	Example

	UL_CONTACT
	Constants
	Note
	Example

	UL_CONTACTREF
	Example

	UL_DEVICE
	Constants
	Note
	Examples

	UL_DEVICESET
	Constants
	Note
	Example

	UL_ELEMENT
	Constants
	Note
	Examples

	UL_FRAME
	Constants
	Note
	Example

	UL_GATE
	Constants
	Note
	Example

	UL_GRID
	Constants
	Note
	Example

	UL_HOLE
	Note
	Example

	UL_INSTANCE
	Constants
	Note
	Example

	UL_JUNCTION
	Example

	UL_LABEL
	Note
	Example

	UL_LAYER
	Constants
	Example

	UL_LIBRARY
	Constants
	Note
	Example

	UL_NET
	Constants
	Note
	Example

	UL_PACKAGE
	Constants
	Note
	Example

	UL_PAD
	Constants
	Note
	Example

	UL_PART
	Constants
	Note
	Example

	UL_PIN
	Constants
	Note
	Example

	UL_PINREF
	Example

	UL_POLYGON
	Constants
	Note
	Polygon width
	Partial polygons
	Example

	UL_RECTANGLE
	Example

	UL_SCHEMATIC
	Note
	Example

	UL_SEGMENT
	Note
	Example

	UL_SHEET
	Example

	UL_SIGNAL
	Constants
	Example

	UL_SMD
	Constants
	Note
	Example

	UL_SYMBOL
	Constants
	Note
	Example

	UL_TEXT
	Constants
	Note
	Example

	UL_VIA
	Constants
	Note
	Example

	UL_WIRE
	Constants
	Wire Style
	Arcs at Wire level
	Example

	Definitions
	Constant Definitions
	Variable Definitions
	Examples

	Function Definitions
	The special function main()
	Example

	Operators
	Bitwise Operators
	Logical Operators
	Comparison Operators
	Evaluation Operators
	Arithmetic Operators
	String Operators
	Expressions
	Arithmetic Expression
	Examples

	Assignment Expression
	Examples

	String Expression
	Examples

	Comma Expression
	Example

	Conditional Expression
	Example

	Function Call
	Example

	Statements
	Compound Statement
	Expression Statement
	Control Statements
	break
	continue
	do...while
	Example

	for
	Example

	if...else
	return
	switch
	Example

	while
	Example

	Builtins
	Builtin Constants
	Builtin Variables
	Builtin Functions
	Character Functions
	is...()
	Character categories
	Example

	to...()
	File Handling Functions
	fileerror()
	Example

	fileglob()
	Note for Windows users
	Example

	Filename Functions
	Example

	Filedata Functions
	Example

	File Input Functions
	fileread()
	Example

	Mathematical Functions
	Error Messages

	Absolute, Maximum and Minimum Functions
	Example

	Rounding Functions
	Example

	Trigonometric Functions
	Constants
	Example

	Exponential Functions
	Note
	Example

	Miscellaneous Functions
	exit()
	Constants

	language()
	Example

	lookup()
	Example

	palette()
	Constants

	sort()
	Sorting a single array
	Sorting a set of arrays

	status()
	system()
	Input/Output redirection
	Background execution
	Example

	Unit Conversions
	Example

	Printing Functions
	printf()
	Format string
	Format specifiers
	Conversion type characters
	Flag characters
	Width specifiers
	Precision specifiers
	Default precision values
	How precision specification (.n) affects conversion
	Binary zero characters
	Example

	sprintf()
	Format string
	Binary zero characters
	Example

	String Functions
	strchr()
	Example

	strjoin()
	Example

	strlen()
	Example

	strlwr()
	Example

	strrchr()
	Example

	strrstr()
	Example

	strsplit()
	Example

	strstr()
	Example

	strsub()
	Example

	strtod()
	Example

	strtol()
	Example

	strupr()
	Example

	strxstr()
	Example

	Time Functions
	time()
	Example

	timems()
	Example

	Time Conversions
	Example

	Object Functions
	clrgroup()
	Example

	ingroup()
	Example

	setgroup()
	Example

	Builtin Statements
	board()
	Check if there is a board
	Accessing board from a schematic
	Example

	deviceset()
	Check if there is a device set
	Example

	library()
	Check if there is a library
	Example

	output()
	File Modes
	Nested Output statements
	Example

	package()
	Check if there is a package
	Example

	schematic()
	Check if there is a schematic
	Accessing schematic from a board
	Access the current Sheet
	Example

	sheet()
	Check if there is a sheet
	Example

	symbol()
	Check if there is a symbol
	Example

	Dialogs
	Predefined Dialogs
	dlgDirectory()
	Example

	dlgFileOpen(), dlgFileSave()
	Example

	dlgMessageBox()
	Example

	Dialog Objects
	dlgCell
	Example

	dlgCheckBox
	Example

	dlgComboBox
	Example

	dlgDialog
	Examples

	dlgGridLayout
	Example

	dlgGroup
	Example

	dlgHBoxLayout
	Example

	dlgIntEdit
	Example

	dlgLabel
	Example

	dlgListBox
	Example

	dlgListView
	Example

	dlgPushButton
	Example

	dlgRadioButton
	Example

	dlgRealEdit
	Example

	dlgSpacing
	Example

	dlgSpinBox
	Example

	dlgStretch
	Example

	dlgStringEdit
	Example

	dlgTabPage
	Example

	dlgTabWidget
	Example

	dlgTextEdit
	Example

	dlgTextView
	Example

	dlgVBoxLayout
	Example

	Layout Information
	Grid Layout Context
	Horizontal Layout Context
	Vertical Layout Context
	Mixing Layout Contexts

	Dialog Functions
	dlgAccept()
	Example

	dlgRedisplay()
	Example

	dlgReset()
	Example

	dlgReject()
	Example

	Escape Character
	A Complete Example
	Supported HTML tags

