EAGLE

EASILY APPLICABLE GRAPHICAL LAYOUT EDITOR

User Language

Version 6.2

Copyright © 2012 CadSoft All rights reserved

Table of Contents

LB g I e L T O SPRPPPPP 11
WITHING @ ULP .ottt et e et e e et e e s abe e e st ee e sbeeesaeeenssaeensseeensseeensseeansseeens 11
EXECULING @ ULP.....iiiiiiiiieiee ettt ettt ettt st e st e e bt e s taeenbeesaaeenbeessaesnseennseaens 11
N 012 S PPURRRRN 12
WHEEESPACE. ... ettt ettt ettt e st e et e st e e bt esaaeesbeesaaeenseeesbeenseasaseensseeensaeeennsaeaensaeeennses 12
L010) 13110 1S) 111 SR PUPUUPPRR 12
DITECTIVES. 1. uttetieeiiteeite ettt et et e et eette et e e e aeeeabeeesbe e seeesaeesseassseenseeesseenseeesseenseeesseenseasnseenseeensaenseeennses 13
22310161 116 L SRS PRP 13

POTTADIIEY TMOTE..... . eieiiieiie ettt ettt ettt e et e et eebe e beeeabeenseesnbeenseesnseensaeas 13
23 (10 1881 (S PSPPR 14
IS, .ttt eneteeeitee ettt e ettt e ettt e et e e et e e e e ab e e ab e e h bt e e at e e e bt e e e bt e e e bt e e eab e e e abee e abeeenteeebteeenbaeeenbateeeeeannntaeas 14

221 401 0] (TR UR PP 15
K Y WOTES. ..ttt ettt et e et e st e e bt e st e eab e e seeeabeessbeeabeanseeenbeenseeenbeenseaenseeennnes 15
0153 119 0 TS PSSP 15
COMSEANES. ...ttt ettt ettt ettt e ettt e e bt eeeaateesabaeeeabee e abeeesabeeenaseesasseesabeeesanbaaeeesennsseeessennnnees 16
Character COMNSLANTS.cccuiiieiieeectieeetieeeteeestee et eeetteeetaeeeteeeesseeeassaeesssaeanssaeensseeesseesssseessseeesessssns 16
INEEZET CONSLANTS.eeiiiiiieeiiee ettt ettt e et e ettt e st e e sabee e et e e enateesasteesnsaeesabaeeeeesnnnsaeeas 16

L2 21 101 0] (<SR SRPR 16
REAL CONSLANTS. ...cuuiiiiiieiieeiteiie ettt ettt e et et e et e st e et e e s teeeabeessteesbeassseenseensseenseessseenseesnseesansseesansees 16

L2521 101 0) (<SSR 17
SHANG CONSTANTS.....eutieiiieiieiiie ettt ettt et et e et e s eteeteesateesseessaesnseessteesseesssesnseesseeanseenssesnseensseenseeas 17
ESCAPE SEQUEIICES.eeiieeiiiiiee ettt e et e e et e e e ettt e e e s abaeeesenssaeeeesnnseaaaaaaeeeennnn 17

EXAMIPIES. ...ttt ettt ettt ettt e bt e ettt e tteenbeeeabe e taeenbeenbeeennaes 18
PUNCEUALOTS. ¢ et e e et e e e ettt e e e st e e e ensbaeesensaeeeeannssaeeeeeaaaaaeeeesnnnnns 18
BIACKETS. ... tietieeiiteie ettt ettt ettt e e et e et e e b e e b e e bt e ea b e e hteenbe e tee et e e naeeennbeeeennaeeeannaeas 18
e (o) 1§ (ST SRS PRR 18
2 ¢ 1oL O PSP PPPPP 19
L70) 101 1o - T PP PUUPPURRRRN 19
SEIMICOLON. ...ttt ettt ettt e et et e et e et e e e st e e aeeeabeenseesaseenseessseenseesnseenseesnsseeeansaeeenns 19
(7] 107 3 PSPPSR 19
EQUAL ST@N...ciiiiiiiie ettt ettt ettt e et e e e et e e abe e tb e e e e ataeeeensaeeenraeans 19
D 7 T) 01 U PPUUURRRR 20
CRAT .ttt et et e et e et e e bt e et e et e e et b e e bt e eab e et e e eaae e beeenbeebeeeennteeeennaeeeennaeas 20
1 0L PR UPRPPPRP 20
TEALL ettt ettt ettt et e e bt e et e e bt e e abe et ee et e e bt e eabe e steeabeenteeenbe e steenbeeennbeeeensbeeeennes 20
1301 F <RSP 20

Implementation dETAilS...........cieiiiriiiiieiie ettt et ae et e e et e e aae e b e nnes 21
TYPE COMVETSIONS. ..eeeuvieeeerieeereeeeteeeeeteeestteeestteeesteeesaeeassaeessseesssaeesssseeassesesssseesssesessseesssnssssseeeennssens 21
7 01T 1 SRS PPPP 21
(0] <ot A) o 1< TSP PPP 22
UL ARG ettt et e h ettt s h ettt e bttt e a e b e bt e a b e bt et et e sae et e eateea 24

(O10) 1] 72111 £ PRSPPI 25

IN OB, ettt ettt et ettt e e h bt e e bt e e ettt e ettt e et e e e e teeeeabeeeeabaeenabeeennteeennbeeeana 25

L2521 401 o) (< EUR PP 25
UL AREA ettt ettt et et h et e a e sb et e st e e bt et e e et e sbe e bt eateeabeeenbeeen 25

L2521 401 o) (< EUR PP 25
UL ATTRIBUTE. ...ttt ettt sttt et b et st sb e bt eabeesabeeebeeeas 25

(O10) 1] 72111 £ PRSPPI 26

IN OB, ettt ettt et ettt e e h bt e e bt e e ettt e ettt e et e e e e teeeeabeeeeabaeenabeeennteeennbeeeana 26

A0 T 27
2511010 (ST USRS 27
UL BU S ettt ettt e et e et e et e e teeetbe e saeesbaessaeesseesseessseessaessseensaessseensseeesseeennnses 27
COMSLANLS.ceoeetieeeeee e e e eececr et ee e e et eeect et e e e e eeeetetaraeeeeeeeeeaeetasaaseaeeeeeessansssssessaeeeeansssssnseseeeeeennanssnnes 27
221 401 o) (TSRS 27
UL CIRCLE..... ittt ettt ettt ettt e et et e et e e s st e esbeessaeeaseesseeenseesssesasaesnaeenseanssannns 28
221 401 o) (TSR PPP 28
L8 B O BN T PP URRPP 28
A0 T 28
25111010 (ST USRS 28
UL CONTACT ..ottt ettt ettt e ettt e et e e s taeesbeessseesbeesssaesseesssaensaessseesseassseeeansseaesssseeenses 28
COMSLANLS.ceiiitrrrieeee e e e eecccr et ee e e et eeet e e eeeeeeeeeetaraeeeseeeeeseetasaaseeeeeeeessassssseeeseeeeeanssssnseeeeeeeennanssnnes 29
A0 T 29
25 11010 (ST USRI UPSR 29
UL CONTACTREF ... ottt ettt ettt e eabe e taeesseessseesseesaaenssaeeennnes 29
COMSLANS.ccoeerieieee e e e e eeeccr et eeeeeeeeet e e e e e e eeeesetaraeeeseeeeeseetasaaseeeeeeeessasssssaaeseeeeeanssssrseseeeeeensanssnnes 29
221 401 o) (TSRS 29
UL DEVICE ...ttt ettt ettt e st et e et e e bt e eabeebeesabeenseesnseesnsbeeeensneeeennes 30
COMSEANTS. ..o ieeiieeeeeeee ettt e e e et eee e e e e e e e eeeeataaeeeeeeeeeeaasaaasaeeeeeesseasssasaseesseeessansssesseeseessanssrsnnes 30
N O ettt et ettt e e e e et e et b e e e e e e e e e e et ————aaaeeeeeaa————aaaaeeeeaan—aaaaaaaeeeeenatrrrraaaaes 30
221 401 0] (<SPS 31
UL DEVICESET ...ttt et ettt ettt e st e bt e st e esseeenbeesseesnsesnsaeesnnseeeennnes 31
COMSEANTS.eiieeieeeeee e ee ettt e e e e e eee e e e e e e e ee e staaeeeeeeeeseaasaaasaeeeeeesseaassasareeeseeeesanssseeseeseessennsresnes 31
N O ettt et ettt e e e e et e et b e e e e e e e e et ————aaaeeeeeaa————aaaaeeeeaa—aaaaaaaaeeeantrrrraaaaes 31
221 401 o) (TSR PPP 32
UL DIMENSION......cotitieiit ettt ettt ettt ettt e bt e et e e bt e sabeeseessseeseesnseesnsseeesnsseesensneeennnes 32
COMSEANTS. ..o ieeieeeieeeeeeeeee et e e e e e e ee et eeeeeeeesataaeeeeseeeeeaaaaaaareeeeesseaassasaneesseeessanssseseeessessannsrennes 32
N O ettt et ettt e e e e et e et b e e e e e e e e e e et ————aaaeeeeeaa————aaaaeeeeaan—aaaaaaaeeeeenatrrrraaaaes 32
221 401 o) (TSRS 32
UL ELEMENT ...ttt ettt ettt et e et e et e et e e st e sateeseesabeeseesnbeesnsseaeensseeeennns 33
COMSEANTS. ..o ieeiieeeeeeee ettt e e e et eee e e e e e e e eeeeataaeeeeeeeeeeaasaaasaeeeeeesseasssasaseesseeessansssesseeseessanssrsnnes 33
N O ettt et ettt e e e e et e et b e e e e e e e e e e et ————aaaeeeeeaa————aaaaeeeeaan—aaaaaaaeeeeenatrrrraaaaes 33
2521 101 0] (<RSP 34
UL FRAME ... oottt ettt ettt e st e et e st e e bt e sabeeaseeenbeenseesnbeenseeaenseeeennses 34
COMSEANTS.eiieeieeeeee e ee ettt e e e e e eee e e e e e e e ee e staaeeeeeeeeseaasaaasaeeeeeesseaassasareeeseeeesanssseeseeseessennsresnes 34
N O ettt et ettt e e e e et e et b e e e e e e e e e e et ————aaaeeeeeaa————aaaaeeeeaan—aaaaaaaeeeeenatrrrraaaaes 34
221 401 o) (TP SR PP 34
UL GATE.....ceeeeee ettt ettt et e at e et e st e et e e s st e esbeessteeaseessteesseesseesnsaesseeenseenssennns 35
COMSEANTS. ..o ieeieeeieeeeeeeeee et e e e e e e ee et eeeeeeeesataaeeeeseeeeeaaaaaaareeeeesseaassasaneesseeessanssseseeessessannsrennes 35
N O ettt et ettt e e e e et e et b e e e e e e e e e e et ————aaaeeeeeaa————aaaaeeeeaan—aaaaaaaeeeeenatrrrraaaaes 35
221 401 o) (TSRS 35
UL GRID ..ttt ettt ettt et et et e e st e e bt e sabe e s eesabeenseeenseenseesnbasnsaeeennseeeennses 35
COMSEANTS. ..o ieeieeeieeeeeeeeee et e e e e e e ee et eeeeeeeesataaeeeeseeeeeaaaaaaareeeeesseaassasaneesseeessanssseseeessessannsrennes 36
N O ettt et ettt e e e e et e et b e e e e e e e e e e et ————aaaeeeeeaa————aaaaeeeeaan—aaaaaaaeeeeenatrrrraaaaes 36
221 401 o) (TSRS 36
UL HOLE....o ettt ettt ettt et e et e et e e st e e st e eabeenbeeenbeenseeenseesnsbeaesnsneeeennne 36
A0 T 36
25 111010 (ST USRS 36
UL INSTANCE ..o ottt ettt ettt ettt et e et e et eetbeeteeesbeeseesabeessaeasseesaeessaesssaeeassseeessseeennses 37
COMSLANLS.ceoeetieeeeee e e e eececr et ee e e et eeect et e e e e eeeetetaraeeeeeeeeeaeetasaaseaeeeeeessansssssessaeeeeansssssnseseeeeeennanssnnes 37

EXAIMIPIC. ...ttt et b ettt e na et 38

UL JUNCTION.....c ettt ettt ettt sttt et et este e teeseasseenseeseeestenseenseeneanseenseeeneeeanseennseens 38
2511010 (ST USRS 38
UL LABEL ..ottt ettt ettt et et e s a et e e st e ss e e st en e e ese e teensesseeseenteenseeenneeens 38
D[] 1SR URUPUPORUPPRRRURPRRN 39
221 401 o) (TSRS 39
UL LAYER .ttt ettt ettt et ettt s b ettt sbe e b e st e sae e beeenbeeea 39
070711 1 1 USSR 39
25111010 (ST U UPRTRP 40
L8] B 51023 2N 2 USSP 40
COMSLANTS.eeeiiieeeiiie ettt e ettt e ettt e s bt e e et b e e s bt e e e abteeentaeesabeeeeabeeensseeennsaeensbeesnseeens 41
INOLC. ettt ettt ettt ettt e e ettt e e ettt e e ettt e e ettt ee e e n bt teeeanttteeeeanbateeeanbeeeeeanaeeeeennraeeeennnnns 41
2511010 (ST PRSP 41
UL INET ettt ettt ettt et e bt e s e st e et e eaee s st eneeenteeseenseentesseenseenseesnseeenseeens 41
COMSLANTS.eeeiiieeeiee ettt ettt e ettt e ettt e sttt e e bt e e s bt e e e bt e e enbeeesabeeeeabeeensseeennbaeesbeesnnneeens 42
INOLC. .ttt ettt ettt ettt et e e e ettt e e et e e e ettt e e ettt ee e e a bt tee e ettt eeeeanttteeeanaeaeeeanteeeeennraeeeeannns 42
25111010 (ST RUPRP 42
UL PACKAGE. ...ttt ettt ettt et e et e bt et e s st e st e eseeeaneeennneennee 42
COMSLANTS.eeeiiieeeitie ettt ettt e ettt e ettt e e bt e e s bt e e s bt e e e bt e e enbaeesateeesabeeennbeeennbaeesseeenseeens 43
INOLC. ettt ettt ettt ettt e e ettt e e ettt e e ettt e e ettt ee e e n bt teeeanttteeeeanbateeeanbeeeeeanaeeeeennraeeeennnnns 43
25111010 (ST U UPRTRP 43
L8] S 7N B PSPPSR 43
COMSLANTS.eeeiiieeeite ettt ettt e ettt e ettt e e bt e e sttt e s bt e e e bt e e enbaeeeateeeeabeeensbeeennsaeesbeesnnseeens 44
JA L] £ OO RPPUPURPSRN 44
2511010 (ST PRSP 45
|8 D 57N 23 PSPPSRSO 45
COMSLANTS.eeeiiiieeeiie ettt et ettt e ettt e ettt e s bt e e s bt e e e bt e e enbaeesabeeesabeeennseeennsaeesseeennneeens 45
INOLC. .ttt ettt ettt e e e ettt e e ettt e e e ettt e e ettt ee e e abaaee e ettt eeeeanbaeeeeanbeeeeeanteeeeeanraeeeeannnns 45
2511010 (ST USRS 46
L8 S 53 0 OSSPSR 46
COMSLANTS.eeeiiieeeitie ettt ettt e ettt e ettt e e bt e e s bt e e s bt e e e bt e e enbaeesateeesabeeennbeeennbaeesseeenseeens 46
INOLC. ettt ettt ettt ettt e e ettt e e ettt e e ettt e e ettt ee e e n bt teeeanttteeeeanbateeeanbeeeeeanaeeeeennraeeeennnnns 47
25111010 (ST U UPRTRP 47
UL PINREF ...ttt ettt ettt et st e s et e e e e st e eseebeeneesneebeenteeenseeenneeens 48
2511010 (ST ORI UPRRRP 48
UL POLYGON ...ttt ettt et ettt et st et eat e st e et eseess e e bt esteeneenseentesseesnteesnseeanseeans 48
COMSLANTS.eeeiiieeeite ettt ettt e ettt e ettt e s bt e e e bt e e s bt e e eabeeeenteeesateeesabeeennteeennseeesbeeennneeens 48
JA L) £ PRSP PPURPSRN 49
POLYZON WIALh....cc.eiiiiiiiiee ettt ettt e e e nnaee s 49
Partial POLYZONS. ..ceeeiiieiiiieeiee e e et e et e e e e e e e e e e e nabaaaaeeennraaaeens 49
2511010 (ST USRS 49
UL RECTANGLEottt ettt ettt et e e st et e e ate et eenneeenneeeneeennes 50
25 111010 (ST USRS 50
UL _SCHEMATIC ..ottt ettt ettt et e e st et e este s et e beeneeeneesnseesnneesnseeenne 51
D[] 1SR URUPUPORUPPRRRURPRRN 51
221 401 o) (TSRS 51
UL SEGMENT ...ttt sttt et et et sbe e bt e a e s bt et e et e sbee bt eaaesateeenbeeea 51
JA L] £ OO RPPUPURPSRN 51
25 111010 (ST USRS 52
UL SHEET ... ettt ettt et a et e st e s et e bt en e eaeeteenteeeneeennseeanseesnseeenne 52
2511010 (ST USRS 52

UL SIGNAL. ...ttt st ettt e et e sae e s a e e st e e sannee e 52

221 401 o) (TSRS 53
UL SMD ...ttt et h ettt b et et h et e a e bt bt at e e bt nab e e sab e it e e 53
COMSTANES. ...ttt e h et e bt et e e bt e e it e e bt e eab e e sb b e ea bt e s teeabeesbbeembeesseeeabeesaneenneeas 53
INOTE. ..ttt et e b et e b e et e h e et e h e et h e et e bttt e e saneeneenbee e e 53
221 401 o) (TSRS 54
UL SYMBOL....c ittt ettt et et sb et et s bt ettt e bt e sat e e st e e sateeeaee 54
COMSTANES. ...ttt e h e et e bt et e e e bt e e ab e e bt e et e e sb b e ea bt e s teeabeesbbeenbeeeseeeabeesaneenneeas 54
INOLE. .ttt et ettt e bt et e e et et e eeaaeeeaaee e 55
221 401 o) (TSRS 55
UL TEXT .ttt sttt e h bt et sht et e et e bt et e et e sb e et ebtesbeebeeatesbeenbeeateea 55
COMSTANES. ...ttt e b e et e bt et e bt e e ab e e bt e eab e e sb b e eabeessteeabeesbbeenbeessbeeabeesaneenneeas 55
INOTE. ..ttt ettt e bttt e b e et e h e et eb e et h e et e e bttt e sateeneenaee e e 56
221 401 o) (TSR PPP 56
UL VARIANTDEF ...ttt sttt ettt sttt sbe et st sbeesiaeeea 56
221 411 o) (TSR 56
UL VARIANT ...ttt ettt st ettt b ettt sb e bt e s it e nab e e sateesabeeeaee 56
221 401 o) (TSRS 56
UL VLA ettt ettt h bt et s bt et e et e s bt et e e atesbe e bt e st e sbeenbeenbeena 57
COMSTANES. ...ttt e h e et e bt et e e e bt e e ab e e bt e et e e sb b e ea bt e s teeabeesbbeenbeeeseeeabeesaneenneeas 57
INOLE. .ttt et ettt e bt et e e et et e eeaaeeeaaee e 57
221 401 o) (TR UR PP 57
UL WIRE . ..ottt h ettt sttt et h et et sb e bt eat e e bt ebesatesbeebeeaneea 57
COMSTANES. ...ttt ettt e h e et e bttt e bt e e et e e bt e et e e eb b e ea bt e s beeabeeabeeenbeesseeeabeesaneenneeas 58
WAL SEYL@ ..ottt ettt et et e et e et esabe e s st e enbeensbeeeensbeeeensneeeensaeaas 58
ATCS @t WITE L1EVEL. ..ottt sttt e 58
2511010 (ST USRS 59
DIEEINITIONS ...ttt ettt et e b e st e bt e e ab e e bt e sa b e e bt e e st e e b e e sab e e bt e eab e e e s anbeeeeaaaeeas 59
CoNStANt DETINTEIONS.ccuviiiiiiiiieitie ettt ettt et et e et esabeesbeeenbeeseesnsaeseeennsaeeennes 59
Variable DefINItIONS.eiieiieiiiii ittt ete et e e sae e e saeeesbeeessaeesnsseesnseeessseeenssseeeesanes 59
2511010 (ST OO SO PSTR PR 60
FUNCHON DETINITIONS.cciiiiiiiieeiiecie ettt et et e e et e e st e e st eeesssaeesssaeessaeensseeeeeennnees 60
The special fuNCtion MAIN()......c.eerueerrieiieeiieeie ettt te et e ste et e e beesseesabeesseeesnsaeeeanneeas 61
221 401 o) (TSRS 61
(015 21 (o) £SO PRSP PPPPUPP 61
BItWISE OPETALOTS.eecuvieeeiieeetieeeteeeeieeesteeeseteeesiteeesateeetaeeasaeeaseeessseaeassaeeasseeeasseeeasseesansssseeessensssns 61
LOZICAL OPEIALOTS.eeutieiiieiieciie ettt ettt ettt et e st e et e s b e e beeeabeenteeeabeenseesnseenseeanseeansseasensseeeennees 62
COMPATISON OPCIALOTS. ..eecuvvieeeireerirreeeteeeeteeesteeesreeessteeassseessseeessseeessseeessseeassseeessseesssseessssesssssesesssssees 62
EValuation OPETatorsS........cc.ieiuiieiieiieeieeete ettt et e st et estte e bt e stteesbeesabeesbeessseenseassseeseesaseesansseesanses 62
ATTTRMELIC OPETALOTS. ..eeuviiieiiieeiiieeiteeeitee ettt e ettt e etteeeteeesteeessbeeessseeessseeesseeassseesssseessseeeessssseeeesannns 63
SEING OPCIALOTS. ..o eutieiieeiieeiieetteette et e st e et e st e ebeeseteeteesseeasbeesseesnseessseasseenseesnseenseeanseenseesnseenssesnseens 63
25 q o) (e (o) 1 1P 64
ATTENMELIC EXPIESSION. .. .iitiiiitieiiieiieeiie ettt ettt et ettt e stte st e esteesabeeseesabeeseesaseesensseeeennes 64
2521 101 0] (<SPS 64
ASSIZNMENE EXPIESSION.....eeiuiiiiiiiiieiieiie ettt ettt te et et e et estee et e estte e bt e seessbeeseesaseeeansseesansseesanses 64
2521 101 0] (<RSP 64
SHING EXPIESSION.utiiiiieiiieitieeiieeite ettt ettt e et e site et e st e esbeessaesabeessteenbeesseesnseensaeenseenseesnseenssesnseens 64
221 101 0] (<SPS 64
COMMA EXPIESSION.ccutiiiiieiieiiieetie ettt te ettt ett e et ettestteebtessteeseessbeesseessseeseesaseenseaenseeseesnseenseeennnes 65
221 401 o) (TSRS 65
CoNAItioNA]l EXPIESSION.iiitiiiiiitieeiiteie ettt ettt et et te st e teesateebeessaeebeesateesnsbeeeensaeeesnsaeesnnseeens 65

FUncCtion Call. ..o e, 65

221 401 o) (TSRS 65
STALEIMEIIES.eeeuiieeiie ettt ettt et e ettt e sttt e sttt e st e e e s abe e e e ab e e e sab e e eab e e enbeeenbeeetbeeennes 65
COMPOUNA STALEIMNENL.eeeiiiieiiieeeiieerieeesteeerteeerteeesereeeeteeesteeesseessseeeasseeessseeesssseeeesesssssseeesennsssees 66
EXPIesSION STATEINENL.eeuvieeiiiiiieriieetie sttt e ste et e te et e sttesteesate e bt e ssaesaseesseeenseessseeesnsseeesnsseeeenseeeas 66
CONIO] STALEIMENLS. .. .eectiieiiieeeiie et eetee et ee e et e e et e e etaeeetteeeaaeeessaeessseeessseeessssaeeeeessssseeeesennsnnees 66
DI@AK ...ttt ettt et e et e et e e et e e bt e eab e e n e e eab e e aeeenbe e bt e enbeeeennbeeeennaeeeannes 66
COMEITIUEC. ...eeuvteeeuteeeetteeeteeesteeessseeesaaeeeassaeessaeansseeansseeanssaeanssaeassseeassseesssseeasseeensseesassseeesensnsssseessennsssees 67
14 (O TR 4 1 11 (TP PSTRP 67

221 401 o) (TSRS 67
L0) SRS UPUPRRRPPPPRNt 67

221 401 o) (TR UR PP 68
LN <] E OO PSRRI 68
(1111w PO PRSPPI 68
S A 11 o] | T OO RPRRSRTRP 68

221 411 o) (TSR 69
L4 111 OO PP RPN 69

221 401 o) (TSRS 69
BUIIINS. ..ttt ettt et e et e et e et e e bt e s st e esbeeesbeenbeesabeeensbeeeentbeeeensaeeennaeaas 70
BUIIEIN CONSTANTS.....cccuviiiiiieieiieeciee et ie et e et e et eeetee e s teeessaeeessaeeesaeeesseesssaeessseeesssaaesessssseeeesesnsssees 70
BUIItIN VariabIes.cuiiiiiiiiieiieiecee ettt ettt et et et e st e s bee e enbt e e e enbaeeeennes 71
BUIIEN FUNCHIONS. ...eeiiiieeiieeeiie ettt e e e e e e et e e eaaeeestaeeesseaesnsaeeeennnsaeeaeeennssseens 71
Character FUNCHIONS.coiuiiiiieiie ettt ettt et et e et e e s seeesbeesseeenbeessteenbeesssesnsseeeennee 73
T USSP 74

CRAraCtET CALEZOTIES. ..uvveeutieiieeiietieeieesiteete e tteeteestteesseesateenseesateenseassseensaesnseenseaasseenseesnseenseennseens 74

221 401 o) (TSR PPP 74
L0 () T OO OO P PP TSRO PPTRPPRPP 74
File Handling FUNCLIONS.ccveiiiiiiiiie ettt ettt e e e et e e s e e snsee e e e nnnaeaaeeennnnneeas 75
TLEEITOT(). ..ttt ettt e e et e e ettt e e e ab e e e abeeesbeeenbaeeessaeeessseesasaeeessaeeeaansssaeaeseannssaeaeens 75

221 401 o) (TSRS 75
10 (74 10] o) OO SUP ST SRR 76

INOLE TOT WINAOWS USETS.....eiiiiieiiiieeitiieeiieeeiteeeieeeeteeesiteeeseteeetaeeesbaeeesseeessseeessseesnsseesnsseesnsseennnnes 76

25111010 (ST U UPRTRP 76
FAlename FUNCHONS.cooiuiiiiiiie ettt e et e e et e e et eeeaaeesssaeesnsnaeeaeeennsssneaeeennnssnes 76

2511010 (ST ORI UPRRRP 77
FAledata FUNCHIONS.cccuiiiiiiieeiiee ettt et e et e ettt e et e e esteeessaeesnsaaesnssaneaesennssaneaeeennnssees 77

2511010 (ST PRSP 77
File INPUL FUNCHIONS. ...couiiiiiiie ettt e et e et e et e e e taeeesaaeesnsaeesnseeesnseeennseeeennnns 77
1§15 (T2 Vo [T OO OO O RSP P ST U OO PPPPRR RSP 77

221 401 o) (TSR 78
MathematiCal FUNCLIONS.c.iiiiiiiiieiieeie ettt ettt et e e bt e e ee e etbeeesnsseeeensaeeas 78

| u 0] gAY (ST oL PO PPPPPPPR 79
Absolute, Maximum and Minimum FUNCHONS.......c...vviiiiiiiiiiiiiieeeeeeeeeetttee ettt 79

221 401 o) (TP SR PP 79
RoOUNAING FUNCHIONS.couiiiiiiiieeiiete ettt ettt e s e et e saae e beeeaaeenseesnneenseennnes 79

221 401 o) (TSRS 80
TrigoNOMELriC FUNCHIONS.ccuiiiiiiiiiiiieeie ettt ettt et e et eesennaeeenneeas 80

070711 1 0 USROS 80

D[] 1SR URUPUPORUPPRRRURPRRN 80

221 401 o) (TSRS 80
EXponential FUNCHIONS.coouiiiiiiiieiiieie ettt ettt ettt e e bee st e e e ennaeeeenneas 80

EXAIMIPIC. ...ttt et b ettt e na et 81

MiScellaneous FUNCHIONS.cocuiiiiiiiiiiiiee ettt ettt e st e e s e e e 81
Configuration ParameEtersS.coiiiiiiieiiieiieeie ettt ettt ettt et e st e et e st e e bt e snbeeteesnteeseeeensaeeeennes 81
221 401 o) (TR UR PP 82
COUNETY()ttt et euteentee et et e ettt e bt e eate e ateeateessteeabeeseeenseeseeeaseessseenseesssesaseensseenseassseenseennseeeanseeesansseesanseas 82
221 401 o) (TSRS 82
EXTE()reevreeeettieeet e ettt e ettt e ettt e et e e et e e e he e e et ee e e bee e tbeeeat—eeeaabaeeanbeeatbaeetaeeatbeeetseeanrreeaeeeanrraeeeeeanrraes 83
COMSTANES. ...ttt e h e et e bt et e e e bt e e ab e e bt e et e e sb b e ea bt e s teeabeesbbeenbeeeseeeabeesaneenneeas 83
FALSTZNATUTE(). ..ot eete ettt ettt ettt ettt e ettt et e st e et e eabeesbeesaseenseeeaseenseessbeenseesansseeeanseeesansaeennns 83
LT Yo L T T () TSP PRP 83
25111010 (ST USRS 84
JEQT) 1o TSRO 84
2511010 (ST PRSP 85
021 (<1<) TSP SRPPPPPRE 86
COMSTANES. ...ttt ettt e b e et b e et e bt e et e e sb e e e et e e bt e e abeesbeeeabeenseeeabeenaneenneees 86
0 () TSRS 86
SOTtiNg @ SINGLE AITAY.......eiiiiiiiieii ettt ettt et e st et eesabeebeessbeeseeeensaeesanseeennns 86
SOTtING @ SEE OF ATTAYS . eeeiuviieiiieeiiieeriee et et e e et e e ette e st eesaeeesabeeessaeeenseeesseeessseaeeeennsseeeesennssses 87
SEATUIS(). e vveeeevreeeteee ettt e ettt e ettt e e etteeeetaeeeeabeeeaasee e taeeessseeeasaeeaasaeeassaeeasseeeesbaeeabee e abeeeabeeeeeannrraeeeeeanrraaeens 87
A1) 10 ()RS SR P 87
INPUL/OULPUL TEAITECTION.eeutiiiiiieiieeiiieiie ettt ettt ettt e et et e et e et e e bt essteesnbeeesnbeeesnseeeenseeas 88
Background @XECULION.ccuuiiiiiieeiie ettt e e et e e st e e s bee e e e nnnaaaaeeeennsaeeens 88
25111010 (ST USRS 88
UNITE CONVETSIONS. ...euttetieeittetie et ettt ettt e st e et e e bt e eabeebeesabe e beeeabeeabeesabeeabeesaseenbeesabesabeeeeanbeeeennnee 89
2511010 (ST PRSP 89
INEIWOTK FUNCHONS. ...ttt et et s bt e e st e e e abaee e 89
L1 LE11S) 4 4011 () PP PRSP 90
221 401 o) (TR UR PP 90
1L () T PP PPRUPURRRPPPPPRN 90
221 401 o) (TSRS 91
L1 L18 101 () TP UPRUPPPPPPPN: 91
221 401 o) (TSR PPP 92
Printing FUNCHONS.eiiiiiiieiit ettt ettt ettt et e et e et e eabeeentbeeeentaeeesnsaeaeensaeeas 92
1028101) TSRS 92
FOTMAL SITINIE...eeneieiiieiie ettt ettt et et et e et e st e et e e bt e eabeesseeenseeseeenseensnesnseeeanneas 92
FOTMAt SPECTIIETS. ...eeiiiiieiieeciie ettt ettt e st e e st e e st e e e steeessbeeensaeeensseeensaeesnseeensneas 93
CoNnVeErsion tyPe CRATACTETS.cccuiiiiieiieie ettt ettt ettt e et e st e e teesabeebeesnsaeeennneeas 93
Sl BT ool B ¢ 101 1<) ¢ SRR 93
WALh SPECITIETS. ...ttt et ettt et e et e e bt e st e eaeeesnbaeeensaeeensaeens 93
PreCiSION SPECIIIETS. ... viiiiiieiiiie ettt et e e et e e et e e st e e e staeessbeeesseeesnsaeeaeeennnsaaeeens 94
Default preciSion VAIUES.cuiiiiiiiiiieiieie ettt et ettt saaeste e st e eabe e seeenns 94
How precision specification (.n) affects CONVETrSION........c..ceevuiieriiiieniieeiie e 94
BiNary ZEI0 CRATACLETS.eiiiiiiiieiieiie ettt et et e ettt eseb e et e e st e e e snsaeeesnsaeeeensaeeas 94
221 401 o) (TP SR PP 95
] 41013 { () OSSR SRRPP 95
FOTMAL SN ... tiiiiiieeiie et ettt e et e e et e e st e e sssaeeessaeesssaeeasseeensseeesseeennsseens 95
BiNary ZEI0 CRATACLETS.eiiiiiiiieiieiie ettt ettt et e et e st e et e e s nteeeeensaeeeensaeeeensneeas 95
221 401 o) (TSRS 95
SHANG FUNCHIONS. ...ttt ettt ettt e et e st e e beesabe e bt e esbeenseesseeenseesssesnseennnaens 95
] 4o] 1 () RSP SRR PP 96
2511010 (ST USRS 96

EXAIMIPIC. ...ttt et b ettt e na et 97

10 (<3 0T () RSP SR 97
2511010 (ST USRS 97
100 A4 (SRR 97
2511010 (ST USRS 97
00 £e] 11 ¢ () TSP PSPR 97
25111010 (ST USRS 98
18 6511 4 () S SRR T 98
25111010 (ST U UPRTRP 98
8] o) 11 () TSRS 98
25111010 (ST USRS 99
] 651 14 () TSRS 99
2511010 (ST PRSP 99
6] o] () PSPPSR 99
25 111010 (ST USRS PP 100
] 0701 [TSRS 100
EXAMIPIC.....eoiiieieee et ettt et et et e e b e e e tbeeeennreeeennes 100
1070 () PP UUPPPRRPN 100
25 111010 (ST USSP 100
00010 () S USSR 100
25 111010 (ST USSR 101
10613 () SRS 101
25 111010 (ST TP PRT SRR 101
TIME FUNCLIONS. ...ttt ettt et e s et e bt e st e e e sab e e bt e sbbeeaabeeeeanbaeenans 101
15110 1<) () TR R SRR R USRS P PP P UPRRRUPPPPPPRN 102
2521 101 o) (TSR PRR 102
EIIMICIIIS(). e veeeeetee et e ettt e et e e et e e e ateeeeaaeeeeaaeeeeasaeeeaseeessseeesseeansseeessseeessseesnsaeeessseessseeeanseeensseeeasseeensreens 102
2521 401 o) (TSR PRUR 102
TIME COMNVETSIONS. .c..tetietieniiiiterteete ettt ettt ettt sat et e et sbe e bt e st e sheesbeeabesbe e bt enbeeabesbeebeestesnteesanees 102
2521 101 o) (TSR PRRR 104
ODJECT FUNCHIONS. ...coutiiiiiieiieeieeiee ettt ettt et et et e s bt e teeeateesseeenbeeseesaseenseesnseeseesnseeens 104
(o] 1o (0101 o] () RSP SRRPPPRRN 104
25 111010 (ST USSR 104
LYo 0101 o () SRR PPPRRN 104
Identifying the conteXt MENU ODJECTeccuiieiieiiieiieiie ettt e e e e 105
2521 401 o) (TSR PUP 105
1174 T0] 11 o] () OO OSSR PPPRRTPPRRTPPRN 105
2521 401 o) (TSR PUR 106
SEEVATIANE()..e.vvveeeerieeeiiieeeteeeete e ettt e ettt e eeteeeetaeeeaeeeeaseeesaseeesaseseasseeaassaeassaeasseeansseeansseeansseesnnsseeaeaanes 106
2521 401 o) (TSR PUR 106
VATTAINE(). c.tveeevteeeteeeette e e it e eeteeeetteeeetsee e tteeeaseeessaeeeasaeesaseeeassaeessseanssseansseeansseesssssesnsnssseeeeennsssaeeeaannes 106
2521 401 o) (TSR PUP 107
XIML FUNCHIONS. ...ttt ettt ettt ettt sttt et bttt et s bt e bt e st e sb e ebesatesbeebeestesneenbeennee 107
xmlattribute(), XMIATTIDULES()....veeevieeeiieeeiie et et e et e e seteeeesreeeeeenssaeeaeeas 107
25 111010 (ST USSR 107
xmlelement(), XMIEIEMENTS()......eiruiiiiiiieiieee ettt e e e e e 108
25 111010 (ST USSP 108
D410 L 7o () PSSP 109
25 111010 (ST USSP 109
D€ 101 Lo L1 () PSPPSR 109
EXAMIPIC.....eonieiiee ettt ettt et et e et et e e bt e e e abaeeenteeeennaaeenn 110

BUIIIN S A EIMEIITS. .. eeeeeeeeee ettt e e e ettt e e e e e e e e e e e e e aeeeeeeeean e aaeeeeeeenenannaaaeeeeeenanas 110

Check 1f there 15 @ DOArd........c.coiiiiiiiiii e 111
Accessing board from @ SCheMALIC..........ccueeriiiiiiiiiieeiieie et 111
L2521 401 o) (< URRTR 111
AEVICESEL().rreevrieeirieeeiiee ettt e ettt e ettt e et e e et e e ettt e eetbeeesaseeetseessseeessseeessaeeesssseassseesssaeassseeansseesnssseeeesannes 111
Check 1f there 1S @ dEVICE SET.....cciuuiiiiiiiiiiiee ettt e 112
EXAMIPIC.....einiiiitiee ettt ettt et e et e st e e te e e e nbeeeennteeeennaeeens 112
110021 o1 (S SURP 112
Check if there 18 @ IIDTArY........ooouiiiiiiiiee ettt bee e 112
2521 401 o) (<P URRURPPRRN 113
o1 1130111 SO PSPPSR 113
FILE IMIOAES. ...ttt ettt et e bt e et e e e st e e s anbeeesanbeeeeaas 113
Nested OULPUL STALEIMENIES.ecuiieiiieriiieiierie ettt ettt e ete et ee st e et esbeesseeeenbeeeenseeeensseeeannnes 113
2521 401 o) (TP SRURPPRR 113
PACKAZE().t eeeeeentie ettt ettt ettt et e ettt et e et e e he e et e e ate et e e bt e e abe e tteeabeenheeenbeennteenbeeenteenbeanes 114
Check 1f there 1S @ PACKAZE......ccviiieiie e et e e e e eae e e ennenes 114
EXAMIPIC.....einiiiitiee ettt ettt et e et e st e e te e e e nbeeeennteeeennaeeens 114
SCREIMATIC().veevvveeeitreeeiie et e eetee ettt e ettt e et e e et e e eteeesaseeesaseeessseeesseeensseeenssaeansseeanssaeanssaennsseennseeensseeens 114
Check if there 18 @ SCheMALIC.ccueiiiiiiieiii e et e e e ebeeeenes 115
Accessing schematic from @ BOArd...........cccueieeiiiiiiieeiiie e e e e e 115
ACCESS the CUITENT SNEET......cuiiiiiiiiiiiieic ettt s 115
2521 401 o) (< O SRURPPRRN 115
SREEL() e eveeeetee ettt ettt et e et bt e e tb e e et e e e taeeetaeeaaaeeabaeeabaeeatbeeeennraaaeeeaantraaeeeaanes 115
Check 1f there 15 @ ShEet.....c...oiiiiiiii e 116
25111010 (ST PP PPPRUPPR 116
57281100) TR 116
Check if there 18 @ SYMDOL........ooiuiiiiiiiieeii ettt e iaeenaeeen 116
2521 401 o) (<P URURPPRRN 116
DDHALOES. ¢ vt ettt ettt ettt et ettt ettt e ettt e e bt et e e b e e ateeabe e hte et e e tee et e e teeenbeeaseeenbeeneeeenneeas 116
Predefined DIalO@S.ccvvieiiie ettt et ettt e e st e et e e e eeenbaeesaaeennaeeenaeas 117
a1 Fed DT CTor 0] o () OO 117
2521 401 o) (<P PRRURPPRR 117
dlgFileOpen(), dIGFTESAVE().....c.ueiiiiiieiiieieeie ettt ettt et e e e e ennnee s 117
2521 401 o) (<P URRURPPRRN 118
AIGMESSAZEBOX().veeuveeeiitentieeit ettt ettt ettt ettt e et e st e et esaee et eeeaeesabeessteenbeennaeenbeeneesnbeeeennreeas 118
2521 401 o) (TP SRURPPRR 119
DiALOZ ODJECTS. ..ccuvieeiiieiieeiiieiee ettt ettt e et e st e et e ste e e bt esateeabeesateesseessbesaseeesbeenbeaasseeanseeesanseeesanseeas 119
&1 e O] | P PUPSRPPRPR 120
25 111010 (ST USSR 120
AIGCRECKBOX. ... eiiiiiiieciie ettt e et e e e tae e et e e sstaeessseeessseeessseeessseeeasseeeeeansnssneeeeanes 120
25 111010 (ST USSP 121
L4100 53] 0T0) 370). <SPPSR 121
25 111010 (ST USSP 121
(a1 Fed D 31 (o SR PRPPPPRPR 121
EXAMIPIES. ...ttt et ettt et e he e et e e teeeabe e bt e enbeeseeenteeenn 122
AIGGTIALAYOUL......eeiiiie ettt et e et e e et ee e sabeeessaee e saeeesseesssseesannssaeeeeesnsssneeeeannes 122
25 111010 (ST USSP 122
ALEGTOUP. ...ttt et e ettt e et e e et e e e saeesasaeesssaeeasseeessaeanssaeanssaeasssaessseeennsneeeeannes 123
25 111010 (ST USSP 123
AIGHBOXLAYOUL.ttiieiieeeiie ettt et e et e et e e et e e esteeessseeeessaeessseeessseeessseeeeeansssnneeeennes 123
25 111010 (ST USSP 123

(a1 Fed 114 2 B L SR PURSPPPRP 124

EXAMIPIC.....eoiiiiiieee e et ettt et e bt et e ebe e e e tbeeeeannee e e 124

(a1 I o) PSSP USRPPPRR 124
EXAMIPIC.....eiiiieiieee ettt ettt ettt ettt e enbe e e e tbeeeennreeeennes 124
(a1 1511 27) SRR PUPRPTPPRPR 125
25 111010 (ST USSP 125
L& 1o 195 TS Y 15O PPPROPUPPRRN 125
EXAMIPIC.....eoiiieieee et ettt et et et e e b e e e tbeeeennreeeennes 126
AIGPUSHBULION. ..ottt e et e et e e eabeeeaaeeesnsbaeeeeeasnsneeaeennes 126
25 111010 (ST USSR 127
AIGRAAIOBULION.ceiiiiiiiiiecee e ettt e et e e e te e e st e e e s sbee e ssaeennsaeenssaeenssaaeas 127
25 111010) (ST USRS 128
AIGREAIEMIL.....cceiieeiiiecee ettt e et e e st e e sbee e sbeeessaeeessaeesnsaeesnssnaaeesannnes 128
25 111010 (ST PSPPSR 128
AIESPACIIIG. ..ottt e et e e et e e et e e eate e e taeessseeesssaeeasseeeasseeeansaeeeeasnsneeeeeanes 128
25 111010 (ST USRS PP 128
Qe 0311137) U PRRRPPPRRN 129
EXAMIPIC.....eoiiieieee et ettt et et et e e b e e e tbeeeennreeeennes 129
L& e o 1S (o] o ST PRP 129
25 111010 (ST USSP 129
AIGSHINGEIL....co ettt e et et e e st e e st e e e s nbe e e sbeeennsaeessaeensaaens 129
25 111010 (ST USSR 130
L&D 21 o) oS UPPRUPPPRR 130
25 111010 (ST TP PRT SRR 130
AIGTADWIAZEL. ...t et e et e e eae e et eeesaeeeabeeesaeeeessnssaaeeeennsssaaaesannnes 130
25 111010 (ST PSPPSR 131
L& £ 214 AP PRRPPPRRN 131
EXAMIPIC.....eiiiieiieee ettt ettt ettt ettt e enbe e e e tbeeeennreeeennes 131
AIETEXEVIEW....eeeeieeeie ettt ettt e et e e st e e st eessteeesssee e sseeessaeenssaeenssaeenssaesnsseennsseennseeens 131
25 111010 (ST USSP 132
AIGVBOXLAYOUL......viiieiieeeiie ettt e et e et e e et eesstaeessseeesssaeessseeessseeessseeeeeansssseeeeeanes 132
25 111010 (ST USSP 132
Layout INfOTMATION.c..eiiiiiieiieeciee ettt e et e et eetbeeetaeesstaeeensaeesasaeesaseeennseeensseeeannes 132
GT1d LaYOUL CONTEXL....eieutiiiiiieiieiiieiie et ertte et et e st esteesateebeesebeeseesnseeseesaseeseesnseennseeesnnseeesnnees 132
Horizontal Layout CONtEXL........c.ueiiiiiiiiieiiiieeeiee et et et e e ette e s teeesteeesaeeessaeeeeeennnsaeeeesennssnns 133
Vertical Layout COMEEXL........eiiuiiiiieiieiiieeieet ettt sttt ettt e st e e beesiteesbeessaeebeesneeennseeeensaeeens 133
MiXING LaYOUL CONEXES. .. .vieiiiieiieiieiiieeeiieeeteeesteeesteeesteeessaeessaeesseeessseeeasseeessseeensssseeessensssees 133
DiIAlOZ FUNCHONS.tieiiieiii ettt ettt et et e et e et eeabe e seesnbeeseeeenaseeeenssaeeennseeeennees 133
Qe N1 o1 1 TSRS PRPPPRPRN 133
25 111010 (ST USSR 134
(a1 Fed NTe] o]) () TP PROPPPRRN 134
25 111010 (ST USSP 134
(a1 NS 1 () S SUPRPPPRPRN 135
25 111010 (ST USSP 135
(a1 N <o 1 TSP PRPRPPRPR 135
25 111010 (ST USSR 136
dIgSelectioNCRANGEA(). .. vveeerreeeiieeiiee ettt ettt e et e e ste e et eetaeeeaaeeesseeessseeesssseaeeesnnnsnaaeesannnns 136
25 111010 (ST USSP 136
o o Tl O 1 1 2 Tt 1) RSP PRRPPPRRN 137
A CompPlete EXAMPIE.......ooiiiiiiiiiieiiecie ettt ettt ettt e et e et e et e bt e enbeenree s 137

SUPPOTEEA HTIML taZS......uiiiiiiieeiieeeiie ettt ettt et s e e et e e s sbaeessbeeesaeeensssaeaeeennnneeeas 138

User Language

The EAGLE User Language can be used to access the EAGLE data structures and to create a wide
variety of output files.

To use this feature you have to write a User Language Program (ULP), and then execute it.
The following sections describe the EAGLE User Language in detail:

Syntax lists the rules a ULP file has to follow
Data Types defines the basic data types
Object Types defines the EAGLE objects

Definitions shows how to write a definition
Operators lists the valid operators
Expressions shows how to write expressions
Statements defines the valid statements
Builtins lists the builtin constants, functions etc.
. shows how to implement a graphical frontent to a
Dialogs ULP

Writing a ULP

A User Language Program is a plain text file which is written in a C-like syntax. User Language
Programs use the extension . ulp. You can create a ULP file with any text editor (provided it does
not insert any additional control characters into the file) or you can use the builtin text editor.

A User Language Program consists of two major items, definitions and statements.

Definitions are used to define constants, variables and functions to be used by statements.

A simple ULP could look like this:

#usage "Add the characters in the word 'Hello'\n"
"Usage: RUN sample.ulp"

// Definitions:
string hello = "Hello";
int count(string s)
{

int ¢ = 0;

for (int i = 0; s[i]; ++1)

c += s[i];
return c;

}

// Statements:

output ("sample") {
printf ("Count is: %d\n", count (hello));
}

If the #usage directive is present, its value will be used in the Control Panel to display a
description of the program.

If the result of the ULP shall be a specific command that shall be executed in the editor window, the
exit () function can be used to send that command to the editor window.

Executing a ULP

User Language Programs are executed by the RUN command from an editor window's command

line.

A ULP can return information on whether it has run successfully or not. You can use the exit ()
function to terminate the program and set the return value.

A return value of 0 means the ULP has ended "normally" (i.e. successfully), while any other value
is considered as an abnormal program termination.

The default return value of any ULP is 0.

When the RUN command is executed as part of a script file, the script is terminated if the ULP has
exited with a return value other than 0.

A special variant of the exit () function can be used to send a command to the editor window as a
result of the ULP.

Syntax

The basic building blocks of a User Language Program are

» Whitespace
¢ Comments

e Directives

* Keywords
e Identifiers

* Constants
* Punctuators

All of these have to follow certain syntactical rules, which are described in their respective sections.

Whitespace

Before a User Language Program can be executed, it has to be read in from a file. During this read
in process, the file contents is parsed into tokens and whitespace.

Any spaces (blanks), tabs, newline characters and comments are considered whitespace and are
discarded.

The only place where ASCII characters representing whitespace are not discarded is within literal
strings, like in
string s = "Hello World";

where the blank character between 'o' and 'W' remains part of the string.

If the final newline character of a line is preceded by a backslash (\), the backslash and newline
character are both discarded, and the two lines are treated as one line:

"Hello \

World"

is parsed as "Hello World"

Comments

When writing a User Language Program it is good practice to add some descriptive text, giving the

reader an idea about what this particular ULP does. You might also want to add your name (and, if
available, your email address) to the ULP file, so that other people who use your program could
contact you in case they have a problem or would like to suggest an improvement.

There are two ways to define a comment. The first one uses the syntax

/* some comment text */

which marks any characters between (and including) the opening /* and the closing */ as
comment. Such comments may expand over more than one lines, as in

/* This 1is a
multi line comment

*/

but they do not nest. The first */ that follows any /* will end the comment.

The second way to define a comment uses the syntax

int i; // some comment text

which marks any characters after (and including) the // and up to (but not including) the newline
character at the end of the line as comment.

Directives

The following directives are available:

#include
#require
#usage

#include

A User Language Program can reuse code in other ULP files through the # include directive. The
syntax is

#include "filename"

The file £ilename is first looked for in the same directory as the current source file (that is the file
that contains the # include directive). If it is not found there, it is searched for in the directories
contained in the ULP directory path.

The maximum include depth is 10.

Each #include directive is processed only once. This makes sure that there are no multiple
definitions of the same variables or functions, which would cause errors.

Portability note

[Wpy If filename contains a directory path, it is best to always use the forward slash as directory
I, separator (even under Windows!). Windows drive letters should be avoided. This way a
User Language Program will run on all platforms.

#require

Over time it may happen that newer versions of EAGLE implement new or modified User
Language features, which can cause error messages when such a ULP is run from an older version
of EAGLE. In order to give the user a dedicated message that this ULP requires at least a certain
version of EAGLE, a ULP can contain the # require directive. The syntax is

#require version

The version must be given as a real constant of the form
V.RRrr

where V is the version number, RR is the release number and rr is the (optional) revision number
(both padded with leading zeros if they are less than 10). For example, if a ULP requires at least
EAGLE version 4.11106 (which is the beta version that first implemented the #require
directive), it could use

#require 4.1106

The proper directive for version 5.1.2 would be
#require 5.0102

#usage

Every User Language Program should contain information about its function, how to use it and
maybe who wrote it.
The directive

#usage text [, text...]

implements a standard way to make this information available.

If the #usage directive is present, its text (which has to be a string constant) will be used in the
Control Panel to display a description of the program.

In case the ULP needs to use this information in, for example, a digMessageBox(), the text is
available to the program through the builtin constant usage.

Only the #usage directive of the main program file (that is the one started with the RUN
command) will take effect. Therefore pure include files can (and should!) also have #usage
directives of their own.

It is best to have the #usage directive at the beginning of the file, so that the Control Panel doesn't
have to parse all the rest of the text when looking for the information to display.

If the usage information shall be made available in several langauges, the texts of the individual
languages have to be separated by commas. Each of these texts has to start with the two letter code
of the respective language (as delivered by the language() function), followed by a colon and any
number of blanks. If no suitable text is found for the language used on the actual system, the first
given text will be used (this one should generally be English in order to make the program
accessible to the largest number of users).

Example

#usage "en: A sample ULP\n"

"Implements an example that shows how to use the EAGLE User
Language\n"

"Usage: RUN sample.ulp\n"

"Author: john@home.org",

"de: Beispiel eines ULPs\n"

"Implementiert ein Beispiel das zeigt, wie man die EAGLE User
Language benutzt\n"

"Aufruf: RUN sample.ulp\n"

"Author: john@home.org"

Keywords

The following keywords are reserved for special purposes and must not be used as normal identifier
names:

break
case
char
continue
default

In addition, the names of builtins and object types are also reserved and must not be used as
identifier names.

Identifiers

An identifier is a name that is used to introduce a user defined constant, variable or function.

Identifiers consist of a sequence of letters (a b c...,A B C...), digits (1 2 3...) and underscores
(). The first character of an identifier must be a letter or an underscore.

Identifiers are case-sensitive, which means that

int Number, number;

would define two different integer variables.

The maximum length of an identifier is 100 characters, and all of these are significant.

Constants

Constants are literal data items written into a User Language Program. According to the different
data types, there are also different types of constants.

* Character constants
* Integer constants

* Real constants

* String constants

Character Constants

A character constant consists of a single character or an escape sequence enclosed in single quotes,
like

The type of a character constant is char.

Integer Constants

Depending on the first (and possibly the second) character, an integer constant is assumed to be
expressed in different base values:

first second constant interpreted as

0 1-7 octal (base 8)
0 x, X hexadecimal (base 16)
1-9 decimal (base 10)

The type of an integer constant is int.

Examples
16 decimal
020 octal

0x10 hexadecimal

Real Constants

A real constant follows the general pattern

[-]lint.fraclel|E[+]exp]

which stands for

* optional sign

* decimal integer

* decimal point

* decimal fraction

* eorE and a signed integer exponent

You can omit either the decimal integer or the decimal fraction (but not both). You can omit either

the decimal point or the letter e or E and the signed integer exponent (but not both).

The type of an real constant is real.

Examples

Constant Value
23.45e6 23.45x 1076
.0 0.0

0. 0.0

1. 1.0

-1.23 -1.23

2e-5 2.0x 10"-5
3E+10 3.0x 10"10

.09E34 0.09 x 10734

String Constants

A string constant consists of a sequence of characters or escape sequences enclosed in double
quotes, like

"Hello world\n"

The type of a string constant is st ring.

String constants can be of any length (provided there is enough free memory available).
String constants can be concatenated by simply writing them next to each other to form larger
strings:

string s = "Hello" " world\n";

It is also possible to extend a string constant over more than one line by escaping the newline
character with a backslash (\):

string s = "Hello \
world\n";

Escape Sequences

An escape sequence consists of a backslash (\), followed by one or more special characters:

Sequence Value

\a audible bell
\b backspace

\f form feed

\n new line

\r carriage return
\t horizontal tab
\v vertical tab

AN\ backslash

\' single quote

\" double quote

O =up to 3 octal

digits

\xH H =up to 2 hex digits

Any character following the initial backslash that is not mentioned in this list will be treated as that
character (without the backslash).

\O

Escape sequences can be used in character constants and string constants.

Examples

'\n'
"A tab\tinside a text\n"
"Ring the bellla\n"

Punctuators

The punctuators used in a User Language Program are

[] Brackets
Parentheses

{} Braces

’ Comma

; Semicolon
Colon

= Equal sign
Other special characters are used as operators in a ULP.

Brackets

Brackets are used in array definitions

int ail]l;

in array subscripts

n = ail2];

and in string subscripts to access the individual characters of a string

"Hello world";

string s =
= s[2];

char c¢

Parentheses

Parentheses group expressions (possibly altering normal operator precedence), isolate conditional
expressions, and indicate function calls and function parameters:

d=c* (a + b);

if (d == z) ++x;

func();

void func2(int n) { ... }

Braces

Braces indicate the start and end of a compound statement:

if (d == z) {
++x;
func () ;

}

and are also used to group the values of an array initializer:
int ai[] = { 1, 2, 3 };

Comma

The comma separates the elements of a function argument list or the parameters of a function call:

int func(int n, real r, string s) { ... }
int 1 = func(l, 3.14, "abc");

It also delimits the values of an array initializer:
int aif]l = { 1, 2, 3 };

and it separates the elements of a variable definition:

int i, j, k;

Semicolon

The semicolon terminates a statement, as in

i=a+ b;

and it also delimits the init, test and increment expressions of a for statement:

for (int n = 0; n < 3; ++4+n) {
func (n) ;

}

Colon

The colon indicates the end of a label in a switch statement:

switch (c) {
case 'a': printf ("It was an 'a'\n"); break;
case 'b': printf ("It was a 'b'\n"); break;
default: printf("none of them\n");
}

Equal Sign
The equal sign separates variable definitions from initialization lists:
int 1 = 10;

char c[] = { 'a', 'b', 'c' };

It is also used as an assignment operator.

Data Types

A User Language Program can define variables of different types, representing the different kinds of
information available in the EAGLE data structures.

The four basic data types are

char for single characters
int for integral values
real for floating point
E— values

string for textual information

Besides these basic data types there are also high level Object Types, which represent the data
structures stored in the EAGLE data files.

The special data type void is used only as a return type of a function, indicating that this function
does not return any value.

char

The data type char is used to store single characters, like the letters of the alphabet, or small
unsigned numbers.

A variable of type char has a size of 8 bit (one byte), and can store any value in the range
0..255.

See also Operators, Character Constants

int
The data type int is used to store signed integral values, like the coordinates of an object.

A variable of type int has a size of 32 bit (four byte), and can store any value in the range
-2147483648..2147483647.

See also Integer Constants

real

The data type real is used to store signed floating point values, like the grid distance.

A variable of type real has a size of 64 bit (eight byte), and can store any value in the range
+2.2e-308..+1.7e+308 with a precision of 15 digits.

See also Real Constants

string

The data type string is used to store textual information, like the name of a part or net.

A variable of type string is not limited in it's size (provided there is enough memory available).

Variables of type st ring are defined without an explicit size. They grow automatically as
necessary during program execution.

The elements of a st ring variable are of type char and can be accessed individually by using
[index]. The first character of a st ring has the index 0:

string s = "Layout";
printf ("Third char is: %c\n", s[2]);

This would print the character 'y '. Note that s [2] returns the third character of s!

See also Operators, Builtin Functions, String Constants

Implementation details
The data type st ring is actually implemented like native C-type zero terminated strings (i.e.
char[]). Looking at the following variable definition

string s = "abcde";

s [4] is the character 'e', and s [5] is the character ' \0', or the integer value 0x00. This fact
may be used to determine the end of a string without using the strlen () function, as in
for (int 1 = 0; s[i]; ++i) {

// do something with s[i]
}

It is also perfectly ok to "cut off" part of a string by "punching" a zero character into it:

string s = "abcde";
s[3] = 0;

This will result in s having the value "abc". Note that everything following the zero character will
actually be gone, and it won't come back by restoring the original character. The same applies to
any other operation that sets a character to 0, for instance --s[3].

Type Conversions

The result type of an arithmetic expression, such as a + b, where a and b are different arithmetic
types, is equal to the "larger" of the two operand types.

Arithmetic types are char, int and real (in that order). So if, e.g. a is of type int and b is of
type real, the result of the expression a + b would be real.

See also Typecast

Typecast

The result type of an arithmetic expression can be explicitly converted to a different arithmetic type
by applying a typecast to it.

The general syntax of a typecast is

type (expression)

where type is one of char, int or real, and expression is any arithmetic expression.

When typecasting a real expression to int, the fractional part of the value is truncated!

See also Type Conversions

Object Types

The EAGLE data structures are stored in three binary file types:

* Library (*.Ibr)
* Schematic (*.sch)
* Board (*.brd)

These data files contain a hierarchy of objects. In a User Language Program you can access these
hierarchies through their respective builtin access statements:
library (L) { ... }

schematic(S) { ... }
board(B) { ... }

These access statements set up a context within which you can access all of the objects contained in
the library, schematic or board.

The properties of these objects can be accessed through members.
There are two kinds of members:

* Data members
* Loop members

Data members immediately return the requested data from an object. For example, in

board (B) {
printf ("$s\n", B.name);

}

the data member name of the board object B returns the board's name.
Data members can also return other objects, as in
board (B) {

printf ("$f\n", B.grid.size);
}

where the board's grid data member returns a grid object, of which the size data member then
returns the grid's size.

Loop members are used to access multiple objects of the same kind, which are contained in a
higher level object:
board(B) {
B.elements (E) {
printf ("%$-8s %-8s\n", E.name, E.value);
}
}

This example uses the board's elements() loop member function to set up a loop through all of the
board's elements. The block following the B.elements (E) statement is executed in turn for each
element, and the current element can be referenced inside the block through the name E.

Loop members process objects in alpha-numerical order, provided they have a name.

A loop member function creates a variable of the type necessary to hold the requested objects. You
are free to use any valid name for such a variable, so the above example might also be written as

board (MyBoard) {
MyBoard.elements (TheCurrentElement) ({
printf ("%$-8s %-8s\n", TheCurrentElement.name, TheCurrentElement.value);

}

and would do the exact same thing. The scope of the variable created by a loop member function is
limited to the statement (or block) immediately following the loop function call.

Object hierarchy of a Library:

LIBRARY
GRID
LAYFR
DEVICESET
DEVICE
GATE
PACKAGE
CONTACT
PAD
SMD
CIRCLE
HOLE
RECTANGLE
FRAME
DIMENSTION
TEXT
WIRE
POLYGON
WIRE
SYMBOL
PIN
CIRCLE
RECTANGLE
FRAME
DIMENSTON
TEXT
WIRE
POLYGON
WIRE

Object hierarchy of a Schematic:

SCHEMATTIC
GRID
LAYFR
LIBRARY
ATTRIBUTE
VARTANTDEF
PART
ATTRIBUTE
VARTIANT
SHEET
CIRCLE
RECTANGLE
FRAME
DIMENSION
TEXT
WIRE
POLYGON
WIRE

INSTANCE
ATTRIBUTE
BUS
SEGMENT
LABEL
TEXT
WIRE
WIRE
NET
SEGMENT
JUNCTION
PINREF
TEXT
WIRE

Object hierarchy of a Board:

BOARD
GRID
LAYFR
LIBRARY
ATTRIBUTE
VARTANTDEF
CIRCLE
HOLE
RECTANGLE
FRAME
DIMENSION
TEXT
WIRE
POLYGON
WIRE
ELEMENT
ATTRIBUTE
VARTANT
SIGNAL
CONTACTREF
POLYGON
WIRE
Via
WIRE

UL_ARC

Data members
real (start angle,

anglel 55 359.9)

angle2 real (end angle, 0.0...719.
cap int (CAP_...)

layer int

radius int

width int

x1l, yl int (starting point)

x2, y2 int(end point)

xXc, yC int (center point)
See also UL_WIRE

9)

Constants

CAP_FLAT flat arc ends
CAP ROUND round arc ends

Note

Start and end angles are defined mathematically positive (i.e. counterclockwise), with anglel <
angle?. In order to assure this condition, the start and end point of an UL _ARC may be
exchanged with respect to the UL_WIRE the arc has been derived from.

Example

board (B) {
B.wires (W) {
if (W.arc)
printf ("Arc: (%d %d), (%d %d), (%d %d)\n",
W.arc.x1l, W.arc.yl, W.arc.x2, W.arc.y2, W.arc.xc, W.arc.yc);

UL _AREA

Data members
x1, yl it (lower left corner)
int (upper right
corner)
See also UL_BOARD, UL_DEVICE, UL_PACKAGE, UL_SHEET, UL_SYMBOL

A UL AREA is an abstract object which gives information about the area covered by an object. For
a UL PACKAGE or UL SYMBOL in a UL_ELEMENT or UL_INSTANCE context, respectively,
the area is given in absolute drawing coordinates, including the offset of the element or instance.

X2, Y2

Example
board (B) {
printf ("Area: (3%d %d), (%d %d)\n",

B.area.xl, B.area.yl, B.area.x2, B.area.y2);

}

UL_ATTRIBUTE

Data members
int (O=variable, i.e. allows overwriting, 1=constant - see

constant
note)
defaultvalue string (see note)
display int (ATTRIBUTE DISPLAY FLAG ...)
name string
text UL_TEXT (see note)
value string

See also UL_DEVICE, UL_PART, UL_INSTANCE, UL_ELEMENT

Constants

ATTRIBUTE DISPLAY FLAG OFF

ATTRIBUTE DISPLAY FLAG VALUE
ATTRIBUTE DISPLAY FLAG NAME

nothing is
displayed
value is displayed
name is displayed

A UL ATTRIBUTE can be used to access the attributes that have been defined in the library for a
device, or assigned to a part in the schematic or board.

Note

display contains a bitwise or'ed value consisting of ATTRIBUTE DISPLAY FLAG ... and
defines which parts of the attribute are actually drawn. This value is only valid if display is used
in a UL_INSTANCE or UL_ELEMENT context.

Ina UL_ELEMENT context constant only returns an actual value if f/b annotation is active,
otherwise it returns 0.

The defaultvalue member returns the value as defined in the library (if different from the
actual value, otherwise the same as value). Ina UL _ELEMENT context defaultvalue only
returns an actual value if f/b annotation is active, otherwise an empty string is returned.

The text member is only available in a UL INSTANCE or UL ELEMENT context and returns a
UL TEXT object that contains all the text parameters. The value of this text object is the string as it
will be displayed according to the UL ATTRIBUTE's 'display' parameter. If called from a different
context, the data of the returned UL _TEXT object is undefined.

For global attributes only name and value are defined.

Example

schematic (SCH) {
SCH.parts (P) {
P.attributes (A) {
printf ("%s = %$s\n",
}
}
}
schematic (SCH) {
SCH.attributes (A) { // global attributes
printf ("%$s = %s\n", A.name, A.value);
}
}

A.name, A.value);

UL_BOARD

Data members

area UL_AREA

description string

grid UL_GRID

headline string

name string (see
note)

Loop members

attributes ()

circles ()
classes ()
dimensions ()
elements ()
frames ()
holes ()
layers ()
libraries ()
polygons ()
rectangles ()
signals ()

texts ()
variantdefs ()

wires ()

UL_ATTRIBUTE (see
note)

UL _CIRCLE
UL_CLASS
UL_DIMENSION
UL_ELEMENT
UL_FRAME
UL_HOLE

UL _LAYER
UL_LIBRARY
UL_POLYGON
UL_RECTANGLE
UL_SIGNAL
UL_TEXT
UL_VARIANTDEF
UL_WIRE

See also UL_LIBRARY, UL _SCHEMATIC

Note

The name member returns the full file name, including the directory.

The attributes () loop member loops through the global attributes.

Example
board (B) {

B.elements (E) printf ("Element: %s\n", E.name);

B.signals (S)
}

UL BUS

Data members
name

Loop members
segments ()

See also UL_SHEET

Constants

BUS_NAME LENGT max. length of a bus name (obsolete - as from version 4 bus names can
H have any length)

Example

schematic (SCH) {
SCH.sheets (SH) {

printf ("Signal: %s\n", S.name);

string (BUS NAME LENGTH)

UL_SEGMENT

SH.busses (B) printf ("Bus: %$s\n", B.name);

}
}

UL _CIRCLE

Data members
layer int
radius int
width int
%,y @' (center
! point)
See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SYMBOL

Example

board (B) {
B.circles (C) {
printf ("Circle: (%d %d), r=%d, w=%d\n",
C.x, C.y, C.radius, C.width);
}
}

UL_CLASS

Data members

clearance [number] int (see note)

drill int

name string (see
note)

number int

width int

See also Design Rules, UL_NET, UL_SIGNAL, UL_SCHEMATIC, UL_BOARD

Note

The clearance member returns the clearance value between this net class and the net class with
the given number. If the number (and the square brackets) is ommitted, the net class's own clearance
value is returned. If a number is given, it must be between 0 and the number of this net class.

If the name member returns an empty string, the net class is not defined and therefore not in use by
any signal or net.

Example

board (B) {
B.signals (S) {
printf ("%$-10s %d %$s\n", S.name, S.class.number, S.class.name);

}
}

UL_CONTACT

Data members

name string (CONTACT NAME LENGTH)

pad UL _PAD

signal string

smd UL_SMD

X, Y int (center point, see note)

See also UL_PACKAGE, UL_PAD, UL_SMD, UL_CONTACTREF, UL_PINREF

Constants

CONTACT_NAME LENGT max. recommended length of a contact name (used in formatted
H output only)

Note

The signal data member returns the signal this contact is connected to (only available in a board
context).

The coordinates (x, v) of the contact depend on the context in which it is called:

 if the contact is derived from a UL LIBRARY context, the coordinates of the contact will be
the same as defined in the package drawing
* in all other cases, they will have the actual values from the board

Example

library (L) {
L.packages (PAC) {
PAC.contacts (C) {
printf ("Contact: '$s', (%d %d)\n",
C.name, C.x, C.y);
}
}
}

UL_CONTACTREF

Data members

contact UL _CONTACT

element UL _ELEMENT

route int (CONTACT ROUTE ...)
See also UL_SIGNAL, UL _PINREF

Constants

must explicitly route to all
contacts
CONTACT ROUTE ANY may route to any contact

CONTACT ROUTE ALL

Example

board (B) {
B.signals (S) {
printf ("Signal '%s'\n", S.name);

S.contactrefs (C) {
printf ("\t%s, %s\n", C.element.name, C.contact.name);
}
}
}

UL _DEVICE

Data members

area UL_AREA

description string

headline string

library string

name string (DEVICE_NAME LENGTH)
package UL_PACKAGE (see note)

prefix ﬂﬂgg(DEVICE_PREFIX_LENGTH)
technologies string (see note)

value string ("On" or "Oft™)

Loop members
UL_ATTRIBUTE (see
note)
gates () UL_GATE
See also UL_DEVICESET, UL _LIBRARY, UL _PART

attributes ()

Constants

max. recommended length of a device name (used in formatted
output only)

DEVICE_PREFIX LENGT max. recommended length of a device prefix (used in formatted

H output only)

All members of UL_DEVICE, except for name and technologies, return the same values as
the respective members of the UL DEVICESET in which the UL DEVICE has been defined. The
name member returns the name of the package variant this device has been created for using the
PACKAGE command. When using the description text keep in mind that it may contain
newline characters (' \n").

DEVICE NAME LENGTH

Note

The package data member returns the package that has been assigned to the device through a
PACKAGE command. It can be used as a boolean function to check whether a package has been
assigned to a device (see example below).

The value returned by the technologies member depends on the context in which it is called:

* if the device is derived from a UL DEVICESET, technologies will return a string
containing all of the device's technologies, separated by blanks

* if the device is derived from a UL PART, only the actual technology used by the part will be
returned.

The attributes () loop member takes an additional parameter that specifies for which
technology the attributes shall be delivered (see the second example below).

Examples

library (L) {
L.devicesets (S) {
S.devices (D) {
if (D.package)
printf ("Device: %s, Package: %$s\n", D.name, D.package.name);
D.gates (G) {
printf ("\t%s\n", G.name);
}
}
}
}

library (L) {
L.devicesets (DS) {
DS.devices (D) {
string tf[];
int n = strsplit(t, D.technologies, ' '");
for (int i = 0; 1 < n; 1i++) {
D.attributes (A, t[i]) {
printf ("%$s = %$s\n", A.name, A.value);

}
}

UL_DEVICESET

Data members

area UL_AREA

description string

headline string (see note)

library string

name string (DEVICE_NAME_LENGTH)
prefix ﬂﬁgg(DEVICE_PREFIX_LENGTH)
value string ("On" or "Oft")

Loop members
devices () UL_DEVICE
gates () UL_GATE
See also UL_DEVICE, UL _LIBRARY, UL_PART

Constants

max. recommended length of a device name (used in formatted
output only)
DEVICE_PREFIX LENGT max. recommended length of a device prefix (used in formatted
H output only)

DEVICE NAME LENGTH

Note

The description member returns the complete descriptive text as defined with the
DESCRIPTION command, while the headline member returns only the first line of the

description, without any HTML tags. When using the description text keep in mind that it may
contain newline characters (' \n").

Example

library (L) {
L.devicesets (D) {
printf ("Device set: %s, Description: %s\n", D.name, D.description);
D.gates (G) {
printf ("\t%s\n", G.name);
}
}
}

UL_DIMENSION

Data members
dtype int (DIMENSTION ...)
layer int
x1, yl1 int (first reference point)
x2, y2 int(second reference point)
%3, v3 @'(alignment reference
point)
Loop members
texts () UL_TEXT
wires () UL_WIRE
See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SYMBOL

Constants

DIMENSION PARALLEL linear dimension with parallel measurement line
DIMENSTON HORIZONTAL Ernlzar dimension with horizontal measurement
DIMENSION VERTICAL linear dimension with vertical measurement line
DIMENSION RADIUS radial dimension

DIMENSION DIAMETER diameter dimension

DIMENSION ANGLE angle dimension

DIMENSION LEADER an arbitrary pointer

Note

The texts () and wires () loop members loop through all the texts and wires the dimension
consists of.

Example

board (B) {
B.dimensions (D) {
printf ("Dimension: (%d %d), (%d %d), (%d %d)\n",
D.x1, D.yl, D.x2, D.y2, D.x3, D.y3);
}
}

UL_ELEMENT

Data members

angle real (0.0..359.9)
attributel[] string (see note)

column string (see note)

locked int

mirror int

name ﬂﬂgg(ELEMENT_NAME_LENGTH)
package UL_PACKAGE

populate int (O=do not populate, 1=populate)
row string (see note)

smashed int (see note)

spin int

value ﬂﬂgg(ELEMENT_VALUE_LENGTH)
X, Y int (origin point)

Loop members

attributes|() UL_ATTRIBUTE
UL_TEXT (see
note)

variants () UL_VARIANT
See also UL_BOARD, UL_CONTACTREF

texts ()

Constants

max. recommended length of an element name (used in formatted
output only)
ELEMENT_VALUE_LENGT max. recommended length of an element value (used in formatted
H output only)

ELEMENT NAME LENGTH

Note

The attribute [] member can be used to query a UL ELEMENT for the value of a given
attribute (see the second example below). The returned string is empty if there is no attribute by the
given name, or if this attribute is explicitly empty.

The texts () member only loops through those texts of the element that have been detached using
SMASH, and through the visible texts of any attributes assigned to this element. To process all texts
of an element (e.g. when drawing it), you have to loop through the element's own texts ()
member as well as the texts () member of the element's package.

angle defines how many degrees the element is rotated counterclockwise around its origin.

The column and row members return the column and row location within the frame in the board
drawing. If there is no frame in the drawing, or the element is placed outside the frame, a ' 2"
(question mark) is returned.

The smashed member tells whether the element is smashed. This function can also be used to find
out whether there is a detached text parameter by giving the name of that parameter in square
brackets, as in smashed ["VALUE"]. This is useful in case you want to select such a text with the
MOVE command by doing MOVE R5>VALUE. Valid parameter names are "NAME" and
"VALUE", as well as the names of any user defined attributes. They are treated case insensitive, and

they may be preceded by a '>' character.

Examples

board (B) {
B.elements (E) {
printf ("Element: %s, (%d %d), Package=%s\n",
E.name, E.x, E.y, E.package.name);
}
}

board (B) {
B.elements (E) {
if (E.attribute
printf ("%s:

["REMARK"])

%$s\n", E.name, E.attribute["REMARK"]):;
}

}

UL_FRAME

Data members
columns int(-127..127)

rows int (-26...26)

border int(FRAME BORDER ...)
layer int

x1, vyl int (lower left corner)

x2, y2 int (upper right corner)
Loop members
texts () UL_TEXT
wires () UL _WIRE
See also UL_BOARD, UL PACKAGE, UL _SHEET, UL SYMBOL

Constants

FRAME BORDER BOTTOM Ootom borderis

drawn
FRAME BORDER RIGHT right border is drawn
FRAME BORDER_ TOP top border is drawn
FRAME BORDER_ LEFT left border is drawn
Note
border contains a bitwise or'ed value consisting of FRAME BORDER . .. and defines which of

the four borders are actually drawn.

The texts () and wires () loop members loop through all the texts and wires the frame consists
of.

Example

board (B) {
B.frames (F) {
printf ("Frame: (%d %d), (%d %d)\n",

F.x1, F.yl, F.x2, F.y2);

UL_GATE

Data members

addlevel int (GATE_ADDLEVEL ...)
name ﬂﬁgg(GATE_NAME_LENGTH)
swaplevel int

symbol UL _SYMBOL

X, VY int (origin point, see note)

See also UL_DEVICE

Constants

GATE ADDLEVEL MUST must

GATE ADDLEVEL CAN can

GATE ADDLEVEL NEXT next

GATE ADDLEVEL REQUEST request

GATE ADDLEVEL ALWAYS always

GATE NAME LENGTH Igzlal?.) recommended length of a gate name (used in formatted output

Note

The coordinates of the origin point (x, y) are always those of the gate's position within the device,
even if the UL_GATE has been derived from a UL_INSTANCE.

Example

library (L) {
L.devices (D) {
printf ("Device: %s, Package: %$s\n", D.name, D.package.name);
D.gates (G) {
printf ("\t%s, swaplevel=%d, symbol=%s\n",
G.name, G.swaplevel, G.symbol.name);
}
}
}

UL_GRID

Data members
distance real

dots int (O=lines, 1=dots)
multiple int

on int (O=off, 1=on)

unit int (GRID_UNIT ...)

unitdist int(GRID UNIT ...)

See also UL_BOARD, UL_LIBRARY, UL_SCHEMATIC, Unit Conversions

Constants
GRID UNIT MIC microns
GRID UNIT MM millimeter

GRID UNIT MIL mil
GRID UNIT INCH inch

Note

unitdist returns the grid unit that was set to define the actual grid size (returned by
distance), while unit returns the grid unit that is used to display values or interpret user input.

Example

board (B) {
printf ("Gridsize=%f\n", B.grid.distance);

}

UL _HOLE

Data members

diameter[layer] int (see note)
drill int
drillsymbol int

int (center
X, :

point)

See also UL_BOARD, UL_PACKAGE

Note

diameter[] is only defined vor layers LAYER TSTOP and LAYER BSTOP and returns the
diameter of the solder stop mask in the given layer.

drillsymbol returns the number of the drill symbol that has been assigned to this drill diameter
(see the manual for a list of defined drill symbols). A value of 0 means that no symbol has been
assigned to this drill diameter.

Example

board (B) {
B.holes (H) {
printf ("Hole: (%d %d), drill=%d\n",
H.x, H.y, H.drill);
}
}

UL_INSTANCE

Data members

angle real (0, 90, 180 and 270)

column string (see note)

gate UL_GATE

mirror int

name string (INSTANCE_NAME LENGTH)
row string (see note)

sheet int (O=unused, >0=sheet number)
smashed int (see note)

value string (PART VALUE LENGTH)

X, Y int (origin point)

Loop members
UL_ATTRIBUTE (see

attributes ()

note)
texts () UL_TEXT (see note)
xrefs () UL_GATE (see note)

See also UL_PART, UL _PINREF

Constants

INSTANCE_NAME_ LENG max. recommended length of an instance name (used in formatted
TH output only)
max. recommended length of a part value (instances do not have a

PART VALUE LENGTH .
— — value of their own!)

Note

The attributes () member only loops through those attributes that have been explicitly
assigned to this instance (including smashed attributes).

The texts () member only loops through those texts of the instance that have been detached
using SMASH, and through the visible texts of any attributes assigned to this instance. To process
all texts of an instance, you have to loop through the instance's own texts () member as well as
the texts () member of the instance's gate's symbol. If attributes have been assigned to an
instance, texts () delivers their texts in the form as they are currently visible.

The column and row members return the column and row location within the frame on the sheet
on which this instance is invoked. If there is no frame on that sheet, or the instance is placed outside
the frame, a ' ?' (question mark) is returned. These members can only be used in a sheet context.

The smashed member tells whether the instance is smashed. This function can also be used to find
out whether there is a detached text parameter by giving the name of that parameter in square
brackets, as in smashed ["VALUE"]. This is useful in case you want to select such a text with the
MOVE command by doing MOVE R5>VALUE. Valid parameter names are "NAME", "VALUE",
"PART" and "GATE", as well as the names of any user defined attributes. They are treated case
insensitive, and they may be preceded by a ' >' character.

The xrefs () member loops through the contact cross-reference gates of this instance. These are
only of importance if the ULP is going to create a drawing of some sort (for instance a DXF file).

Example

schematic (S) {
S.parts (P) {
printf ("Part: %$s\n", P.name);
P.instances (I) {
if (I.sheet != 0)
printf ("\t%s used on sheet %d\n", I.name, I.sheet);
}
}
}

UL_JUNCTION

Data members
diameter int
%, vy int (center
! point)
See also UL_SEGMENT

Example

schematic (SCH) {
SCH.sheets (SH) {
SH.nets (N) {
N.segments (SEG) {
SEG.Jjunctions (J) {
printf ("Junction: (%d %d)\n", J.x, J.vy);

UL _LABEL

Data members
angle real (0.0..359.9)

layer nt

mirror int

spin int

text UL _TEXT

X, Y int (origin point)

wref int (O=plain, 1=cross-
reference)

Loop members

UL_WIRE (see
note)

See also UL_SEGMENT

wires ()

Note

If xref returns a non-zero value, the wires () loop member loops through the wires that form the
flag of a cross-reference label. Otherwise it is an empty loop.

The angle, layer, mirror and spin members always return the same values as those of the
UL TEXT object returned by the text member. The x and y members of the text return slightly
offset values for cross-reference labels (non-zero xre f), otherwise they also return the same values
as the UL LABEL.

xref is only meaningful for net labels. For bus labels it always returns 0.

Example

sheet (SH) {
SH.nets (N) {
N.segments (S) {
S.labels (L) {
printf ("Label: %d %d '%s'\n", L.x, L.y, L.text.value);
}
}
}
}

UL_LAYER

Data members

color int

fill int

name string (LAYER NAME LENGTH)
number int

used int (O=unused, 1=used)

visible int (O=off, 1=0n)
See also UL_BOARD, UL_LIBRARY, UL_SCHEMATIC

Constants

LAYER NAME LENGTH max. recommended length of a layer name (used in formatted output

only)
LAYER TOP layer numbers
LAYER BOTTOM
LAYER PADS
LAYER VIAS

LAYER UNROUTED
LAYER DIMENSION
LAYER TPLACE
LAYER BPLACE
LAYER TORIGINS
LAYER BORIGINS
LAYER TNAMES
LAYER BNAMES
LAYER TVALUES

LAYER BVALUES
LAYER TSTOP
LAYER BSTOP
LAYER TCREAM
LAYER BCREAM
LAYER TFINISH
LAYER BFINISH
LAYER TGLUE
LAYER BGLUE
LAYER TTEST
LAYER BTEST
LAYER TKEEPOUT
LAYER BKEEPOUT
LAYER TRESTRICT
LAYER BRESTRICT
LAYER VRESTRICT
LAYER DRILLS
LAYER HOLES
LAYER MILLING
LAYER MEASURES
LAYER DOCUMENT
LAYER REFERENCE
LAYER TDOCU
LAYER BDOCU
LAYER NETS
LAYER BUSSES
LAYER PINS
LAYER SYMBOLS
LAYER NAMES
LAYER VALUES
LAYER INFO
LAYER GUIDE
LAYER USER lowest number for user defined layers (100)

Example

board (B) {
B.layers (L) printf ("Layer %3d %s\n", L.number, L.name);

}

UL_LIBRARY

Data members
description string (see note)

grid UL_GRID
headline string
name string (LIBRARY NAME LENGTH, see note)

Loop members
devices () UL _DEVICE

devicesets () UL_DEVICESET

layers () UL _LAYER
packages () UL_PACKAGE
symbols () UL_SYMBOL

See also UL_BOARD, UL_SCHEMATIC

Constants

LIBRARY NAME_LENGT max. recommended length of a library name (used in formatted

H output only)

The devices () member loops through all the package variants and technologies of all

UL _DEVICESETs in the library, thus resulting in all the actual device variations available. The
devicesets () member only loops through the UL DEVICESETs, which in turn can be queried
for their UL DEVICE members.

Note

The description member returns the complete descriptive text as defined with the
DESCRIPTION command, while the headline member returns only the first line of the
description, without any HTML tags. When using the description text keep in mind that it may
contain newline characters (' \n"'). The description and headline information is only
available within a library drawing, not if the library is derived form a UL_BOARD or
UL_SCHEMATIC context.

If the library is derived form a UL_BOARD or UL_SCHEMATIC context, name returns the pure
library name (without path or extension). Otherwise it returns the full library file name.

Example

library (L) {
L.devices (D) printf ("Dev: %$s\n", D.name);
L.devicesets (D) printf("Dev: %s\n", D.name);
L.packages (P) printf ("Pac: %s\n", P.name);
L.symbols (S) printf ("Sym: %s\n", S.name);

}
schematic (S) {
S.libraries (L) printf ("Library: %$s\n", L.name);

}

UL NET

Data members
class UL_CLASS
column string (see note)

name string (NET NAME LENGTH)
row string (see note)

Loop members

pinrefs () UL_PINREF (see note)
UL_SEGMENT (see
note)
See also UL_SHEET, UL_SCHEMATIC

segments ()

Constants

max. recommended length of a net name (used in formatted output

NET NAME LENGTH
— — only)

Note

The pinrefs () loop member can only be used if the net is in a schematic context.
The segments () loop member can only be used if the net is in a sheet context.

The column and row members return the column and row locations within the frame on the sheet
on which this net is drawn. Since a net can extend over a certain area, each of these functions
returns two values, separated by a blank. In case of column these are the left- and rightmost
columns touched by the net, and in case of row it's the top- and bottommost row.

When determining the column and row of a net on a sheet, first the column and then the row within
that column is taken into account. Here XREF labels take precedence over normal labels, which
again take precedence over net wires.

If there is no frame on that sheet, "? 2" (two question marks) is returned. If any part of the net is
placed outside the frame, either of the values may be ' 2 ' (question mark). These members can
only be used in a sheet context.

Example

schematic (S) {
S.nets (N) {
printf ("Net: %s\n", N.name);
// N.segments (SEG) will NOT work here!
}
}
schematic(S) {
S.sheets (SH) {
SH.nets (N) {
printf ("Net: %$s\n", N.name);
N.segments (SEG) {
SEG.wires (W) {
printf ("\tWire: (%d %d) (%d %d)\n",
W.x1l, W.yl, W.x2, W.y2);

UL_PACKAGE

Data members

area UL_AREA

description string

headline string

library string

name string (PACKAGE NAME LENGTH)

Loop members
circles () UL _CIRCLE

contacts () UL_CONTACT
dimensions () UL_DIMENSION

frames () UL_FRAME
holes () UL _HOLE
polygons () UL_POLYGON

rectangles () UL_RECTANGLE
UL_TEXT (see
note)
wires () UL_WIRE
See also UL_DEVICE, UL_ELEMENT, UL_LIBRARY

texts ()

Constants

PACKAGE_NAME LENGT max. recommended length of a package name (used in formatted
H output only)

Note

The description member returns the complete descriptive text as defined with the
DESCRIPTION command, while the headl ine member returns only the first line of the
description, without any HTML tags. When using the description text keep in mind that it may
contain newline characters (' \n"').

If the UL PACKAGE is derived from a UL ELEMENT, the texts () member only loops through
the non-detached texts of that element.

Example

library (L) {
L.packages (PAC) {
printf ("Package: %$s\n", PAC.name);
PAC.contacts (C) {
if (C.pad)
printf ("\tPad: %s, (%d %d)\n",
C.name, C.pad.x, C.pad.y):;
else 1if (C.smd)
printf ("\tSmd: %s, (%d %d)\n",
C.name, C.smd.x, C.smd.y);
}
}
}
board (B) {
B.elements (E) {
printf ("Element: %s, Package: %s\n", E.name, E.package.name);
}
}

UL_PAD

Data members
angle real (0.0...359.9)
diameter[layer] int
drill int

drillsymbol int

elongation int

flags int (PAD_FLAG ...)

name Mg (PAD_NAME_LENGTH)
shape[layer] int (PAD SHAPE ...)
signal string

X, Yy int (center point, see note)

See also UL_PACKAGE, UL_CONTACT, UL_SMD

Constants

PAD FLAG STOP generate stop mask
PAD FLAG THERMALS generate thermals

PAD FLAG FIRST use special "first pad

shape
PAD SHAPE SQUARE square
PAD SHAPE ROUND round
PAD SHAPE OCTAGON octagon
PAD SHAPE LONG long
PAD SHAPE OFFSET offset
PAD_NAME_LENGT max. recommended length of a pad name (same as
H CONTACT NAME LENGTH)

Note

The parameters of the pad depend on the context in which it is accessed:

 if'the pad is derived from a UL_LIBRARY context, the coordinates (x, y)and angle will
be the same as defined in the package drawing
* in all other cases, they will have the actual values from the board

The diameter and shape of the pad depend on the layer for which they shall be retrieved, because
they may be different in each layer depending on the Design Rules. If one of the layers

LAYER TOP..LAYER BOTTOM, LAYER TSTOP or LAYER BSTOP is given as the index to
the diameter or shape data member, the resulting value will be calculated according to the Design
Rules. If LAYER PADS is given, the raw value as defined in the library will be returned.

drillsymbol returns the number of the drill symbol that has been assigned to this drill diameter
(see the manual for a list of defined drill symbols). A value of 0 means that no symbol has been
assigned to this drill diameter.

angle defines how many degrees the pad is rotated counterclockwise around its center.

elongation is only valid for shapes PAD_SHAPE LONG and PAD _SHAPE OFFSET and
defines how many percent the long side of such a pad is longer than its small side. This member
returns 0 for any other pad shapes.

The value returned by £1ags must be masked with the PAD FLAG ... constants to determine
the individual flag settings, as in

if (pad.flags & PAD FLAG STOP) ({

}

Note that if your ULP just wants to draw the objects, you don't need to check these flags explicitly.

The diameter[] and shape [] members will return the proper data; for instance, if

PAD FLAG STOPisset,diameter [LAYER TSTOP] will return O, which should result in
nothing being drawn in that layer. The £1ags member is mainly for ULPs that want to create script
files that create library objects.

Example

library (L) {
L.packages (PAC) {
PAC.contacts (C) {
if (C.pad)
printf ("Pad: '%s', (%d %d), d=%d\n",
C.name, C.pad.x, C.pad.y, C.pad.diameter[LAYER BOTTOM]) ;

UL_PART

Data members

attribute[] string (see note)

device UL_DEVICE

deviceset UL_DEVICESET

name ﬂﬂgg(PART_NAME_LENGTH)

int (0=do not populate,
1=populate)

value string (PART VALUE LENGTH)
Loop members

populate

UL_ATTRIBUTE (see

attributes ()

note)
instances () UL_INSTANCE (see note)
variants () UL_VARIANT

See also UL_SCHEMATIC, UL_SHEET

Constants

max. recommended length of a part name (used in formatted output
only)
max. recommended length of a part value (used in formatted output
only)

PART NAME LENGTH

PART VALUE LENGTH

Note

The attribute [] member can be used to query a UL _PART for the value of a given attribute
(see the second example below). The returned string is empty if there is no attribute by the given
name, or if this attribute is explicitly empty.

When looping through the attributes () of a UL PART, only the name, value,
defaultvalue and constant members of the resulting UL _ATTRIBUTE objects are valid.

If the part is in a sheet context, the instances () loop member loops only through those
instances that are actually used on that sheet. If the part is in a schematic context, all instances are

looped through.

Example

schematic (S) {
S.parts(P) printf ("Part:
}

%$s\n", P.name);

schematic (SCH) {
SCH.parts (P) {
if (P.attribute["REMARK"])

printf ("%$s: %$s\n", P.name, P.attribute["REMARK"]);

}
}

UL_PIN

Data members

Loop

angle
contact

direction
function
length
name

net

route
swaplevel
visible
X, ¥y
members
circles ()

contacts ()

texts ()
wires ()

real (0, 90, 180 and 270)
UL_CONTACT (deprecated, see
note)

int (PIN DIRECTION ...)
int (PIN FUNCTION FLAG ...)
int (PIN_LENGTH ...)

string (PIN_NAME LENGTH)
string (see note)

int (CONTACT ROUTE ...)

int

int (PIN VISIBLE FLAG ...)
int (connection point)

UL_CIRCLE
UL_CONTACT (see
note)

UL_TEXT
UL_WIRE

See also UL_SYMBOL, UL_PINREF, UL CONTACTREF

Constants

PIN DIRECTION NC
PIN DIRECTION IN
PIN DIRECTION OUT

PIN DIRECTION IO

PIN DIRECTION OC

PIN DIRECTION PWR
PIN DIRECTION PAS
PIN DIRECTION HIZ
PIN DIRECTION SUP

not connected

input

output (totem-pole)
in/output
(bidirectional)

open collector

power input pin
passive

high impedance output

supply pin

PIN FUNCTION FLAG NONE no symbol

PIN FUNCTION FLAG DOT inverter symbol
PIN FUNCTION FLAG CLK clock symbol
PIN LENGTH POINT no wire
PIN LENGTH SHORT 0.1 inch wire
PIN LENGTH MIDDLE 0.2 inch wire
PIN LENGTH LONG 0.3 inch wire
max. recommended length of a pin name (used in formatted output

PIN NAME LENGTH
- - only)

PIN VISIBLE FLAG OFF no name drawn

PIN VISIBLE FLAG PAD pad name drawn

PIN VISIBLE FLAG PIN pin name drawn
must explicitly route to all
contacts

CONTACT ROUTE ANY may route to any contact

CONTACT ROUTE ALL

Note

The contacts () loop member loops through the contacts that have been assigned to the pin
through a CONNECT command.

The contact data member returns the contact that has been assigned to the pin through a
CONNECT command. This member is deprecated! It will work for backwards compatibility and
as long as only one pad has been connected to the pin, but will cause a runtime error when used
with a pin that is connected to more than one pad.

The coordinates (and layer, in case of an SMD) of the contact returned by the contact data
member depend on the context in which it is called:

* if the pin is derived from a UL PART that is used on a sheet, and if there is a corresponding
element on the board, the resulting contact will have the coordinates as used on the board

* in all other cases, the coordinates of the contact will be the same as defined in the package
drawing

The name data member always returns the name of the pin as it was defined in the library, with any
'@ character for pins with the same name left intact (see the PIN command for details).

The texts loop member, on the other hand, returns the pin name (if it is visible) in the same way
as it is displayed in the current drawing type.

The net data member returns the name of the net to which this pin is connected (only available in a
schematic context).

Example

library (L) {
L.symbols (S) {
printf ("Symbol: %$s\n", S.name);

S.pins (P) {
printf ("\tPin: %s, (%d %d)", P.name, P.x, P.y);
if (P.direction == PIN_DIRECTION_IN)
printf (" input");
if ((P.function & PIN FUNCTION FLAG DOT) != 0)
printf (" inverted");

printf ("\n") ;
}

UL_PINREF

Data members
instance UL_INSTANCE
part UL_PART
pin UL_PIN
See also UL_SEGMENT, UL_CONTACTREF

Example

schematic (SCH) {
SCH.sheets (SH) {
printf ("Sheet: %d\n", SH.number);
SH.nets (N) {
printf ("\tNet: %s\n", N.name) ;
N.segments (SEG) {
SEG.pinrefs (P) {
printf ("connected to: %s, %s, %s\n",
P.part.name, P.instance.name, P.pin.name);

UL_POLYGON

Data members

isolate int

layer int

orphans int (0O=off, 1=on)

pour int (POLYGON POUR . ..)
rank int

spacing int

thermals int (O=off, 1=on)

width int

Loop members

contours () UL_WIRE (see

note)
fillings () UL_WIRE
wires () UL_WIRE

See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SIGNAL, UL_SYMBOL

Constants
POLYGON POUR SOLID solid
POLYGON POUR HATCH hatch

POLYGON POUR CUTOUT cutout

Note

The contours () and fillings () loop members loop through the wires that are used to draw
the calculated polygon if it is part of a signal and the polygon has been calculated by the
RATSNEST command. The wires () loop member always loops through the polygon wires as
they were drawn by the user. For an uncalculated signal polygon contours () does the same as
wires (),and fillings () does nothing.

If the contours () loop member is called without a second parameter, it loops through all of the
contour wires, regardless whether they belong to a positive or a negative polygon. If you are
interested in getting the positive and negative contour wires separately, you can call contours ()
with an additional integer parameter (see the second example below). The sign of that parameter
determines whether a positive or a negative polygon will be handled, and the value indicates the
index of that polygon. If there is no polygon with the given index, the statement will not be
executed. Another advantage of this method is that you don't need to determine the beginning and
end of a particular polygon yourself (by comparing coordinates). For any given index, the statement
will be executed for all the wires of that polygon. With the second parameter O the behavior is the
same as without a second parameter.

Polygon width

When using the fillings () loop member to get the fill wires of a solid polygon, make sure the
width of the polygon is not zero (actually it should be quite a bit larger than zero, for example at
least the hardware resolution of the output device you are going to draw on). Filling a polygon
with zero width may result in enormous amounts of data, since it will be calculated with the
smallest editor resolution of 1/10000mm!

Partial polygons

A calculated signal polygon may consist of several distinct parts (called positive polygons), each of
which can contain extrusions (negative polygons) resulting from other objects being subtracted
from the polygon. Negative polygons can again contain other positive polygons and so on.

The wires looped through by contours () always start with a positive polygon. To find out where
one partial polygon ends and the next one begins, simply store the (x1,y1) coordinates of the first
wire and check them against (x2,y2) of every following wire. As soon as these are equal, the last
wire of a partial polygon has been found. It is also guaranteed that the second point (x2,y2) of one
wire is identical to the first point (x1,y1) of the next wire in that partial polygon.

To find out where the "inside" and the "outside" of the polygon lays, take any contour wire and
imagine looking from its point (x1,y1) to (x2,y2). The "inside" of the polygon is always on the right
side of the wire. Note that if you simply want to draw the polygon you won't need all these details.

Example

board (B) {
B.signals (S) {
S.polygons (P) {
int x0, y0, first = 1;
P.contours (W) {
if (first) {
// a new partial polygon is starting
x0 W.x1;
y0 W.yl;

}
//

// do something with the wire

//
if (first)
first = 0;
else 1if (W.x2 == x0 && W.y2 == y0) {

// this was the last wire of the partial polygon,
// so the next wire (if any) will be the first wire
// of the next partial polygon

first = 1;

board (B) {
B.signals (S) {
S.polygons (P) {
// handle only the "positive" polygons:
int i = 1;
int active;
do {
active = 0;
P.contours (W, i) {
active = 1;
// do something with the wire
}
i++;
} while (active);

UL_RECTANGLE

Data members
angle real (0.0...359.9)

layer mt

x1, vyl int (lower left corner)

%2, y2 int (upper right
corner)

See also UL_BOARD, UL PACKAGE, UL_SHEET, UL_SYMBOL

angle defines how many degrees the rectangle is rotated counterclockwise around its center. The
center coordinates are given by (x1+x2) /2 and (y1+y2) /2.

Example

board (B) {
B.rectangles (R) {
printf ("Rectangle: (%d %d), (%d %d)\n",
R.x1, R.yl, R.x2, R.y2);
}
}

UL_SCHEMATIC

Data members

description string
grid UL_GRID
headline string
name string (see
note)
xreflabel string

Loop members

attributes ()

UL_ATTRIBUTE (see

note)
classes() UL_CLASS
layers() UL_LAYER
libraries () UL _LIBRARY
nets () UL _NET
parts () UL_PART
sheets () UL _SHEET

variantdefs ()

UL _VARIANTDEF

See also UL_BOARD, UL_LIBRARY

Note

The name member returns the full file name, including the directory.

The xreflabel member returns the format string used to display cross-reference labels.

The attributes () loop member loops through the global attributes.

Example

schematic (S) {
S.parts(P) printf ("Part:
}

%$s\n", P.name);

UL _SEGMENT

Loop members
junctions ()
labels ()
pinrefs ()

UL_JUNCTION (see note)
UL _LABEL
UL_PINREF (see note)
UL_TEXT (deprecated, see
note)

wires () UL_WIRE
See also UL_BUS, UL_NET

texts ()

Note

The junctions () and pinrefs () loop members are only available for net segments.

The texts () loop member was used in older EAGLE versions to loop through the labels of a

segment, and is only present for compatibility. It will not deliver the text of cross-reference labels at
the correct position. Use the 1abels () loop member to access a segment's labels.

Example

schematic (SCH) {
SCH.sheets (SH) {
printf ("Sheet: %d\n", SH.number);
SH.nets (N) {
printf ("\tNet: %s\n", N.name);
N.segments (SEG) {
SEG.pinrefs (P) {
printf ("connected to: %s, %s, %s\n",
P.part.name, P.instance.name, P.pin.name);

UL SHEET

Data members

area UL_AREA
description string
headline string
number int

Loop members
busses () UL_BUS
circles() UL_CIRCLE
dimensions () UL_DIMENSION
frames () UL_FRAME
instances () UL_INSTANCE
nets () UL_NET
polygons () UL_POLYGON
rectangles () UL_RECTANGLE
texts () UL_TEXT
wires () UL_WIRE

See also UL_SCHEMATIC

Example

schematic (SCH) {
SCH.sheets (S) {
printf ("Sheet: %d\n", S.number);
}
}

UL_SIGNAL

Data members

airwireshidden int

class UL_CLASS
name string (ST GNAL NAME LENGT H)

Loop members
contactrefs () UL_CONTACTREF

polygons () UL_POLYGON
vias () UL _VIA
wires () UL_WIRE

See also UL_BOARD

Constants
SIGNAL_NAME LENGT max. recommended length of a signal name (used in formatted output
H only)

Example

board (B) {
B.signals(S) printf("Signal: %$s\n", S.name);

}

UL _SMD

Data members

angle real (0.0...359.9)
dx[layer], dyl[layer] int (size)

flags int (SMD_FLAG ...)
layer int (see note)

name string (SMD NAME_LENGTH)
roundness int (see note)

signal string

X, Y int (center point, see note)

See also UL_PACKAGE, UL_CONTACT, UL_PAD

Constants

SMD FLAG STOP generate stop mask

SMD FLAG THERMALS generate thermals

SMD FLAG CREAM generate cream mask

SMD_NAME LENGT max. recommended length of an smd name (same as
H CONTACT_NAME_LENGTH)

Note

The parameters of the smd depend on the context in which it is accessed:

 if the smd is derived from a UL _LIBRARY context, the coordinates (x, v), angle,
layer and roundness of the smd will be the same as defined in the package drawing
* in all other cases, they will have the actual values from the board

If the dx and dy data members are called with an optional layer index, the data for that layer is

returned according to the Design Rules. Valid layers are LAYER TOP, LAYER TSTOP and
LAYER TCREAM for an smd in the Top layer, and LAYER BOTTOM, LAYER BSTOP and
LAYER BCREAM for an smd in the Bottom layer, respectively.

angle defines how many degrees the smd is rotated counterclockwise around its center.

The value returned by f1ags must be masked with the SMD FLAG ... constants to determine
the individual flag settings, as in

if (smd.flags & SMD FLAG STOP) {

}

Note that if your ULP just wants to draw the objects, you don't need to check these flags explicitly.
The dx [] and dy [] members will return the proper data; for instance, if SMD FLAG STOP is set,
dx [LAYER TSTOP] will return 0, which should result in nothing being drawn in that layer. The
flags member is mainly for ULPs that want to create script files that create library objects.

Example

library (L) {
L.packages (PAC) {
PAC.contacts (C) {

if (C.smd)
printf ("Smd: '%s', (%d %d), dx=%d, dy=%d\n",
C.name, C.smd.x, C.smd.y, C.smd.dx, C.smd.dy);
}
}
}
UL SYMBOL
Data members
area UL_AREA
description string
headline string
library string
name string (SYMBOL_NAME LENGTH)
Loop members
circles () UL _CIRCLE
dimensions () UL_DIMENSION
frames () UL_FRAME
rectangles () UL_RECTANGLE
pins () UL_PIN
polygons () UL_POLYGON
fexts () UL_TEXT (see
note)
wires () UL _WIRE

See also UL_GATE, UL_LIBRARY

Constants
SYMBOL NAME LENGT

max. recommended length of a symbol name (used in formatted

H output only)

Note

If the UL_SYMBOL is derived from a UL _INSTANCE, the texts () member only loops through
the non-detached texts of that instance.

Example

library (L) {
L.symbols (S) printf ("Sym: %$s\n", S.name);
}

UL _TEXT

Data members

align int (ALIGN ...)
angle real (0.0..359.9)
font int (FONT ...)
layer int
mirror int
ratio int
size int
spin int
value string
X,y int (origin point)
Loop members

. UL_WIRE (see

wires () =
note)

See also UL_BOARD, UL PACKAGE, UL_SHEET, UL_SYMBOL

Constants
FONT VECTOR vector font
FONT PROPORTIONAL ~ Proportional
— font

FONT FIXED fixed font
ALIGN BOTTOM LEFT bottom/left aligned
ALIGN BOTTOM CENTER POtom/center

— — aligned
ALIGN BOTTOM RIGHT bottom/right aligned
ALIGN_ CENTER LEFT center/left aligned
ALIGN CENTER centered
ALIGN CENTER RIGHT center/right aligned
ALIGN TOP LEFT top/left aligned
ALIGN TOP CENTER top/center aligned

ALIGN TOP RIGHT top/right aligned

Note

The wires () loop member always accesses the individual wires the text is composed of when
using the vector font, even if the actual font is not FONT VECTOR.

If the UL TEXT is derived from a UL_ELEMENT or UL INSTANCE context, the member values
will be those of the actual text as located in the board or sheet drawing.

Example

board (B) {
B.texts (T) {
printf ("Text: %$s\n", T.value);
}
}

UL_VARIANTDEF

Data members
name string
See also UL_VARIANT, UL_SCHEMATIC, UL_BOARD

Example

schematic (SCH) {
SCH.variantdefs (VD) {
printf ("Variant: '%$s'\n", VD.name) ;
}
}

UL_VARIANT

Data members
int (0O=do not populate,
I=populate)
value string
technology string
variantdef UL_VARIANTDEF
See also UL_VARIANTDEF, UL_PART, UL_ELEMENT

populate

Example

schematic (SCH) {
SCH.parts (P) {
P.variants (V) {
printf ("%$s: %$spopulate\n", V.variantdef.name, V.populate ? "" : "do not

}
}
}

UL VIA

Data members

diameter[layer] int

drill int

drillsymbol int

end int

flags int (VIA FLAG ...)
shape[layer] int (VIA SHAPE ...)
start int

X, int (center point)

See also UL_SIGNAL

Constants

VIA FLAG STOP always generate stop mask
VIA SHAPE SQUARE square

VIA SHAPE ROUND round

VIA SHAPE OCTAGON octagon

Note

The diameter and shape of the via depend on the layer for which they shall be retrieved, because
they may be different in each layer depending on the Design Rules. If one of the layers

LAYER TOP...LAYER BOTTOM, LAYER TSTOP or LAYER BSTOP is given as the index to
the diameter or shape data member, the resulting value will be calculated according to the Design
Rules. If LAYER VIAS is given, the raw value as defined in the via will be returned.

Note that diameter and shape will always return the diameter or shape that a via would have in
the given layer, even if that particular via doesn't cover that layer (or if that layer isn't used in the
layer setup at all).

start and end return the layer numbers in which that via starts and ends. The value of start
will always be less than that of end.

drillsymbol returns the number of the drill symbol that has been assigned to this drill diameter
(see the manual for a list of defined drill symbols). A value of 0 means that no symbol has been
assigned to this drill diameter.

Example

board (B) {
B.signals (S) {
S.vias (V) {
printf ("vVia: (%d %d)\n", V.x, V.y);
}
}
}

UL WIRE

Data members

arc UL_ARC

cap int (CAP ...)

curve real

layer int

style int (WIRE_STYLE ...)

width mnt
x1, yl int(starting point)
x2, y2 int(end point)
Loop members
UL_WIRE (see
note)
See also UL_BOARD, UL_PACKAGE, UL_SEGMENT, UL_SHEET, UL_SIGNAL,
UL_SYMBOL, UL_ARC

pieces ()

Constants

CAP_FLAT flat arc ends
CAP_ROUND round arc ends
WIRE STYLE CONTINUOUS continuous
WIRE STYLE LONGDASH long dash
WIRE STYLE SHORTDASH short dash
WIRE STYLE DASHDOT dash dot

Wire Style

A UL_WIRE that has a style other than WIRE STYLE CONTINUOUS can use the pieces ()

loop member to access the individual segments that constitute for example a dashed wire. If
pieces () iscalled fora UL_WIRE with WIRE STYLE CONTINUOUS, a single segment will be
accessible which is just the same as the original UL WIRE. The pieces () loop member can't be
called from a UL _WIRE that itself has been returned by a call to pieces () (this would cause an
infinite recursion).

Arcs at Wire level

Arcs are basically wires, with a few additional properties. At the first level arcs are treated exactly
the same as wires, meaning they have a start and an end point, a width, layer and wire style. In
addition to these an arc, at the wire level, has a cap and a curve parameter. cap defines whether the
arc endings are round or flat, and curve defines the "curvature" of the arc. The valid range for curve
is =360..+360, and its value means what part of a full circle the arc consists of. A value of 90, for
instance, would result in a 90 ° arc, while 180 would give you a semicircle. The maximum value of
360 can only be reached theoretically, since this would mean that the arc consists of a full circle,
which, because the start and end points have to lie on the circle, would have to have an infinitely
large diameter. Positive values for curve mean that the arc is drawn in a mathematically positive
sense (i.e. counterclockwise). If curve is 0, the arc is a straight line ("no curvature"), which is
actually a wire.

The cap parameter only has a meaning for actual arcs, and will always return CAP_ ROUND for a
straight wire.

Whether or not an UL WIRE is an arc can be determined by checking the boolean return value of
the arc data member. If it returns O, we have a straight wire, otherwise an arc. If arc returns a

non-zero value it may be further dereferenced to access the UL_ARC specific parameters start and
end angle, radius and center point. Note that you may only need these additional parameters if you
are going to draw the arc or process it in other ways where the actual shape is important.

Example

board (B) {
B.wires (W) {
printf ("Wire: (%d %d) (%d %d)\n",
W.x1l, W.yl, W.x2, W.y2);
}
}

Definitions

The data items to be used in a User Language Program must be defined before they can be used.

There are three kinds of definitions:

e Constant Definitions
e Variable Definitions
¢ Function Definitions

The scope of a constant or variable definition goes from the line in which it has been defined to the
end of the current block, or to the end of the User Language Program, if the definition appeared
outside any block.

The scope of a function definition goes from the closing brace (}) of the function body to the end of
the User Language Program.

Constant Definitions

Constants are defined using the keyword enum, as in

enum { a, b, c };

which would define the three constants a, b and c, giving them the values 0, 1 and 2, respectively.

Constants may also be initialized to specific values, like

enum { a, b =5, ¢ };

where a would be 0, b would be 5 and ¢ would be 6.

Variable Definitions

The general syntax of a variable definition is

[numeric] type identifier [= initializer][, ...];

where type is one of the data or object types, identifier is the name of the variable, and
initializer is a optional initial value.

Multiple variable definitions of the same t ype are separated by commas (,).

If identifier is followed by a pair of brackets ([]), this defines an array of variables of the

given type. The size of an array is automatically adjusted at runtime.

The optional keyword numeric can be used with string arrays to have them sorted
alphanumerically by the sort() function.

By default (if no initializer is present), data variables are set to O (or "", in case of a string),
and object variables are "invalid".

Examples
int 1i; defines an int variable named 1
string s = "Hello"; defines a string variable named s and initializes it to "Hello"
defines three real variables named a, b and c, initializing b to the
real a, b = 1.0, c;
value 1.0
int n[] = { 1, 2, defines an array of int, initializing the first three elements to 1, 2
3} and 3
numeric string))
names[]; defines a string array that can be sorted alphanumerically
UL WIRE w; defines a UL_WIRE object named w

The members of array elements of object types can't be accessed directly:
UL SIGNAL signals[];

UL SIGNAL s = signals[O0];
printf ("%$s", s.name);

Function Definitions

You can write your own User Language functions and call them just like the Builtin Functions.

The general syntax of a function definition is

type identifier (parameters)

{

statements

}

where t ype is one of the data or object types, identifier is the name of the function,
parameters is a list of comma separated parameter definitions, and statements is a sequence
of statements.

Functions that do not return a value have the type void.

A function must be defined before it can be called, and function calls can not be recursive (a
function cannot call itself).

The statements in the function body may modify the values of the parameters, but this will not have
any effect on the arguments of the function call.

Execution of a function can be terminated by the return statement. Without any return
statement the function body is executed until it's closing brace (}).

A call to the exit () function will terminate the entire User Language Program.

The special function main ()

If your User Language Program contains a function called main (), that function will be explicitly
called as the main function, and it's return value will be the return value of the program.

Command line arguments are available to the program through the global Builtin Variables argc
and argv.

Example

int CountDots (string s)
{
int dots = 0;
for (int i =
if (s[1i]
++dots;
return dots;
}
string dotted = "This.has.dots...";
output ("test") {
printf ("Number of dots: %d\n",
CountDots (dotted)) ;

0; s[i]; ++1i)
— v.v)

}

Operators

The following table lists all of the User Language operators, in order of their precedence (Unary
having the highest precedence, Comma the lowest):

Unary L
Multiplicative * / %
Additive -

Shift << >>
Relational L <= > >=
Equality
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional
Assignment
Comma
Associativity is left to right for all operators, except for Unary, Conditional and Assignment, which
are right to left associative.

*
I

k |||:\.J':|§|—|>|Q"

The normal operator precedence can be altered by the use of parentheses.

Bitwise Operators

Bitwise operators work only with data types char and int.

Unary
~ Bitwise (1's)

complement

Binary

<< Shift left

>> Shift right

& Bitwise AND

~ Bitwise XOR

| Bitwise OR
Assignment

&= Assign bitwise AND
A= Assign bitwise XOR
| = Assign bitwise OR
<<= Assign left shift
>>= Assign right shift

Logical Operators

Logical operators work with expressions of any data type.

Unary
! Logical NOT
Binary
Logical
“& AND
| | Logical OR

Using a st ring expression with a logical operator checks whether the string is empty.

Using an Object Type with a logical operator checks whether that object contains valid data.

Comparison Operators
Comparison operators work with expressions of any data type, except Object Types.

< Less than

<= Less than or equal to

> Greater than

o Greater than or equal
to

== Equalto

'= Notequal to

Evaluation Operators

Evaluation operators are used to evaluate expressions based on a condition, or to group a sequence
of expressions and have them evaluated as one expression.

?: Conditional

’ Comma

The Conditional operator is used to make a decision within an expression, as in
int a;

// ...code that calculates 'a'

string s = a ? "True" : "False";

which is basically the same as

int a;
string s;
// ...code that calculates 'a'
if (a)
s = "True";
else
s = "False";

but the advantage of the conditional operator is that it can be used in an expression.

The Comma operator is used to evaluate a sequence of expressions from left to right, using the type
and value of the right operand as the result.

Note that arguments in a function call as well as multiple variable declarations also use commas as
delimiters, but in that case this is not a comma operator!

Arithmetic Operators

Arithmetic operators work with data types char, int and real (except for ++, ——, $ and %=).
Unary

+ Unary plus

- Unary minus

++ Pre- or postincrement
-- Pre- or postdecrement
Binary

* Multiply

/ Divide

% Remainder (modulus)
+ Binary plus

- Binary minus
Assignment

= Simple assignment
*= Assign product

/= Assign quotient

o_ Assign remainder

o (modulus)

+= Assign sum

-= Assign difference
See also String Operators

String Operators

String operators work with data types char, int and string. The left operand must always be of
type string.

Binary

+ Concatenation

Assignment

= Simple assignment

+= Append to string

The + operator concatenates two strings, or adds a character to the end of a string and returns the
resulting string.

The += operator appends a string or a character to the end of a given string.

See also Arithmetic Operators

Expressions

An expression can be one of the following:

e Arithmetic Expression

* Assignment Expression
» String Expression

* Comma Expression
e Conditional Expression

e Function Call

Expressions can be grouped using parentheses, and may be recursive, meaning that an expression
can consist of subexpressions.

Arithmetic Expression

An arithmetic expression is any combination of numeric operands and an arithmetic operator or a
bitwise operator.

Examples

a+ b
ct++
m << 1

Assignment Expression

An assignment expression consists of a variable on the left side of an assignment operator, and an
expression on the right side.

Examples

String Expression

A string expression is any combination of string and char operands and a string operator.

Examples

s + ".brd"

t + 'x'

Comma Expression

A comma expression is a sequence of expressions, delimited by the comma operator

Comma expressions are evaluated left to right, and the result of a comma expression is the type and
value of the rightmost expression.

Example

i++, J++, k++

Conditional Expression

A conditional expression uses the conditional operator to make a decision within an expression.

Example

int a;

// ...code that calculates 'a'
string s = a ? "True" : "False";

Function Call

A function call transfers the program flow to a user defined function or a builtin function. The
formal parameters defined in the function definition are replaced with the values of the expressions
used as the actual arguments of the function call.

Example

int p = strchr(s, 'b');

Statements

A statement can be one of the following:

e Compound Statement
* Control Statement

» Expression Statement
* Builtin Statement

* Constant Definition

* Variable Definition

Statements specify the flow of control as a User Language Program executes. In absence of specific
control statements, statements are executed sequentially in the order of appearance in the ULP file.

Compound Statement

A compound statement (also known as block) is a list (possibly empty) of statements enclosed in
matching braces ({ }). Syntactically, a block can be considered to be a single statement, but it also
controls the scoping of identifiers. An identifier declared within a block has a scope starting at the
point of declaration and ending at the closing brace.

Compound statements can be nested to any depth.

Expression Statement

An expression statement is any expression followed by a semicolon.

An expression statement is executed by evaluating the expression. All side effects of this evaluation
are completed before the next statement is executed. Most expression statements are assignments or
function calls.

A special case is the empty statement, consisting of only a semicolon. An empty statement does
nothing, but it may be useful in situations where the ULP syntax expects a statement but your
program does not need one.

Control Statements

Control statements are used to control the program flow.

Iteration statements are

do...while
for
while

Selection statements are

if...else
switch

Jump statements are

break
continue
return

break

The break statement has the general syntax

break;

and immediately terminates the nearest enclosing do...while, for, switch or while statement. This
also applies to loop members of object types.

Since all of these statements can be intermixed and nested to any depth, take care to ensure that
your break exits from the correct statement.

continue

The continue statement has the general syntax

continue;

and immediately transfers control to the test condition of the nearest enclosing do...while, while, or
for statement, or to the increment expression of the nearest enclosing for statement.

Since all of these statements can be intermixed and nested to any depth, take care to ensure that
your continue affects the correct statement.

do...while

The do...while statement has the general syntax

do statement while (condition);

and executes the statement until the condition expression becomes zero.

The condition is tested after the first execution of statement, which means that the
statement is always executed at least one time.

If there is no break or return inside the statement, the statement must affect the value of
the condition, or condition itself must change during evaluation in order to avoid an endless
loop.

Example

string s = "Trust no one!";
int 1 = -1;
do {

++1i;

} while (s[i]);

for

The for statement has the general syntax

for ([init]; [test]; [inc]) statement

and performs the following steps:

1. If an initializing expression init is present, it is executed.

2. If a test expression is present, it is executed. If the result is nonzero (or if there isno test
expression at all), the statement is executed.

3. If an inc expression is present, it is executed.

4. Finally control returns to step 2.

If there is no break or return inside the statement, the inc expression (or the
statement) must affect the value of the test expression, or test itself must change during
evaluation in order to avoid an endless loop.

The initializing expression init normally initializes one or more loop counters. It may also define
a new variable as a loop counter. The scope of such a variable is valid until the end of the active

block.

Example
string s = "Trust no one!";
int sum = 0;
for (int i = 0; s[i]; ++1i)
sum += s[i]; // sums up the characters in s

if...else

The if...else statement has the general syntax

if (expression)
t statement
[else
f statement]

The conditional expression is evaluated, and if its value is nonzero the t statement is
executed. Otherwise the £ statement is executed in case there is an else clause.

An else clause is always matched to the last encountered i £ without an e1se. If this is not what
you want, you need to use braces to group the statements, as in

if (a == 1) {
if (b == 1)
printf("a == 1 and b == 1\n");
}
else
printf("a != 1\n");

return

A function with a return type other than void must contain at least one refurn statement with the
syntax

return expression;
where expression must evaluate to a type that is compatible with the function's return type. The
value of expression is the value returned by the function.

If the function is of type void, a return statement without an expression can be used to
return from the function call.

switch

The switch statement has the general syntax

switch (sw_exp) {
case case_exp: case statement

[default: def statement]
}

and allows for the transfer of control to one of several case-labeled statements, depending on the

value of sw_exp (which must be of integral type).

Any case statement can be labeled by one or more case labels. The case exp of each
case label must evaluate to a constant integer which is unique within it's enclosing switch
statement.

There can also be at most one default label.

After evaluating sw_exp, the case exp are checked for a match. If a match is found, control
passes to the case statement with the matching case label.

If no match is found and there is a default label, control passes to def statement. Otherwise
none of the statements in the switch is executed.

Program execution is not affected when case and default labels are encountered. Control
simply passes through the labels to the following statement.

To stop execution at the end of a group of statements for a particular case, use the break statement.

Example
string s = "Hello World";
int vowels = 0, others = 0;
for (int i = 0; s[i]; ++1)
switch (toupper(s[i])) {
case 'A':
case 'E':
case 'I':
case 'O':
case 'U': ++vowels;

break;
default: ++others;
}

printf ("There are %$d vowels in '%s'\n", vowels, s);

while

The while statement has the general syntax

while (condition) statement

and executes the statement as long as the condition expression is not zero.

The condition is tested before the first possible execution of statement, which means that
the statement may never be executed if condition is initially zero.

If there is no break or return inside the statement, the statement must affect the value of
the condition, or condition itself must change during evaluation in order to avoid an endless
loop.

Example

string s = "Trust no one!";
int 1 = 0;
while (s[i])
++1i;

Builtins

Builtins are Constants, Variables, Functions and Statements that provide additional information and
allow for data manipulations.

* Builtin Constants
* Builtin Variables
* Builtin Functions
* Builtin Statements

Builtin Constants

Builtin constants are used to provide information about object parameters, such as maximum
recommended name length, flags etc.

Many of the object types have their own Constants section which lists the builtin constants for that
particular object (see e.g. UL_PIN).

The following builtin constants are defined in addition to the ones listed for the various object
types:
EAGLE VERSION EAGLE program version number (int)

EAGLE RELEASE EAGLE program release number (int)
EAGLE SIGNATURE & sting containing EAGLE program name, version and copyright
- information
. . 0+ |

REAL EPSILON t:he lrnl(r)nrnum positive real number such that 1.0 REAL EPSILON
REAL MAX the largest possible real value

: B
REAL MIN the smallest possible (positive!) &gl value

- the smallest representable number is ~-REAL MAX

INT MAX the largest possible int value
INT MIN the smallest possible int value
PI the value of "pi" (3.14..., real)
usage a string containing the text from the usage directive

These builtin constants contain the directory paths defined in the directories dialog, with any of the
special variables ($HOME and SEAGLEDIR) replaced by their actual values. Since each path can
consist of several directories, these constants are string arrays with an individual directory in each
member. The first empty member marks the end of the path:

path lbr[] Libraries

path drul[] Design Rules
User Language

path_ulpl] Programs

path scr[] Scripts

path cam[] CAM Jobs

path epf[] Projects

When using these constants to build a full file name, you need to use a directory separator, as in
string s = path 1lbr[0] + '/' + "mylib.lbr";

The libraries that are currently in use through the USE command:

used libraries[]

Builtin Variables

Builtin variables are used to provide information at runtime.

int argc number of arguments given to the RUN command
: arguments given to the RUN command (argv [0] is the full ULP file
string argv/[] name)

Builtin Functions

Builtin functions are used to perform specific tasks, like printing formatted strings, sorting data
arrays or the like.

You may also write your own functions and use them to structure your User Language Program.

The builtin functions are grouped into the following categories:

* Character Functions
 File Handling Functions
* Mathematical Functions
* Miscellaneous Functions
* Network Functions

* Printing Functions

* String Functions

* Time Functions

* Object Functions

* XML Functions

Alphabetical reference of all builtin functions:

e abs
* acos
e asin

FRERELE

e clrgrou
oun

X1t

.
(@]

o o
—h |
c

dlsignature
iledir
e fileerror

e fileext()
e fileglob

* filename()
» fileread

* filesetext()
* filesize()

e filetime()

E

(D]
=
= mal < o= ter.ﬁa o
= 2wuhﬁ.ﬂ.aw.ﬂ.mmeiu Sl a3a& Fad E
ol o= &5 &8 g .2 s 2 g 3 9 lkXCQnme
o= & .5 .5 .4 .2 .9 .9 .9 4 .9.9.9.59.9= 292 & &8 8 8 g =
e e e e o o o oo o o o o o o o o o oo o o o o o o o

netpost

* palette()

setvariant

* netget()
* sprintf()

e strupr()

o strxstr()

e system()

* t2da

* t2dayofweek()
* t2hour()

* t2minute()
* t2month()
* t2second()
* 2string()
* t2year()

* tan()

* time

* tolower

Character Functions

Character functions are used to manipulate single characters.

The following character functions are available:

e tolower

tolower()
* toupper()

is...()

Function
Check whether a character falls into a given category.
Syntax
int isalnum
int isalpha (char
int iscntrl (char
int isdigit (char

(char
(
(
(
int isgraph(char
(
(
(
(

Ne Neo Neo N

.« e

int islower (char

int isprint (char

int ispunct (char

int isspace (char

int isupper (char

int isxdigit (char

Returns

The is. .. functions return nonzero if the given character falls into the category, zero
otherwise.

Ne N

~e

Q000000 00aQ0n

Ovvvvvvvvvv
~

~ ~.
~e

Character categories

isalnum letters (A to Z or a to z) or digits (0 to 9)
isalpha letters (A to Z or a to z)
iscntrl delete characters or ordinary control characters (0x7F or 0x00 to 0x1F)
isdigit digits (0 to 9)
isgraph printing characters (except space)
islower lowercase letters (a to z)
isprint printing characters (0x20 to 0x7E)
ispunct punctuation characters (iscntrl or isspace)
. space, tab, carriage return, new line, vertical tab, or formfeed (0x09 to 0x0D,
isspace
0x20)
isupper uppercase letters (A to Z)

isxdigit hexdigits (O to 9,Ato F, ato f)

Example

char ¢ = 'A';
if (isxdigit(c))

printf ("%c is hex\n", c);
else

printf ("%c is not hex\n", c);

to...()

Function

Convert a character to upper- or lowercase.
Syntax

char tolower (char c);

char toupper (char c¢);

Returns
The tolower function returns the converted character if c is uppercase. All other characters
are returned unchanged.
The toupper function returns the converted character if ¢ is lowercase. All other characters
are returned unchanged.

See also strupr, strlwr

File Handling Functions

Filename handling functions are used to work with file names, sizes and timestamps.

The following file handling functions are available:

* fileerror()
 fileglob()
o filedir()

* fileext

e filename()
» fileread()
* filesetext()
* filesize()

e filetime

See output() for information about how to write into a file.

fileerror()

Function
Returns the status of I/O operations.
Syntax
int fileerror();
Returns
The fileerror function returns O if everything is ok.

See also output, printf, fileread

fileerror checks the status of any I/O operations that have been performed since the last call to
this function and returns 0 if everything was ok. If any of the I/O operations has caused an error, a
value other than 0 will be returned.

You should call £ileerror before any I/O operations to reset any previous error state, and call it
again after the I/O operations to see if they were successful.

When fileerror returns a value other than O (thus indicating an error) a proper error message
has already been given to the user.

Example

fileerror();

output ("file.txt", "wt") {
printf ("Test\n");
}

if (fileerror())
exit (1) ;

fileglob()

Function

Perform a directory search.
Syntax

int fileglob(string &arrayl[], string pattern);
Returns

The £ileglob function returns the number of entries copied into array.

See also dlgFileOpen(), dlgFileSave()

fileglob performs a directory search using pattern.

pattern may contain '*' and '?"' as wildcard characters. [f pattern ends witha ' /"', the
contents of the given directory will be returned.

Names in the resulting array that end with a ' /' are directory names.
The array is sorted alphabetically, with the directories coming first.

The special entries ' . ' and ' .. ' (for the current and parent directories) are never returned in the
array.

If pattern doesn't match, or if you don't have permission to search the given directory, the
resulting array will be empty.

Note for Windows users

[Wpy The directory delimiter in the array is always a forward slash. This makes sure User
q Language Programs will work platform independently. In the pattern the backslash
("\ ") is also treated as a directory delimiter.

Sorting filenames under Windows is done case insensitively.

Example

string all;
int n = fileglob(a, "*.brd");

Filename Functions

Function

Split a filename into its separate parts.
Syntax

string filedir(string file);

string fileext (string file);

string filename (string file);

string filesetext(string file, string newext);
Returns

filedir returns the directory of £ile (including the drive letter under Windows).
fileext returns the extension of file.

filename returns the file name of £ile (including the extension).

filesetext returns £ile with the extension set to newext.

See also Filedata Functions

Example

if (board) board(B) {
output (filesetext (B.name, ".out")) {

}
}

Filedata Functions

Function
Gets the timestamp and size of a file.

Syntax
int filesize(string filename) ;

int filetime(string filename);
Returns
filesize returns the size (in byte) of the given file.
filetime returns the timestamp of the given file in a format to be used with the time
functions.

See also time, Filename Functions

Example

board (B)
printf ("Board: %$s\nSize: %d\nTime: %s\n",
B.name, filesize (B.name),
t2string(filetime (B.name)));

File Input Functions

File input functions are used to read data from files.

The following file input is available:

e fileread()

See output() for information about how to write into a file.

fileread()

Function
Reads data from a file.
Syntax

int fileread(dest, string file);
Returns
fileread returns the number of objects read from the file.
The actual meaning of the return value depends on the type of dest.

See also lookup, strsplit, fileerror

If dest is a character array, the file will be read as raw binary data and the return value reflects the
number of bytes read into the character array (which is equal to the file size).

If dest is a string array, the file will be read as a text file (one line per array member) and the
return value will be the number of lines read into the string array. Newline characters will be
stripped.

If dest is a string, the entire file will be read into that string and the return value will be the length
of that string (which is not necessarily equal to the file size, if the operating system stores text files
with "cr/If" instead of a "newline" character).

Example

char bl[];

int nBytes = fileread (b, "data.bin");
string lines|[];

int nLines = fileread(lines, "data.txt");
string text;

int nChars = fileread (text, "data.txt");

Mathematical Functions

Mathematical functions are used to perform mathematical operations.

The following mathematical functions are available:

EEpE

coSs
* asin
e atan

L]
—_—

EEEEEEE
— o S 2
o -

=i
)
>

(=N

[)
=+
&
=

Error Messages

If the arguments of a mathematical function call lead to an error, the error message will show the
actual values of the arguments. Thus the statements

-1.0;
sgqrt (2 * x);

real x
real r

will lead to the error message

Invalid argument in call to 'sqgrt(-2)'

Absolute, Maximum and Minimum Functions

Function

Absolute, maximum and minimum functions.
Syntax

type abs (type x);

type max(type x, type y);

type min (type x, type y);
Returns

abs returns the absolute value of x.

max returns the maximum of x and vy.

min returns the minimum of x and y.

The return type of these functions is the same as the (larger) type of the arguments. type
must be one of char, int or real.

Example
real x = 2.567, y = 3.14;
printf ("The maximum is $f\n", max(x, Vy));

Rounding Functions

Function
Rounding functions.
Syntax
real ceil (real x);
real floor (real x);
real frac(real x);
real round(real x);
real trunc(real x);
Returns
ceil returns the smallest integer not less than x.
floor returns the largest integer not greater than x.
frac returns the fractional part of x.
round returns x rounded to the nearest integer.
trunc returns the integer part of x.

Example

real x = 2.567;
printf ("The rounded value of %f is %f\n", x, round(x));

Trigonometric Functions

Function
Trigonometric functions.
Syntax
real acos (real x);
real asin(real x);
real atan(real x)
real cos(real x);
real sin(real x);
real tan(real x):;
Returns
acos returns the arc cosine of x.
asin returns the arc sine of x.
atan returns the arc tangent of x.
cos returns the cosine of x.
sin returns the sine of x.
tan returns the tangent of x.

14

Constants

the value of "pi"

L 314.)

Note

Angles are given in radian.

Example

real x = PI / 2;
printf ("The sine of %f is %f\n", x, sin(x));

Exponential Functions

Function
Exponential Functions.
Syntax
real exp(real x);
real log(real x);
real loglQ (real x);
real pow(real x, real vy);
real sqgrt(real x);
Returns

exp returns the exponential e to the power of x.
log returns the natural logarithm of x.

10g10 returns the base 10 logarithm of x.

pow returns the value of x to the power of y.
sqgrt returns the square root of x.

Note

The "n-th" root can be calculated using the pow function with a negative exponent.

Example

real x = 2.1;
printf ("The square root of %$f is %$f\n", x, sqgrt(x));

Miscellaneous Functions

Miscellaneous functions are used to perform various tasks.

The following miscellaneous functions are available:

e country()

+ exitQ
 fdlsignature()
anguage
* looku

tte

1

e Configuration Parameters
e Unit Conversions

Configuration Parameters

Function
Store and retrieve configuration parameters.

Syntax
string cfgget(string name[, string default]);

void cfgset (string name, string value);
Returns

cfgget returns the value of the parameter stored under the given name. If no such
parameter has been stored, yet, the value of the optional default is returned (or an empty

string, if no default is given).

The cfgget function retrieves values that have previously been stored with a call to cfgset ().

The cfgset function sets the parameter with the given name to the given value.

The valid characters for name are 'A'-'Z"', 'a'-'z"','0'-'9", "."and ' '.

Parameter names are case sensitive.

The parameters are stored in the user's eaglerc file. To ensure that different User Language
Programs don't overwrite each other's parameters in case they use the same parameter names, it is
recommended to put the name of the ULP at the beginning of the parameter name. For example, a
ULP named mytool.ulp that uses a parameter named MyParam could store that parameter
under the name

mytool.MyParam

Because the configuration parameters are stored in the eaglerc file, which also contains all of
EAGLE's other user specific parameters, it is also possible to access the EAGLE parameters with
cfgget () and cfgset (). In order to make sure no ULP parameters collide with any EAGLE
parameters, the EAGLE parameters must be prefixed with "EAGLE: ", as in

EAGLE:Option.XrefLabelFormat

Note that there is no documentation of all of EAGLE's internal parameters and how they are stored
in the eaglerc file. Also, be very careful when changing any of these parameters! As with the eaglerc
file itself, you should only manipulate these parameters if you know what you are doing! Some
EAGLE parameters may require a restart of EAGLE for changes to take effect.

In the eaglerc file the User Language parameters are stored with the prefix "ULP: ". Therefore this
prefix may be optionally put in front of User Language parameter names, as in

ULP:mytool.MyParam

Example
string MyParam = cfgget ("mytool.MyParam", "SomeDefault");
MyParam = "OtherValue";

cfgset ("mytool.MyParam", MyParam) ;

country()

Function
Returns the country code of the system in use.

Syntax
string country();

Returns
country returns a string consisting of two uppercase characters that identifies the country
used on the current system. If no such country setting can be determined, the default "US"
will be returned.

See also language

Example

dlgMessageBox ("Your country code is: " + country()):;

exit()

Function
Exits from a User Language Program.

Syntax
volid exit (int result):;

void exit(string command) ;

See also RUN

The exit function terminates execution of a User Language Program.

If an integer result is given it will be used as the return value of the program.

If a string command is given, that command will be executed as if it were entered into the
command line immediately after the RUN command. In that case the return value of the ULP is set
to EXIT SUCCESS.

Constants

return value for successful program execution (value
0)
EXIT FAILURE return value for failed program execution (value —1)

EXIT SUCCESS

fdlsignature()

Function

Calculates a digital signature for Premier Farnell's Design Link.
Syntax

string fdlsignature(string s, string key);

The fdlsignature function is used to calculate a digital signature when accessing Premier
Farnell's Design Link interface.

language()

Function
Returns the language code of the system in use.

Syntax
string language() ;

Returns
language returns a string consisting of two lowercase characters that identifies the language
used on the current system. If no such language setting can be determined, the default "en"
will be returned.

See also country

The 1anguage function can be used to make a ULP use different message string, depending on
which language the current system is using.

In the example below all the strings used in the ULP are listed in the string array T18N[],
preceeded by a string containing the various language codes supported by this ULP. Note the vtab
characters used to separate the individual parts of each string (they are important for the 1ookup

function) and the use of the commas to separate the strings. The actual work is done in the function
tr (), which returns the translated version of the given string. If the original string can't be found in
the T18N array, or there is no translation for the current language, the original string will be used
untranslated.

The first language defined in the I18N array must be the one in which the strings used throughout
the ULP are written, and should generally be English in order to make the program accessible to the
largest number of users.

Example

string I18N[] = {
"en\v"
llde\vll
" it\vll

14

"I18N Demo\v"

"Beispiel fiir Internationalisierung\v"
"Esempio per internazionalizzazione\v"
4

"Hello world!\v"

"Hallo Welt!\v"

"Ciao mondo!\v"

ll+Ok\vll

"+Ok\V"

"+Approvazione\v"

"—-Cancel\v"

"-Abbrechen\v"

"-Annullamento\v"

}i
int Language = strstr(I18N[0], language()) / 3;
string tr(string s)
{

string t =

return t ?
}
dlgDialog (tr ("I18N Demo")) {

dlgHBoxLayout dlgSpacing(350);

dlgLabel (tr ("Hello world!"));

lookup (I18N, s, Language, '\v');
t s;

dlgHBoxLayout {
dlgPushButton (tr ("+0k")) dlgAccept():
dlgPushButton (tr ("-Cancel")) dlgReject () ;

}
}i

lookup()

Function
Looks up data in a string array.

Syntax
string lookup(string arrayl[], string key, int field index[,
char separator]);
string lookup(string arrayl[], string key, string field name[,
char separator]);

Returns

lookup returns the value of the field identified by field indexor field name.
If the field doesn't exist, or no string matching key is found, an empty string is returned.

See also fileread, strsplit

An array that can be used with 1ookup () consists of strings of text, each string representing
one data record.

Each data record contains an arbitrary number of fields, which are separated by the character
separator (defaultis '\t "', the tabulator). The first field in a record is used as the key and is

numbered 0.

All records must have unique key fields and none of the key fields may be empty - otherwise it is
undefined which record will be found.

If the first string in the array contains a "Header" record (i.e. a record where each field describes
its contents), using lookup witha field name string automatically determines the index of that
field. This allows using the 1 ookup function without exactly knowing which field index contains

the desired data.
It is up to the user to make sure that the first record actually contains header information.

If the key parameter in the call to lookup () is an empty string, the first string of the array will
be used. This allows a program to determine whether there is a header record with the required field
names.

If a field contains the separator character, that field must be enclosed in double quotes (as in
"abc;def", assuming the semicolon (' ; ') is used as separator). The same applies if the field
contains double quotes ("), in which case the double quotes inside the field have to be doubled (as
in "abc;""def"";ghi", which would be abc; "def";ghi).

It is best to use the default ""tab' separator, which doesn't have these problems (no field can
contain a tabulator).

Here's an example data file (' ; ' has been used as separator for better readability):

Name;Manufacturer; Code; Price
7400; Intel;I-01-234-97;50.10
68HC12;Motorola;M68HC1201234;5$3.50

Example

string OrderCodes|[];

if (fileread(OrderCodes, "ordercodes") > 0) {
if (lookup (OrderCodes, "", "Code", ';')) {

schematic (SCH) {
SCH.parts (P) {
string OrderCode;
// both following statements do exactly the same:
OrderCode = lookup (OrderCodes, P.device.name, "Code", ';');
OrderCode = lookup (OrderCodes, P.device.name, 2, ';');
}
}
}
else
dlgMessageBox ("Missing 'Code' field in file 'ordercodes');

}

palette()

Function
Returns color palette information.
Syntax
int palette(int index[, int type]):;
Returns
The palette function returns an integer ARGB value in the form Oxaarrggbb, or the type of
the currently used palette (depending on the value of index).

The palette function returns the ARGB value of the color with the given index (which may be
in the range 0..PALETTE ENTRIES-1). If t ype is not given (or is —1) the palette assigned to the
current editor window will be used. Otherwise t ype specifies which color palette to use
(PALETTE _BLACK, PALETTE _WHITE or PALETTE_COLORED).

The special value -1 for index makes the function return the type of the palette that is currently in
use by the editor window.

If either index or type is out of range, an error message will be given and the ULP will be
terminated.

Constants

PALETTE TYPES the number of palette types (3)
PALETTE BLACK the black background palette (0)
PALETTE WHITE the white background palette (1)

PALETTE COLORED the colored background palette (2)

the number of colors per palette

PALETTE ENTRIES
- (64)

sort()

Function
Sorts an array or a set of arrays.
Syntax
void sort (int number, arrayl[, array2,...]);

The sort function either directly sorts a given arrayl, or it sorts a set of arrays (starting with
array?), in which case array1 is supposed to be an array of int, which will be used as a pointer
array.

In any case, the number argument defines the number of items in the array(s).

Sorting a single array

If the sort function is called with one single array, that array will be sorted directly, as in the
following example:

string A[];
int n = 0;
A[n++] = "World";
A[n++] = "Hello";

A[n++] "The truth is out there...";

sort (n, A);
for (int i = 0;
printf (A[1]);

[

Sorting a set of arrays

If the sort function is called with more than one array, the first array must be an array of int, while

all of the other arrays may be of any array type and hold the data to be sorted. The following

example illustrates how the first array will be used as a pointer:

numeric string Nets[], Parts[], Instances[], Pins[];

int n = 0;

int index[];

schematic (S) {
)

S.nets (N) N.pinrefs (P) {
Nets[n] = N.name;
Parts[n] = P.part.name;
Instances[n] = P.instance.name;
Pins[n] = P.pin.name;
++n;

}
sort (n, index, Nets, Parts, Instances, Pins);
for (int i = 0; 1 < n; ++1i)
printf ("%$-8s %$-8s %-8s %-8s\n",
Nets[index[i]], Parts[index[i]],
Instances[index[i]], Pins[index[i]]);

The idea behind this is that one net can have several pins connected to it, and in a netlist you might
want to have the net names sorted, and within one net you also want the part names sorted and so
on.

Note the use of the keyword numeric in the string arrays. This causes the strings to be sorted in a

way that takes into account a numeric part at the end of the strings, which leads to IC1, IC2,... IC9,
IC10 instead of the alphabetical order IC1, IC10, IC2,...1C9.

When sorting a set of arrays, the first (index) array must be of type int and need not be initialized.
Any contents the index array might have before calling the sort function will be overwritten by
the resulting index values.

status()

Function

Displays a status message in the status bar.
Syntax

void status (string message) ;

See also dlgMessageBox()

The status function displays the given message in the status bar of the editor window in which
the ULP is running.

system()

Function

Executes an external program.
Syntax
int system(string command) ;
Returns
The system function returns the exit status of the command. This is typically 0 if everything
was ok, and non-zero in case of an error.

The system function executes the external program given by the command string, and waits until
the program ends.

Input/Output redirection

If the external program shall read its standard input from (or write its standard output to) a
particular file, input/output needs to be redirected.

& On Linux and Mac OS X this is done by simply addinga '<"' or '>"' to the command line,
" followed by the desired file name, as in

e

\

system ("program < infile > outfile");

which runs program and makes it read from infile and write to outfile.

if; g On Windows you have to explicitly run a command processor to do this, as in
.

system("cmd.exe /c program < infile > outfile");

(on DOS based Windows systems use command . com instead of cmd . exe).

Background execution

The system function waits until the given program has ended. This is useful for programs that
only run for a few seconds, or completely take over the user's attention.

If an external program runs for a longer time, and you want the system call to return
" 1mmediately, without waiting for the program to end, you can simply add an ' &' to the
@ - command string under Linux and Mac OS X, as in

system ("program &");

if; g Under Windows you need to explicitly run a command processor to do this, as in
.

system("cmd.exe /c start program");

(on DOS based Windows systems use command . com instead of cmd . exe).

Example

int result = system("simulate -f filename");
This would call a simulation program, giving it a file which the ULP has just created. Note that
simulate here is just an example, it is not part of the EAGLE package!

If you want to have control over what system commands are actually executed, you can write a
wrapper function that prompts the user for confirmation before executing the command, like

int MySystem(string command)

{

if (dlgMessageBox ("!0k to execute the following command?<p><tt>" + command +
"</ee>", "&Yes", "&No") == 0)
return system(command) ;
return -1;

}

int result = MySystem("simulate -f filename");

Unit Conversions

Function
Converts internal units.
Syntax
real u2inch(int n);
real uZ2mic (int n);
real u2mil (int n);
real uZ2mm(int n);
int inch2u(real n);
int mic2u(real n);
int mil2u(real n);
int mm2u(real n);
Returns
u2inch returns the value of n in inch.
u2mic returns the value of n in microns (1/1000mm).
u2mil returns the value of n in mi/ (1/1000inch).
u2mm returns the value of n in millimeters.
inch?2u returns the value of n (which is in inch) as internal units.
mic2u returns the value of n (which is in microns) as internal units.
mil2u returns the value of n (which is in mi/) as internal units.
mm2u returns the value of n (which is in millimeters) as internal units.

See also UL_GRID

EAGLE stores all coordinate and size values as int values with a resolution of 1/320000mm
(0.003125p). The above unit conversion functions can be used to convert these internal units to the
desired measurement units, and vice versa.

Example

board (B) {
B.elements (E) {
printf ("%s at (%f, %f)\n", E.name,
uZ2mm (E.x), u2mm(E.y));
}
}

Network Functions

Network functions are used to access remote sites on the Internet.

The following network functions are available:

* neterror()
* netget()
* netpost()

neterror()

Function
Returns the error message of the most recent network function call.
Syntax
string neterror (void) ;
Returns
neterror returns a textual message describing the error that occurred in the most recent call
to a network function.
If no error has occurred, the return value is an empty string.

See also netget, netpost

The neterror function should be called after any of the other network functions has returned a
negative value, indicating that an error has occurred. The return value of neterror is a textual
string that can be presented to the user.

Example

string Result;
if (netget (Result, "http://www.cadsoft.de/cgi-bin/http-test?see=me&hear=them")
>= 0) {

// process Result

}
else
dlgMessageBox (neterror());

netget()

Function
Performs a GET request on the network.
Syntax
int netget(dest, string url[, int timeout]);
Returns
netget returns the number of objects read from the network.
The actual meaning of the return value depends on the type of dest.
In case of an error, a negative value is returned and neterror() may be called to display an
error message to the user.

See also netpost, neterror, fileread

The netget function sends the given url to the network and stores the result in the dest
variable.

If no network activity has occurred for t imeout seconds, the connection will be terminated. The
default timeout is 20 seconds.

The url must contain the protocol to use (HTTP, HTTPS or FTP) and can contain name=value
pairs of parameters, as in

http://www.cadsoft.de/cgi-bin/http-test?see=me&hear=them
ftp://ftp.cadsoft.de/eagle/userfiles/README

If a user id and password is required to access a remote site, these can be given as

https://userid:password@www.secret-site.com/...

If dest is a character array, the result will be treated as raw binary data and the return value
reflects the number of bytes stored in the character array.

If dest is a string array, the result will be treated as text data (one line per array member) and the
return value will be the number of lines stored in the string array. Newline characters will be
stripped.

If dest is a string, the result will be stored in that string and the return value will be the length of
the string. Note that in case of binary data the result is truncated at the first occurrence of a byte
with the value 0x00.

If you need to use a proxy to access the Internet with HTTP or HTTPS, you can set that up in the
"Configure" dialog under "Help/Check for Update" in the Control Panel.

Example

string Result;
if (netget (Result, "http://www.cadsoft.de/cgi-bin/http-test?see=me&hear=them")
>= 0) A

// process Result

}

else
dlgMessageBox (neterror()) ;

netpost()

Function
Performs a POST request on the network.

Syntax
int netpost(dest, string url, string data[, int timeout],

string content type] 1);
Returns
netpost returns the number of objects read from the network.
The actual meaning of the return value depends on the type of dest.
In case of an error, a negative value is returned and neterror() may be called to display an
error message to the user.

See also netget, neterror, fileread

The netpost function sends the given data to the given url on the network and stores the result
in the dest variable.

If no network activity has occurred for t imeout seconds, the connection will be terminated. The
default timeout is 20 seconds.

If content type is given, it overwrites the default content type of "text/html;
charset=utf-8".

The url must contain the protocol to use (HTTP or HTTPS).

If a user id and password is required to access a remote site, these can be given as

https://userid:password@www.secret-site.com/...

If dest is a character array, the result will be treated as raw binary data and the return value
reflects the number of bytes stored in the character array.

If dest is a string array, the result will be treated as text data (one line per array member) and the
return value will be the number of lines stored in the string array. Newline characters will be
stripped.

If dest is a string, the result will be stored in that string and the return value will be the length of
the string. Note that in case of binary data the result is truncated at the first occurrence of a byte
with the value 0x00.

If you need to use a proxy to access the Internet with HTTP or HTTPS, you can set that up in the
"Configure" dialog under "Help/Check for Update" in the Control Panel.

Example

string Data = "see=me\nhear=them";

string Result;

if (netpost (Result, "http://www.cadsoft.de/cgi-bin/http-test", Data) >= 0) {
// process Result

}

else
dlgMessageBox (neterror()) ;

Printing Functions

Printing functions are used to print formatted strings.

The following printing functions are available:

* printf()
* sprintf()

printf()

Function
Writes formatted output to a file.
Syntax
int printf(string format[, argument, ...]);
Returns
The printf function returns the number of characters written to the file that has been
opened by the most recent output statement.

In case of an error, printf returns -1.

See also sprintf, output, fileerror

Format string

The format string controls how the arguments will be converted, formatted and printed. There must
be exactly as many arguments as necessary for the format. The number and type of arguments will

be checked against the format, and any mismatch will lead to an error message.

The format string contains two types of objects - plain characters and format specifiers:

* Plain characters are simply copied verbatim to the output
* Format specifiers fetch arguments from the argument list and apply formatting to them

Format specifiers

A format specifier has the following form:

o)

% [flags] [width] [.prec] type
Each format specification begins with the percent character (%). After the $ comes the following, in
this order:

* an optional sequence of flag characters, [flags]
* an optional width specifier, [width]

 an optional precision specifier, [.prec]

* the conversion type character, type

Conversion type characters

d signed decimal int
o unsigned octal int
u unsigned decimal int
x unsigned hexadecimal int (with a, b,...)
X unsigned hexadecimal int (with A, B,...)
f signed real value of the form [-]dddd.dddd
e signed real value of the form [-]d.dddde[+]ddd
E same as e, but with E for exponent
signed real value in either e or £ form, based on given value and
d precision
G same as g, but with E for exponent if e format used
c single character
s character string

o\

the % character is printed

Flag characters

The following flag characters can appear in any order and combination.

"-" the formatted item is left-justified within the field; normally, items are right-justified

a signed, positive item will always start with a plus character (+); normally, only negative
items begin with a sign

a signed, positive item will always start with a space character; if both "+" and " " are
specified, "+" overrides " "

Width specifiers

The width specifier sets the minimum field width for an output value.

Width is specified either directly, through a decimal digit string, or indirectly, through an asterisk
(*). If you use an asterisk for the width specifier, the preceding argument (which must be an int)

to the one being formatted (with this format specifier) determines the minimum output field width.

In no case does a nonexistent or small field width cause truncation of a field. If the result of a
conversion is wider than the field width, the field is simply expanded to contain the conversion
result.

At least n characters are printed. If the output value has less than » characters, the output is
padded with blanks (right-padded if "-" flag given, left-padded otherwise).

At least n characters are printed. If the output value has less than » characters, it is filled on the
left with zeros.

The argument list supplies the width specifier, which must precede the actual argument being
formatted.

On

Precision specifiers

A precision specifier always begins with a period (.) to separate it from any preceding width
specifier. Then, like width, precision is specified either directly through a decimal digit string, or
indirectly, through an asterisk (*). If you use an asterisk for the precision specifier, the preceding
argument (which must be an int) to the one being formatted (with this format specifier)
determines the precision.

none Precision set to default.

.0 For int types, precision is set to default; for real types, no decimal point is printed.

n characters or n decimal places are printed. If the output value has more than n characters
the output might be truncated or rounded (depending on the type character).

The argument list supplies the precision specifier, which must precede the actual argument
being formatted.

. N

Default precision values

douxX 1

eEf 6

9G al‘l §igniﬁcant
digits

c no effect

s print entire string

How precision specification (. n) affects conversion

.n specifies that at least n characters are printed. If the input argument has less than »n
douxX digits, the output value is left-padded with zeros. If the input argument has more than »
digits, the output value is not truncated.

.n specifies that n characters are printed after the decimal point, and the last digit printed is

ekt rounded.

gG .n specifies that at most » significant digits are printed.
C .n has no effect on the output.

s .n specifies that no more than » characters are printed.

Binary zero characters
Unlike sprintf, the printf function can print binary zero characters (0x00).

char ¢ = 0x00;
printf ("$c", c);

Example

int i = 42;
real r = 3.14;

char ¢ = '"A';

string s = "Hello";

printf ("Integer: $8d\n", 1);
printf ("Hex: %$8X\n", 1);
printf ("Real: $8f\n", r);
printf ("Char: $-8c\n", c);
printf ("String: %-8s\n", s);

sprintf()

Function

Writes formatted output into a string.
Syntax

int sprintf(string result, string format[, argument, ...]);
Returns

The sprintf function returns the number of characters written into the result string.

In case of an error, sprintf returns -1.
See also printf

Format string
See printf.

Binary zero characters

Note that sprintf can not return strings with embedded binary zero characters (0x00). If the
resulting string contains a binary zero character, any characters following that zero character will be
dropped. Use printf if you need to output binary data.

Example
string result;
int number = 42;

sprintf (result, "The number is %d", number);

String Functions

String functions are used to manipulate character strings.

The following string functions are available:

* strchr()
* strjoin()
e strlen

o strlwr

-
=

trrstr

L]
2

[]
2 B
-
2]
S,
=
=t

* strstr

°
72}
a
=
=
o

LY
ﬁjz
o e
= &

L]
2
=
=

* strxstr()

strchr()

Function
Scans a string for the first occurrence of a given character.
Syntax
int strchr(string s, char c[, int index]);
Returns
The st rchr function returns the integer offset of the character in the string, or -1 if the

character does not occur in the string.

See also strrchr, strstr

If index is given, the search starts at that position. Negative values are counted from the end of the
string.

Example

string s = "This is a string";
char ¢ = 'a';

int pos = strchr(s, c);

if (pos >= 0)

printf ("The character %c is at position %d\n", c, pos);
else

printf ("The character was not found\n");

strjoin()

Function

Joins a string array to form a single string.
Syntax

string strjoin(string arrayl[], char separator);
Returns

The strjoin function returns the combined entries of array.

See also strsplit, lookup, fileread

strjoin joins all entries in array, delimited by the given separator and returns the resulting
string.
If separator is the newline character (' \n ") the resulting string will be terminated with a

newline character. This is done to have a text file that consists of N lines (each of which is
terminated with a newline) and is read in with the fileread() function and split into an array of N

strings to be joined to the original string as read from the file.

Example
string a[] = { "Field 1", "Field 2", "Field 3" };
string s = strjoin(a, ':');

strlen()

Function
Calculates the length of a string.
Syntax
int strlen(string s);
Returns
The strlen function returns the number of characters in the string.

Example

string s = "This is a string";
int 1 = strlen(s);
printf ("The string is %d characters long\n", 1);

striwr()

Function
Converts uppercase letters in a string to lowercase.
Syntax
string strlwr(string s);
Returns
The st r1wr function returns the modified string. The original string (given as parameter) is
not changed.

See also strupr, tolower

Example

string s = "This Is A String";

string r = strlwr(s);

printf ("Prior to strlwr: %s - after strlwr: %$s\n", s, r);

strrchr()

Function
Scans a string for the last occurrence of a given character.
Syntax
int strrchr(string s, char c[, int index]);
Returns
The st rrchr function returns the integer offset of the character in the string, or -1 if the

character does not occur in the string.

See also strchr, strrstr

If index is given, the search starts at that position. Negative values are counted from the end of the
string.

Example

string s = "This is a string";
char ¢ = 'a';

int pos = strrchr(s, c);

if (pos >= 0)

printf ("The character %c is at position %d\n", c, pos);
else

printf ("The character was not found\n");

strrstr()

Function
Scans a string for the last occurrence of a given substring.
Syntax
int strrstr(string sl, string s2[, int index]);
Returns
The st rrstr function returns the integer offset of the first character of s2 in s1, or -1 if the
substring does not occur in the string.

See also strstr, strrchr

If index is given, the search starts at that position. Negative values are counted from the end of the
string.

Example
string sl = "This is a string", s2 = "is a";
int pos = strrstr(sl, s2);

if (pos >= 0)

printf ("The substring starts at %d\n", pos);
else

printf ("The substring was not found\n");

strsplit()

Function

Splits a string into separate fields.
Syntax

int strsplit(string &arrayl[], string s, char separator);
Returns

The strsplit function returns the number of entries copied into array.

See also strjoin, lookup, fileread

strsplit splits the string s at the given separator and stores the resulting fields in the

array.

If separator is the newline character (' \n ") the last field will be silently dropped if it is empty.
This is done to have a text file that consists of N lines (each of which is terminated with a newline)
and is read in with the fileread() function to be split into an array of N strings. With any other
separator an empty field at the end of the string will count, so "a:b:c: " will result in 4 fields,
the last of which is empty.

Example

string all;
int n = strsplit(a, "Field 1l:Field 2:Field 3", ':');

strstr()

Function
Scans a string for the first occurrence of a given substring.
Syntax
int strstr(string sl, string s2[, int index]);
Returns
The st rstr function returns the integer offset of the first character of s2 in s1, or -1 if the
substring does not occur in the string.

See also strrstr, strchr, strxstr

If index is given, the search starts at that position. Negative values are counted from the end of the
string.

Example
string sl = "This is a string", s2 = "is a";
int pos = strstr(sl, s2);

if (pos >= 0)

printf ("The substring starts at %d\n", pos);
else

printf ("The substring was not found\n");

strsub()

Function

Extracts a substring from a string.
Syntax

string strsub(string s, int start[, int lengthl]);
Returns

The strsub function returns the substring indicated by the start and 1ength value.

The value for 1ength must be positive, otherwise an empty string will be returned. If
length is ommitted, the rest of the string (beginning at start) is returned.

If start points to a position outside the string, an empty string is returned.

Example

string s = "This is a string";
string t = strsub(s, 4, 7);
printf ("The extracted substring is: %s\n", t);

strtod()

Function
Converts a string to a real value.

Syntax
real strtod(string s);

Returns
The strtod function returns the numerical representation of the given string as a real
value. Conversion ends at the first character that does not fit into the format of a real constant.
If an error occurs during conversion of the string 0 . 0 will be returned.

See also strtol

Example

string s = "3.1415";
real r = strtod(s);
printf ("The value is %f\n", r);

strtol()

Function
Converts a string to an integer value.

Syntax
int strtol(string s);

Returns
The strtol function returns the numerical representation of the given string as an int
value. Conversion ends at the first character that does not fit into the format of an integer
constant. If an error occurs during conversion of the string 0 will be returned.

See also strtod

Example

string s = "1234";
int 1 = strtol(s);
printf ("The value is %d\n", 1i);

strupr()

Function
Converts lowercase letters in a string to uppercase.
Syntax

string strupr(string s);

Returns
The strupr function returns the modified string. The original string (given as parameter) is
not changed.

See also strlwr, toupper

Example

string s = "This Is A String";

string r = strupr(s);

printf ("Prior to strupr: %s - after strupr: $s\n", s, r);

strxstr()

Function
Scans a string for the first occurrence of a given regular expression.
Syntax
int strxstr(string sl, string s2[, int index[, int &length]l]);
Returns
The strxstr function returns the integer offset of the substring in s1 that matches the
regular expression in s2, or —1 if the regular expression does not match in the string.

See also strstr, strchr, strrstr

If index is given, the search starts at that position. Negative values are counted from the end of the
string.

If 1length is given, the actual length of the matching substring is returned in that variable.

Regular expressions allow you to find a pattern within a text string. For instance, the regular
expression "i.*a" would find a sequence of characters that starts with an '1', followed by any
character ('.") any number of times ('*'), and ends with an 'a". It would match on "is a" as well as "is
this a" or "ia".

Details on regular expressions can be found, for instance, in the book Mastering Regular
Expressions by Jeffrey E. F. Friedl.

Example

string sl = "This is a string", s2 = "i.*a";
int len = 0;

int pos = strxstr(sl, s2, 0, len);

if (pos >= 0)

printf ("The substring starts at %d and is %d charcaters long\n", pos, len);
else

printf ("The substring was not found\n");

Time Functions

Time functions are used to get and process time and date information.

The following time functions are available:

* t2day()

» t2dayofweek()
* t2hour()

* t2minute()

* t2month()

* t2second()

* t2string()

* t2year()

time()

Function
Gets the current system time.
Syntax
int time (void) ;
Returns
The t ime function returns the current system time as the number of seconds elapsed since a
system dependent reference date.

See also Time Conversions, filetime, timems()

Example

int CurrentTime = time();

timems()

Function
Gets the number of milliseconds since the start of the ULP.
Syntax
int timems (void) ;
Returns
The t imems function returns the number of milliseconds since the start of the ULP.

After 86400000 milliseconds (i.e. every 24 hours), the value starts at 0 again.
See also time

Example

int elapsed = timems|();

Time Conversions

Function
Convert a time value to day, month, year etc.

Syntax

int t2day(int t);

int t2dayofweek (int t);
int t2hour(int t);

int t2minute (int t);
int t2month (int t);

int t2second(int t);
int t2year(int t);

string t2string(int t[, string format]);
Returns

t2day returns the day of the month (1..31)

t2dayofweek returns the day of the week (0O=sunday..6)

t2hour returns the hour (0..23)

t2minute returns the minute (0..59)

t2month returns the month (0..11)

t2second returns the second (0..59)

t2year returns the year (including century!)

t2string returns a formatted string containing date and time

See also time

The t2string function without the optional format parameter converts the given time t into a
country specific string in local time.

If t2stringis called with a format string, that format is used to determine what the result
should look like.

The following expressions can be used in a format string:

d the day as a number without a leading zero (1 to 31)

dd the day as a number with a leading zero (01 to 31)

ddd the abbreviated localized day name (e.g. "Mon" to "Sun")
dddd the long localized day name (e.g. "Monday" to "Sunday")
M the month as a number without a leading zero (1-12)
MM the month as a number with a leading zero (01-12)

MMM the abbreviated localized month name (e.g. "Jan" to "Dec")
MMMM the long localized month name (e.g. "January" to "December")

vy the year as a two digit number (00-99)

VYyy the year as a four digit number

h the hour without a leading zero (0 to 23 or 1 to 12 if AM/PM display)
hh the hour with a leading zero (00 to 23 or 01 to 12 if AM/PM display)
m the minute without a leading zero (0 to 59)

mm the minute with a leading zero (00 to 59)

s the second without a leading zero (0 to 59)

ss the second with a leading zero (00 to 59)

the milliseconds without leading zeros (always 0, since the given time only has a one

g second resolution)

i the milliseconds with leading zeros (always 000, since the given time only has a one
second resolution)

AP use AM/PM display (4P will be replaced by either "AM" or "PM")

ap use am/pm display (ap will be replaced by either "am" or "pm")

U display the given time as UTC (must be the first character; default is local time)

All other characters will be copied "as is". Any sequence of characters that are enclosed in

singlequotes will be treated as text and not be used as an expression. Two consecutive single quotes
(") are replaced by a single quote in the output.

Example

int t = time();
printf ("It is now %02d:%02d:%02d\n",
t2hour (t), t2minute(t), t2second(t));
printf ("ISO time is %s\n", t2string(t, "Uyyyy-MM-dd hh:mm:ss"));

Object Functions

Object functions are used to access common information about objects.

The following object functions are available:

* clrgroup()
e ingroup()

e setgroup()
* setvariant()
* variant()

clrgroup()

Function

Clears the group flags of an object.
Syntax

void clrgroup (object);

See also ingroup(), setgroup(), GROUP command

The clrgroup () function clears the group flags of the given object, so that it is no longer part of
the previously defined group.

When applied to an object that contains other objects (like a UL BOARD or UL NET) the group
flags of all contained objects are cleared recursively.

Example

board (B) {
B.elements (E)
clrgroup (E) ;
}

ingroup()

Function

Checks whether an object is in the group.
Syntax

int ingroup (object);
Returns

The ingroup function returns a non-zero value if the given object is in the group.

See also clrgroup(), setgroup(), GROUP command

If a group has been defined in the editor, the ingroup () function can be used to check whether a
particular object is part of the group.

Objects with a single coordinate that are individually selectable in the current drawing (like
UL _TEXT, UL VIA, UL CIRCLE etc.) return a non-zero value in a call to ingroup () if that
coordinate is within the defined group.

A UL WIRE returns 0, 1, 2 or 3, depending on whether none, the first, the second or both of its end
points are in the group.

A UL RECTANGLE and UL _FRAME returns a non-zero value if one or more of its corners are in
the group. The value has bit 0 set for the upper right corner, bit 1 for the upper left, bit 2 for the
bottom left, and bit 3 for the bottom right corner.

Objects that have no coordinates (like UL NET, UL SEGMENT, UL SIGNAL etc.) return a non-
zero value if one or more of the objects within them are in the group.

UL CONTACTREF and UL PINREEF, though not having coordinates of their own, return a non-
zero value if the referenced UL CONTACT or UL _PIN, respectively, is within the group.

Identifying the context menu object

If the ULP is started from a context menu the selected object can be accessed by the group
mechansim (see RUN): A one element group is made from the selected object. So it can be
identified with ingroup () .

Example

output ("group.txt") {
board (B) {
B.elements (E) {
if (ingroup(E))
printf ("Element %s is in the group\n", E.name);
}
}
}

setgroup()

Function
Sets the group flags of an object.
Syntax
void setgroup (object[, int flags]);

See also clrgroup(), ingroup(), GROUP command

The setgroup () function sets the group flags of the given object, so that it becomes part of the
group.

If no f1ags are given, the object is added to the group as a whole (i.e. all of its selection points, in
case it has more than one).

If £1ags has a non-zero value, only the group flags of the given points of the object are set. For a
UL_ WIRE this means that ' 1 ' sets the group flag of the first point, ' 2 ' that of the second point,
and ' 3" sets both. Any previously set group flags remain unchanged by a call to setgroup ().

When applied to an object that contains other objects (like a UL BOARD or UL _NET) the group
flags of all contained objects are set recursively.

Example

board (B) {
B.elements (E)
setgroup (E) ;
}

setvariant()

Function

Sets the current assembly variant.
Syntax

int setvariant (string name);

See also variant(), UL_VARIANTDEF, VARIANT command

The setvariant () function sets the current assembly variant to the one given by name. This
can be used to loop through all of the parts and "see" their data exactly as defined in the given
variant.

name must reference a valid assembly variant that is contained in the current drawing.
This function returns a non-zero value if the given assembly variant exists, zero otherwise.

The assembly variant that has been set by a call to setvariant () is only active until the User

Language Program returns. After that, the variant in the drawing will be the same as before the start
of the ULP.

Example

if (setvariant ("My variant")) {
// do something ...

else
// error: unknown variant

variant()

Function

Query the current assembly variant.
Syntax

string variant (void) ;

See also setvariant(), UL_VARIANTDEF, VARIANT command

The variant () function returns the name of the current assembly variant. If no variant is
currently selected, an empty string is returned.

Example

string CurrentVariant = variant();

XML Functions

XML functions are used to process XML (Extensible Markup Language) data.

The following XML functions are available:

* xmlattribute()
* xmlattributes()
* xmlelement()
* xmlelements()
* xmltags()

* xmltext()

xmlattribute(), xmlattributes()

Function
Extract the attributes of an XML tag.

Syntax
string xmlattribute(string xml, string tag, string attribute);

int xmlattributes (string &array[], string xml, string taqg);

See also xmlelement(), xmltags(), xmltext()

The xmlattribute function returns the value of the given attribute from the given tag
within the given xm1 code. If an attribute appears more than once in the same tag, the value of its
last occurrence is taken.

The xmlattributes function stores the names of all attributes from the given tag within the
given xml code in the array and returns the number of attributes found. If an attribute appears
more than once in the same tag, its name appears only once in the array.

The tag is given in the form of a path.

If the given xm1 code contains an error, the result of any XML function is empty, and a warning
dialog is presented to the user, giving information about where in the ULP and XML code the error
occurred. Note that the line and column number within the XML code refers to the actual string
given to this function as the xm1 parameter.

Example

// XML contains the following data:
<root>
<body abc="def" xyz="123">
</body>
</root>
//
string s[];
int n = xmlattributes (s, XML, "root/body"):;
Result: { "abc", "xyz" }

string s = xmlattribute (XML, "root/body", "xyz");
Result: "123"

xmlelement(), xmlelements()

Function
Extract elements from an XML code.
Syntax
string xmlelement (string xml, string taqg);
int xmlelements (string &array[], string xml, string taqg);

See also xmltags(), xmlattribute(), xmltext()

The xmlelement function returns the complete XML element of the given tag within the given
xml code. The result still contains the element's outer XML tag, and can thus be used for further
processing with the other XML functions. Any whitespace within plain text parts of the element is
retained. The overall formatting of the XML tags within the element may be different than the
original xm1 code, though.

If there is more than one occurrence of tag within xm1, the first one will be returned. Use
xmlelements if you want to get all occurrences.

The xmlelements function works just like xmlelement, but returns all occurrences of
elements with the given tag. The return value is the number of elements stored in the array.

The tag is given in the form of a path.

If the given xm1 code contains an error, the result of any XML function is empty, and a warning
dialog is presented to the user, giving information about where in the ULP and XML code the error
occurred. Note that the line and column number within the XML code refers to the actual string
given to this function as the xm1 parameter.

Example

// XML contains the following data:
<root>
<body>
<contents>
<string>Some text 1</string>
<any>anything 1</any>
</contents>
<contents>
<string>Some text 2</string>
<any>anything 2</any>

</contents>
<appendix>
<string>Some text 3</string>
</appendix>
</body>

</root>
//
string s = xmlelement (XML, "root/body/appendix") ;
Result: " \n Some text 3\n \n"
string s[];
int n = xmlelements (s, XML, "root/body/contents");
Result: { " <contents>\n <string>Some text 1</string>\n <any>anything

1</any>\n </contents>\n",
" <contents>\n <string>Some text 2</string>\n <any>anything

2</any>\n </contents>\n"
}

xmltags()

Function
Extract the list of tag names within an XML code.
Syntax
int xmltags (string &array[], string xml, string tag);

See also xmlelement(), xmlattribute(), xmltext()

The xm1tags function returns the names of all the tags on the top level of the given tag within
the given xm1 code. The return value is the number of tag names stored in the array.

Each tag name is returned only once, even if it appears several times in the XML code.
The tag is given in the form of a path.

If the given xm1 code contains an error, the result of any XML function is empty, and a warning
dialog is presented to the user, giving information about where in the ULP and XML code the error
occurred. Note that the line and column number within the XML code refers to the actual string
given to this function as the xm1 parameter.

Example

// XML contains the following data:
<root>
<body>
<contents>
<string>Some text 1</string>
<any>anything 1</any>
</contents>
<contents>
<string>Some text 2</string>
<any>anything 2</any>
</contents>
<appendix>
<string>Some text 3</string>
</appendix>
</body>
</root>
//
string s[];
int n = xmltags (s, XML, "root/body");
Result: { "contents", "appendix" }
int n = xmltags(s, XML, "");
Result: "root"

xmltext()

Function
Extract the textual data of an XML element.
Syntax
string xmltext (string xml, string taqg);

See also xmlelement(), xmlattribute(), xmltags()

The xm1text function returns the textual data from the given tag within the given xm1 code.
Any tags within the text are stripped, whitespace (including newline characters) is retained.
The tag is given in the form of a path.

If the given xm1 code contains an error, the result of any XML function is empty, and a warning
dialog is presented to the user, giving information about where in the ULP and XML code the error
occurred. Note that the line and column number within the XML code refers to the actual string
given to this function as the xm1 parameter.

Example

// XML contains the following data:
<root>

<body>

Some text.

</body>
</root>
//
string s = xmltext (XML, "root/body"):;
Result: "\n Some text.\n "

Builtin Statements

Builtin statements are generally used to open a certain context in which data structures or files can
be accessed.

The general syntax of a builtin statement is

name (parameters) statement

where name is the name of the builtin statement, parameters stands for one or more parameters,
and statement is the code that will be executed inside the context opened by the builtin
statement.

Note that statement can be a compound statement, as in

board (B) {
B.elements (E) printf ("Element: %s\n", E.name);
B.Signals(S) printf("Signal: %s\n", S.name);
}

The following builtin statements are available:

* board()

» deviceset()
* library()

* output()

* package()

* schematic()
* sheet()

e symbol

board()

Function
Opens a board context.
Syntax
board(identifier) statement

See also schematic, library

The board statement opens a board context if the current editor window contains a board drawing.
A variable of type UL_BOARD is created and is given the name indicated by identifier.

Once the board context is successfully opened and a board variable has been created, the
statement is executed. Within the scope of the statement the board variable can be accessed
to retrieve further data from the board.

If the current editor window does not contain a board drawing, an error message is given and the
ULP is terminated.

Check if there is a board

By using the board statement without an argument you can check if the current editor window
contains a board drawing. In that case, board behaves like an integer constant, returning 1 if there
is a board drawing in the current editor window, and O otherwise.

Accessing board from a schematic

If the current editor window contains a schematic drawing, you can still access that schematic's
board by preceding the board statement with the prefix project, as in

project.board(B) { ... }

This will open a board context regardless whether the current editor window contains a board or a
schematic drawing. However, there must be an editor window containing that board somewhere on
the desktop!

Example

if (board)
board (B) {
B.elements (E)
printf ("Element: %$s\n", E.name);

}

deviceset()

Function
Opens a device set context.
Syntax
deviceset (identifier) statement

See also package, symbol, library

The deviceset statement opens a device set context if the current editor window contains a
device drawing. A variable of type UL_DEVICESET is created and is given the name indicated by
identifier.

Once the device set context is successfully opened and a device set variable has been created, the
statement is executed. Within the scope of the statement the device set variable can be
accessed to retrieve further data from the device set.

If the current editor window does not contain a device drawing, an error message is given and the
ULP is terminated.

Check if there is a device set

By using the deviceset statement without an argument you can check if the current editor
window contains a device drawing. In that case, deviceset behaves like an integer constant,
returning 1 if there is a device drawing in the current editor window, and O otherwise.

Example

if (deviceset)
deviceset (D) {
D.gates (G)
printf ("Gate: %$s\n", G.name);

}

library()

Function
Opens a library context.
Syntax
library(identifier) statement

See also board, schematic, deviceset, package, symbol

The 1ibrary statement opens a library context if the current editor window contains a library
drawing. A variable of type UL_LIBRARY is created and is given the name indicated by
identifier.

Once the library context is successfully opened and a library variable has been created, the
statement is executed. Within the scope of the statement the library variable can be accessed
to retrieve further data from the library.

If the current editor window does not contain a library drawing, an error message is given and the
ULP is terminated.

Check if there is a library

By using the 1ibrary statement without an argument you can check if the current editor window
contains a library drawing. In that case, 1 ibrary behaves like an integer constant, returning 1 if
there is a library drawing in the current editor window, and O otherwise.

Example
if (library)

library (L) {
L.devices (D)
printf ("Device: %s\n", D.name);

}

output()

Function
Opens an output file for subsequent printf() calls.
Syntax
output (string filename[, string mode]) statement

See also printf, fileerror

The output statement opens a file with the given £i1lename and mode for output through
subsequent printf() calls. If the file has been successfully opened, the statement is executed, and
after that the file is closed.

If the file cannot be opened, an error message is given and execution of the ULP is terminated.

By default the output file is written into the Project directory.

File Modes

The mode parameter defines how the output file is to be opened. If no mode parameter is given, the
default is "wt".

append to an existing file, or create a new file if it does not exist

create a new file (overwriting an existing file)

open file in text mode

open file in binary mode

delete this file when ending the EAGLE session (only works together with

w)

force using this file name (normally *.brd, *.sch and *.1br are rejected)

Mode characters may appear in any order and combination. However, only the last one of a and w
or t and b, respectively, is significant. For example a mode of "abtw" would open a file for
textual write, which would be the same as "wt".

M O O = W

Nested Output statements

output statements can be nested, as long as there are enough file handles available, and provided
that no two active output statements access the same file.

Example

void PrintText (string s)

{

printf ("This also goes into the file: %s\n", s);

}
output ("file.txt", "wt") {

printf ("Directly printed\n");
PrintText ("via function call");

}

package()

Function
Opens a package context.
Syntax
package (identifier) statement

See also library, deviceset, symbol

The package statement opens a package context if the current editor window contains a package
drawing. A variable of type UL_PACKAGE is created and is given the name indicated by
identifier.

Once the package context is successfully opened and a package variable has been created, the
statement is executed. Within the scope of the statement the package variable can be
accessed to retrieve further data from the package.

If the current editor window does not contain a package drawing, an error message is given and the
ULP is terminated.

Check if there is a package

By using the package statement without an argument you can check if the current editor window
contains a package drawing. In that case, package behaves like an integer constant, returning 1 if
there is a package drawing in the current editor window, and O otherwise.

Example

if (package)
package (P) {
P.contacts (C)
printf ("Contact: %$s\n", C.name);

}

schematic()

Function
Opens a schematic context.
Syntax
schematic (identifier) statement

See also board, library, sheet

The schematic statement opens a schematic context if the current editor window contains a
schematic drawing. A variable of type UL_SCHEMATIC is created and is given the name indicated
by identifier.

Once the schematic context is successfully opened and a schematic variable has been created, the
statement is executed. Within the scope of the statement the schematic variable can be

accessed to retrieve further data from the schematic.

If the current editor window does not contain a schematic drawing, an error message is given and
the ULP is terminated.

ChecKk if there is a schematic

By using the schemat ic statement without an argument you can check if the current editor
window contains a schematic drawing. In that case, schematic behaves like an integer constant,
returning 1 if there is a schematic drawing in the current editor window, and O otherwise.

Accessing schematic from a board

If the current editor window contains a board drawing, you can still access that board's schematic by
preceding the schematic statement with the prefix project, as in

project.schematic(S) { ... }

This will open a schematic context regardless whether the current editor window contains a
schematic or a board drawing. However, there must be an editor window containing that schematic
somewhere on the desktop!

Access the current Sheet

Use the sheet statement to directly access the currently loaded sheet.

Example

if (schematic)
schematic (S) {
S.parts (P)
printf ("Part: %$s\n", P.name);

}

sheet()

Function
Opens a sheet context.
Syntax
sheet (identifier) statement

See also schematic

The sheet statement opens a sheet context if the current editor window contains a sheet drawing.
A variable of type UL_SHEET is created and is given the name indicated by identifier.

Once the sheet context is successfully opened and a sheet variable has been created, the
statement is executed. Within the scope of the statement the sheet variable can be accessed
to retrieve further data from the sheet.

If the current editor window does not contain a sheet drawing, an error message is given and the
ULP is terminated.

ChecKk if there is a sheet

By using the sheet statement without an argument you can check if the current editor window
contains a sheet drawing. In that case, sheet behaves like an integer constant, returning 1 if there
is a sheet drawing in the current editor window, and 0 otherwise.

Example
if (sheet)
sheet (S) {
S.instances (I)
printf ("Instance: %s\n", I.name);

}

symbol()

Function
Opens a symbol context.
Syntax
symbol (identifier) statement

See also library, deviceset, package

The symbol statement opens a symbol context if the current editor window contains a symbol
drawing. A variable of type UL_SYMBOL is created and is given the name indicated by
identifier.

Once the symbol context is successfully opened and a symbol variable has been created, the
statement is executed. Within the scope of the statement the symbol variable can be
accessed to retrieve further data from the symbol.

If the current editor window does not contain a symbol drawing, an error message is given and the
ULP is terminated.

Check if there is a symbol

By using the symbo1l statement without an argument you can check if the current editor window
contains a symbol drawing. In that case, symbol behaves like an integer constant, returning 1 if
there is a symbol drawing in the current editor window, and O otherwise.

Example

if (symbol)
symbol (S) {
S.pins (P)
printf ("Pin: %s\n", P.name);

}

Dialogs

User Language Dialogs allow you to define your own frontend to a User Language Program.

The following sections describe User Language Dialogs in detail:

Predefined Dialogs describes the ready to use standard dialogs
Dialog Objects defines the objects that can be used in a dialog
. explains how to define the location of objects within a
Layout Information .
dialog
Dialog Functions describes special functions for use with dialogs

A Complete Example shows a complete ULP with a data entry dialog

Predefined Dialogs

Predefined Dialogs implement the typical standard dialogs that are frequently used for selecting file
names or issuing error messages.

The following predefined dialogs are available:

* dlgDirectory()
» dlgFileOpen()

» dlgFileSave()
e dlgMessageBox()

See Dialog Objects for information on how to define your own complex user dialogs.

digDirectory()

Function
Displays a directory dialog.
Syntax
string dlgDirectory(string Title[, string Start])
Returns
The d1gDirectory function returns the full pathname of the selected directory.
If the user has canceled the dialog, the result will be an empty string.

See also dlgFileOpen

The d1gDirectory function displays a directory dialog from which the user can select a
directory.

Title will be used as the dialog's title.
If Start is not empty, it will be used as the starting point for the d1gDirectory.

Example

string dirName;
dirName = dlgDirectory("Select a directory", "");

digFileOpen(), digFileSave()

Function
Displays a file dialog.
Syntax
string dlgFileOpen(string Title[, string Start[, string

Filterl]l])
string dlgFileSave(string Title[, string Start([, string

Filter]])

Returns
The d1gFileOpen and d1gFileSave functions return the full pathname of the selected
file.

If the user has canceled the dialog, the result will be an empty string.

See also digDirectory

The d1gFileOpen and d1gFileSave functions display a file dialog from which the user can
select a file.

Title will be used as the dialog's title.

If Start is not empty, it will be used as the starting point for the file dialog. Otherwise the current
directory will be used.

Only files matching Filter will be displayed. If Filter is empty, all files will be displayed.

Filter can be either a simple wildcard (as in " * .brd"), a list of wildcards (as in

"* . bmp *.jpg")or may even contain descriptive text, as in "Bitmap files (*.bmp)".If
the "File type" combo box of the file dialog shall contain several entries, they have to be separated
by double semicolons, as in

"Bitmap files (*.bmp);;Other images (*.Jjpg *.png)".

Example

string fileName;
fileName = dlgFileOpen ("Select a file", "", "*.brd");

digMessageBox()

Function
Displays a message box.
Syntax
int dlgMessageBox (string Message([, button 1list])
Returns
The d1gMessageBox function returns the index of the button the user has selected.
The first button in button 1ist hasindex 0.

See also status()

The d1gMessageBox function displays the given Message in a modal dialog and waits until the
user selects one of the buttons defined in button 1list.

nn

If Message contains any HTML tags, the characters '<', ' and '&' must be given as "&lIt;", ">"
and "&", respectively, if they shall be displayed as such.

button list isan optional list of comma separated strings, which defines the set of buttons that
will be displayed at the bottom of the message box.
A maximum of three buttons can be defined. If no button 1ist is given, it defaults to "OK".

The first button in button 1ist will become the default button (which will be selected if the
user hits ENTER), and the last button in the list will become the "cancel button", which is selected

if the user hits ESCape or closes the message box. You can make a different button the default
button by starting its name with a ' +', and you can make a different button the cancel button by
starting its name with a ' - '. To start a button text with an actual '+"' or '-"' it has to be escaped.

If a button text contains an ' &', the character following the ampersand will become a hotkey, and
when the user hits the corresponding key, that button will be selected. To have an actual ' &'
character in the text it has to be escaped.

The message box can be given an icon by setting the first character of Message to
' ;' - for an Information
"1 - for a Warning
': ' - for an Error
If, however, the Message shall begin with one of these characters, it has to be escaped.

Gl On Mac OS X only the character ' : ' will actually result in showing an icon. All others are
' ignored.
Example
if (dlgMessageBox ("!Are you sure?", "&Yes", "&No") == 0) {

// let's do it!
}

Dialog Objects

A User Language Dialog is built from the following Dialog Objects:

dlgCell a grid cell context
dlgCheckBox a checkbox
dlgComboBox a combo box selection field

dleDialo the basic container of any

dialog
dlgGridLayout a grid based layout context
dlgGroup a group field
dlgHBoxLayout a horizontal box layout context
dlgIntEdit an integer entry field
dlglabel a text label
dlgListBox a list box
dlglListView a list view

dlgPushButton a push button
dlgRadioButton aradio button

dlgRealEdit a real entry field
dlgSpacing a layout spacing object
dlgSpinBox a spin box selection field
dlgStretch a layout stretch object
dlgStringEdit a string entry field
dlgTabPage a tab page

dlgTabWidget a tab page container
dlgTextEdit a text entry field
dlgTextView a text viewer field

dlgVBoxlLayout a vertical box layout context

digCell

Function
Defines a cell location within a grid layout context.

Syntax
dlgCell (int row, int column[, int row2, int column2])
statement

See also dlgGridlLayout, digHBoxLayout, digVBoxIayout, Layout Information, A Complete
Example

The d1gCell statement defines the location of a cell within a grid layout context.

The row and column indexes start at 0, so the upper left cell has the index (0, 0).

With two parameters the dialog object defined by statement will be placed in the single cell
addresses by row and column. With four parameters the dialog object will span over all cells from
row/column to row2/column?2.

By defaulta d1gCel1l contains a digHBoxLayout, so if the cell contains more than one dialog
object, they will be placed next to each other horizontally.

Example

string Text;

dlgGridLayout {
dlgCell (0, 0) dlgLabel ("Cell 0,0");
dlgCell (1, 2, 4, 7) dlgTextEdit (Text);
}

dlgCheckBox

Function
Defines a checkbox.
Syntax
dlgCheckBox (string Text, int &Checked) [statement]

See also dlgRadioButton, dlgGroup, Layout Information, A Complete Example

The d1gCheckBox statement defines a check box with the given Text.

If Text contains an ' &', the character following the ampersand will become a hotkey, and when
the user hits A1 t+hotkey, the checkbox will be toggled. To have an actual ' &' character in the
text it has to be escaped.

dlgCheckBox is mainly used within a dlgGroup, but can also be used otherwise.
All check boxes within the same dialog must have different Checked variables!

If the user checks a d1gCheckBox, the associated Checked variable is set to 1, otherwise it is
set to 0. The initial value of Checked defines whether a checkbox is initially checked. If
Checked is not equal to 0, the checkbox is initially checked.

The optional statement is executed every time the d1gCheckBox is toggled.

Example

int mirror
int rotate =
int flip = 0;
dlgGroup ("Orientation™) {
dlgCheckBox ("&Mirror", mirror);
dlgCheckBox ("&Rotate", rotate);
dlgCheckBox ("&Flip", flip);
}

0;
1;

dlgComboBox

Function
Defines a combo box selection field.
Syntax
dlgComboBox (string array[], int &Selected) [statement]

See also digListBox, dlgl.abel, Layout Information, A Complete Example

The d1gComboBox statement defines a combo box selection field with the contents of the given
array.

Selected reflects the index of the selected combo box entry. The first entry has index O.

Each element of array defines the contents of one entry in the combo box. None of the strings in
array may be empty (if there is an empty string, all strings after and including that one will be
dropped).

The optional statement is executed whenever the selection in the d1gComboBox changes.
Before the statement is executed, all variables that have been used with dialog objects are
updated to their current values, and any changes made to these variables inside the statement
will be reflected in the dialog when the statement returns.

If the initial value of Selected is outside the range of the array indexes, it is set to 0.

Example

string Colors[] = { "red", "green", "blue", "yellow" };

int Selected = 2; // initially selects "blue"

dlgComboBox (Colors, Selected) dlgMessageBox ("You have selected " +
Colors[Selected]);

digDialog

Function
Executes a User Language Dialog.
Syntax
int dlgDialog(string Title) block ;
Returns
The d1gDialog function returns an integer value that can be given a user defined meaning
through a call to the d1gAccept () function.
If the dialog is simply closed, the return value will be - 1.

See also dlgGridLayout, digHBoxLayout, digVBoxLayout, digAccept, digReset, digReject, A
Complete Example
The d1gDialog function executes the dialog defined by block. This is the only dialog object

that actually is a User Language builtin function. Therefore it can be used anywhere where a
function call is allowed.

The block normally contains only other dialog objects, but it is also possible to use other User
Language statements, for example to conditionally add objects to the dialog (see the second
example below).

By default a d1gDialog contains a digVBoxLayout, so a simple dialog doesn't have to worry
about the layout.

A dlgDialog should at some point contain a call to the d1gAccept () function in order to
allow the user to close the dialog and accept its contents.

If all you need is a simple message box or file dialog you might want to use one of the Predefined
Dialogs instead.

Examples

int Result = dlgDialog("Hello") {
dlgLabel ("Hello world");
dlgPushButton ("+0K") dlgAccept ()
}s

int haveButton = 1

dlgbDialog ("Test")
dlgLabel ("Start"
if (haveButton)

dlgPushButton ("Here") dlgAccept():

{
) ;

’

}i

dlgGridLayout

Function

Opens a grid layout context.
Syntax

dlgGridLayout statement

See also dlgCell, digHBoxLayout, digVBoxILayout, Layout Information, A Complete Example

The d1gGridLayout statement opens a grid layout context.

The only dialog object that can be used directly in statement is dlgCell, which defines the
location of a particular dialog object within the grid layout.

The row and column indexes start at 0, so the upper left cell has the index (0, 0).

The number of rows and columns is automatically extended according to the location of dialog
objects that are defined within the grid layout context, so you don't have to explicitly define the
number of rows and columns.

Example

dlgGridLayout {
dlgCell (0, 0) dlgLabel ("Row 0/Col 0O");
dlgCell (1, 0) dlgLabel ("Row 1/Col 0O");

dlgCell (0, 1) dlgLabel ("Row 0/Col 1");
dlgCell (1, 1) dlgLabel ("Row 1/Col 1");
}

dligGroup

Function
Defines a group field.
Syntax
dlgGroup (string Title) statement

See also dlgCheckBox, dilgRadioButton, Layout Information, A Complete Example

The d1gGroup statement defines a group with the given Title.

By default a d1gGroup contains a digVBoxLayout, so a simple group doesn't have to worry about
the layout.

d1lgGroup is mainly used to contain a set of radio buttons or check boxes, but may as well contain
any other objects in its statement.
Radio buttons within a d1gGroup are numbered starting with 0.

Example

int align = 1;

dlgGroup ("Alignment") {
dlgRadioButton ("&Top", align);
dlgRadioButton ("&Center", align);
dlgRadioButton ("&Bottom", align);
}

digHBoxLayout

Function

Opens a horizontal box layout context.
Syntax

dlgHBoxLayout statement

See also dlgGridLayout, dlgVBoxLayout, Layout Information, A Complete Example

The d1gHBoxLayout statement opens a horizontal box layout context for the given
statement.

Example

dlgHBoxLayout {
dlgLabel ("Box 1");
dlgLabel ("Box 2");
dlgLabel ("Box 3");
}

digintEdit

Function
Defines an integer entry field.
Syntax
dlgIntEdit (int &Value, int Min, int Max)

See also digRealEdit, dlgStringEdit, dlgl.abel, Layout Information, A Complete Example
The d1gIntEdit statement defines an integer entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be limited to these values.

Example

int Value = 42;

dlgHBoxLayout {
dlgLabel ("Enter a &Number between 0 and 99");
dlgIntEdit (Value, 0, 99);
}

digl.abel

Function
Defines a text label.
Syntax
dlgLabel (string Text [, int Update])

See also Layout Information, A Complete Example, digRedisplay()
The d1gLabel statement defines a label with the given Text.

Text can be either a string literal, as in "Hello", or a string variable.

"nn

If Text contains any HTML tags, the characters '<', >' and '&' must be given as "&It;", ">" and
"&", respectively, if they shall be displayed as such.

External hyperlinks in the Text will be opened with the appropriate application program.

If the Update parameter is not 0 and Text is a string variable, its contents can be modified in the
statement of, e.g., a dlgPushButton, and the label will be automatically updated. This, of course,
is only useful if Text is a dedicated string variable (not, e.g., the loop variable of a for statement).

If Text contains an ' &', and the object following the label can have the keyboard focus, the
character following the ampersand will become a hotkey, and when the user hits A1 t+hotkey, the
focus will go to the object that was defined immediately following the d1gLabel. To have an
actual ' &' character in the text it has to be escaped.

Example

string OS = "Windows";

dlgHBoxLayout {
dlgLabel (0S, 1);
dlgPushButton ("&Change 0S") { 0S = "Linux"; }
}

digListBox

Function
Defines a list box selection field.
Syntax
dlgListBox (string array[], int &Selected) [statement]

See also digComboBox, digListView, dlgSelectionChanged, dlglabel, Layout Information, A
Complete Example

The d1gListBox statement defines a list box selection field with the contents of the given
array.

Selected reflects the index of the selected list box entry. The first entry has index 0.

Each element of array defines the contents of one line in the list box. None of the strings in
array may be empty (if there is an empty string, all strings after and including that one will be
dropped).

The optional statement is executed whenever the user double clicks on an entry of the
dlgListBox (see dlgSelectionChanged for information on how to have the statement called
when only the selection in the list changes).

Before the statement is executed, all variables that have been used with dialog objects are
updated to their current values, and any changes made to these variables inside the statement
will be reflected in the dialog when the statement returns.

If the initial value of Selected is outside the range of the array indexes, no entry will be
selected.

Example

string Colors[] = { "red", "green", "blue", "yellow" };

int Selected = 2; // initially selects "blue"

dlgListBox (Colors, Selected) dlgMessageBox ("You have selected " +
Colors[Selected]);

digListView

Function
Defines a multi column list view selection field.

Syntax
dlgListView(string Headers, string array[], int &Selected][,
int &Sort]) [statement]

See also digListBox, dlgSelectionChanged, dlgl.abel, Layout Information, A Complete Example

The d1gListView statement defines a multi column list view selection field with the contents of
the given array.

Headers is the tab separated list of column headers.

Selected reflects the index of the selected list view entry in the array (the sequence in which
the entries are actually displayed may be different, because the contents of a d1gListView can be
sorted by the various columns). The first entry has index 0.

If no particular entry shall be initially selected, Selected should be initialized to 1. If it is set to
-2, the first item according to the current sort column is made current.

Sort defines which column should be used to sort the list view. The leftmost column is numbered
1. The sign of this parameter defines the direction in which to sort (positive values sort in ascending
order). If Sort is 0 or outside the valid number of columns, no sorting will be done. The returned
value of Sort reflects the column and sort mode selected by the user by clicking on the list column
headers. By default d1gListView sorts by the first column, in ascending order.

Each element of array defines the contents of one line in the list view, and must contain tab
separated values. If there are fewer values in an element of array than there are entries in the
Headers string the remaining fields will be empty. If there are more values in an element of
array than there are entries in the Headers string the superfluous elements will be silently
dropped. None of the strings in array may be empty (if there is an empty string, all strings after
and including that one will be dropped).

A list entry that contains line feeds (' \n ') will be displayed in several lines accordingly.

The optional statement is executed whenever the user double clicks on an entry of the
dlgListView (see dlgSelectionChanged for information on how to have the statement called
when only the selection in the list changes).

Before the statement is executed, all variables that have been used with dialog objects are
updated to their current values, and any changes made to these variables inside the statement
will be reflected in the dialog when the statement returns.

If the initial value of Selected is outside the range of the array indexes, no entry will be
selected.

If Headers is an empty string, the first element of the array is used as the header string.
Consequently the index of the first entry is then 1.

The contents of a d1gListView can be sorted by any column by clicking on that column's header.
Columns can also be swapped by "click&dragging" a column header. Note that none of these
changes will have any effect on the contents of the array. If the contents shall be sorted
alphanumerically a numeric stringl] array can be used.

Example

string Colors[] = { "red\tThe color RED", "green\tThe color GREEN", "blue\tThe
color BLUE" };

int Selected = 0; // initially selects "red"

dlgListView ("Name\tDescription", Colors, Selected) dlgMessageBox ("You have
selected " + Colors[Selected]);

digPushButton

Function
Defines a push button.
Syntax
dlgPushButton (string Text) statement

See also Layout Information, Dialog Functions, A Complete Example

The d1gPushButton statement defines a push button with the given Text.

If Text contains an ' &', the character following the ampersand will become a hotkey, and when
the user hits A1 t+hotkey, the button will be selected. To have an actual ' &' character in the text
it has to be escaped.

If Text starts with a "+ "' character, this button will become the default button, which will be
selected if the user hits ENTER.

If Text starts with a ' —' character, this button will become the cancel button, which will be
selected if the user closes the dialog.

CAUTION: Make sure that the statement of such a marked cancel button contains a call to
digReject()! Otherwise the user may be unable to close the dialog at all!

To have an actual '+"' or '—"' character as the first character of the text it has to be escaped.

If the user selects a d1gPushButton, the given statement is executed.

Before the statement is executed, all variables that have been used with dialog objects are
updated to their current values, and any changes made to these variables inside the statement
will be reflected in the dialog when the statement returns.

Example

int defaultwidth = 10;

int defaultHeight = 20;

int width = 5;

int height = 7;

dlgPushButton ("&Reset defaults") {
width = defaultWidth;
height = defaultHeight;

}
dlgPushButton ("+&Accept") dlgAccept();
dlgPushButton ("-Cancel") { if (dlgMessageBox ("Are you sure?", "Yes", "No") == 0)
dlgReject (); }

digRadioButton

Function
Defines a radio button.
Syntax
dlgRadioButton (string Text, int &Selected) [statement]

See also dlgCheckBox, dlgGroup, Layout Information, A Complete Example

The d1gRadioButton statement defines a radio button with the given Text.

If Text contains an ' &', the character following the ampersand will become a hotkey, and when
the user hits A1 t+hotkey, the button will be selected. To have an actual ' &' character in the text
it has to be escaped.

dlgRadioButton can only be used within a dlgGroup.
All radio buttons within the same group must use the same Selected variable!

If the user selects a d1gRadioButton, the index of that button within the d1gGroup is stored in
the Selected variable.

The initial value of Selected defines which radio button is initially selected. If Selected is
outside the valid range for this group, no radio button will be selected. In order to get the correct
radio button selection, Selected must be set before the first d1gRadioButton is defined, and
must not be modified between adding subsequent radio buttons. Otherwise it is undefined which (if

any) radio button will be selected.

The optional statement is executed every time the d1gRadioButton is selected.

Example

int align = 1;

dlgGroup ("Alignment") {
dlgRadioButton ("&Top", align);
dlgRadioButton ("&Center", align);
dlgRadioButton ("&Bottom", align);
}

digRealEdit

Function
Defines a real entry field.
Syntax
dlgRealEdit (real &Value, real Min, real Max)

See also digintEdit, dlgStringEdit, dlgl.abel, Layout Information, A Complete Example

The d1gRealEdit statement defines a real entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be limited to these values.

Example

real Value = 1.4142;

dlgHBoxLayout {
dlgLabel ("Enter a &Number between 0 and 99");
dlgRealEdit (Value, 0.0, 99.0);
}

dlgSpacing

Function

Defines additional space in a box layout context.
Syntax

dlgSpacing (int Size)

See also digHBoxLayout, digVBoxLayout, dlgStretch, Layout Information, A Complete Example

The d1gSpacing statement defines additional space in a vertical or horizontal box layout context.

S1ize defines the number of pixels of the additional space.

Example

dlgVBoxLayout ({
dlgLabel ("Label 1");
dlgSpacing (40) ;
dlgLabel ("Label 2");
}

dlgSpinBox

Function
Defines a spin box selection field.
Syntax
dlgSpinBox (int &Value, int Min, int Max)

See also dlgintEdit, dlgl.abel, Layout Information, A Complete Example

The d1gSpinBox statement defines a spin box entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be limited to these values.

Example

int Value = 42;
dlgHBoxLayout {
dlgLabel ("&Select value");
dlgSpinBox (Value, 0, 99);
}

dlgStretch

Function

Defines an empty stretchable space in a box layout context.
Syntax

dlgStretch (int Factor)

See also digHBoxI ayout, digVBoxLayout, dlgSpacing, Layout Information, A Complete Example

The d1gStretch statement defines an empty stretchable space in a vertical or horizontal box
layout context.

Factor defines the stretch factor of the space.

Example

dlgHBoxLayout {
dlgStretch(1l);
dlgPushButton ("+0K") { dlgAccept(); }:
dlgPushButton ("Cancel") { dlgReject(); 1}

}

dlgStringEdit

Function
Defines a string entry field.
Syntax
dlgStringEdit (string &Text[, string &History[][, int Size]])

See also digRealEdit, digIntEdit, dlgTextEdit, digl.abel, Layout Information, A Complete Example

The d1gStringEdit statement defines a one line text entry field with the given Text.

If History is given, the strings the user has entered over time are stored in that string array. The
entry field then has a button that allows the user to select from previously entered strings. Ifa Size
greater than zero is given, only at most that number of strings are stored in the array. [f History
contains data when the dialog is newly opened, that data will be used to initialize the history. The
most recently entered user input is stored at index 0.

None of the strings in Hi story may be empty (if there is an empty string, all strings after and
including that one will be dropped).

Example

string Name = "Linus";
dlgHBoxLayout {
dlgLabel ("Enter &Name");
dlgStringEdit (Name) ;
}

digTabPage

Function
Defines a tab page.
Syntax
dlgTabPage (string Title) statement

See also dlgTabWidget, Layout Information, A Complete Example

The d1gTabPage statement defines a tab page with the given Tit 1le containing the given
Statement.

If Title contains an ' &', the character following the ampersand will become a hotkey, and when
the user hits A1t+hotkey, this tab page will be opened. To have an actual ' &' character in the
text it has to be escaped.

Tab pages can only be used within a dlgTabWidget.

By default a d1gTabPage contains a digVBoxLayout, so a simple tab page doesn't have to worry
about the layout.

Example

dlgTabWidget {

dlgTabPage ("Tab &1") {
dlgLabel ("This is page 1");
}

dlgTabPage ("Tab &2") {
dlgLabel ("This is page 2");
}

}

digTabWidget

Function
Defines a container for tab pages.
Syntax

dlgTabWidget statement

See also dlgTabPage, Layout Information, A Complete Example

The d1gTabWidget statement defines a container for a set of tab pages.

statement must be a sequence of one or more dlgTabPage objects. There must be no other dialog
objects in this sequence.

Example

dlgTabWidget {

dlgTabPage ("Tab &1") {
dlgLabel ("This is page 1");
}

dlgTabPage ("Tab &2") {
dlgLabel ("This is page 2");
}

}

digTextEdit

Function

Defines a multiline text entry field.
Syntax

dlgTextEdit (string &Text)

See also dlgStringEdit, dlgTextView, diglabel, Layout Information, A Complete Example

The d1gTextEdit statement defines a multiline text entry field with the given Text.

The lines in the Text have to be delimited by a newline character (' \n'). Any whitespace
characters at the end of the lines contained in Text will be removed, and upon return there will be
no whitespace characters at the end of the lines. Empty lines at the end of the text will be removed
entirely.

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout ({

dlgLabel ("&Edit the text");

dlgTextEdit (Text) ;

}

digTextView

Function
Defines a multiline text viewer field.
Syntax
dlgTextView (string Text)
dlgTextView(string Text, string &Link) statement

See also dlgTextEdit, dlgl.abel, Layout Information, A Complete Example

The d1gTextView statement defines a multiline text viewer field with the given Text.
The Text may contain HTML tags.
External hyperlinks in the Text will be opened with the appropriate application program.

If Link is given and the Text contains hyperlinks, statement will be executed every time the
user clicks on a hyperlink, with the value of Link set to whatever the tag defines
as the value of href. If, after the execution of statement, the Link variable is not empty, the
default handling of hyperlinks will take place. This is also the case if Link contains some text
before dlgTextView is opened, which allows for an initial scrolling to a given position. If a Link is
given, external hyperlinks will not be opened.

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout ({

dlgLabel ("&View the text");

dlgTextView (Text) ;

}

digVBoxLayout

Function

Opens a vertical box layout context.
Syntax

dlgVBoxLayout statement

See also dlgGridLayout, digHBoxLayout, Layout Information, A Complete Example

The d1gVBoxLayout statement opens a vertical box layout context for the given statement.

By default a dlgDialog contains a d1gVBoxLayout, so a simple dialog doesn't have to worry
about the layout.

Example

dlgVBoxLayout {
dlgLabel ("Box 1");
dlgLabel ("Box 2");
dlgLabel ("Box 3");
}

Layout Information

All objects within a User Language Dialog a placed inside a layout context.

Layout contexts can be either grid, horizontal or vertical.

Grid Layout Context

Objects in a grid layout context must specify the grid coordinates of the cell or cells into which they
shall be placed. To place a text label at row 5, column 2, you would write

dlgGridLayout {
dlgCell (5, 2) dlgLabel ("Text");
}

If the object shall span over more than one cell you need to specify the coordinates of the starting
cell and the ending cell. To place a group that extends from row 1, column 2 up to row 3, column 5,
you would write
dlgGridLayout {
dlgCell(1l, 2, 3, 5) dlgGroup("Title") {
/e

}
}

Horizontal Layout Context

Objects in a horizontal layout context are placed left to right.

The special objects dlgStretch and dlgSpacing can be used to further refine the distribution of the
available space.

To define two buttons that are pushed all the way to the right edge of the dialog, you would write

dlgHBoxLayout {
dlgStretch (1),
dlgPushButton ("+0OK") dlgAccept () ;
dlgPushButton ("Cancel") dlgReject();

}

Vertical Layout Context

Objects in a vertical layout context follow the same rules as those in a horizontal layout context,
except that they are placed top to bottom.

Mixing Layout Contexts

Vertical, horizontal and grid layout contexts can be mixed to create the desired layout structure of a
dialog. See the Complete Example for a demonstration of this.

Dialog Functions

The following functions can be used with User Language Dialogs:

dlgAccept() closes the dialog and accepts its contents
dlgRedisplay() immediately redisplays the dialog after changes to any values
dlgReset() resets all dialog objects to their initial values
digReject() closes the dialog and rejects its contents
tells whether the current selection in a dlgListView or dlgListBox has

dlgSelectionChanged()

changed

digAccept()

Function
Closes the dialog and accepts its contents.

Syntax
void dlgAccept ([int Result 1]);

See also digReject, dlgDialog, A Complete Example

The d1gAccept function causes the digDialog to be closed and return after the current statement
sequence has been completed.

Any changes the user has made to the dialog values will be accepted and are copied into the
variables that have been given when the dialog objects were defined.

The optional Result is the value that will be returned by the dialog. Typically this should be a
positive integer value. If no value is given, it defaults to 1.

Note that d1gAccept () does return to the normal program execution, so in a sequence like

dlgPushButton ("OK") {
dlgAccept () ;
dlgMessageBox ("Accepting!") ;
}

the statement after d1gAccept () will still be executed!

Example

int Result = dlgDialog("Test") {
dlgPushButton ("+OK") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject();
bi

digRedisplay()

Function

Redisplays the dialog after changing values.
Syntax

void dlgRedisplay (void);

See also digReset, dlgDialog, A Complete Example

The d1gRedisplay function can be called to immediately refresh the dlgDialog after changes
have been made to the variables used when defining the dialog objects.

You only need to call d1lgRedisplay () if you want the dialog to be refreshed while still
executing program code. In the example below the status is changed to "Running..." and
dlgRedisplay () has to be called to make this change take effect before the "program action" is
performed. After the final status change to "Finished." there is no need to call d1gRedisplay (),
since all dialog objects are automatically updated after leaving the statement.

Example

string Status = "Idle";
int Result = dlgDialog("Test") {

dlgLabel (Status, 1); // note the 'l' to tell the label to be
updated!

dlgPushButton ("+0K") dlgAccept (42);

dlgPushButton ("Cancel") dlgReject();

dlgPushButton ("Run") {
Status = "Running...";
dlgRedisplay () ;
// some program action here...
Status = "Finished.";
}

bi

digReset()

Function

Resets all dialog objects to their initial values.
Syntax

void dlgReset (void);

See also digReject, dlgDialog, A Complete Example

The d1gReset function copies the initial values back into all dialog objects of the current
dlgDialog.

Any changes the user has made to the dialog values will be discarded.

Calling d1gReject () implies a call to d1gReset ().

Example

int Number
int Result

1;
dlgDialog ("Test") {
dlgIntEdit (Number) ;

dlgPushButton ("+0K") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject();
dlgPushButton ("Reset") dlgReset () ;

}s

digReject()

Function

Closes the dialog and rejects its contents.
Syntax

void dlgReject ([int Result 1]);

See also digAccept, dlgReset, dlgDialog, A Complete Example

The d1gReject function causes the dlgDialog to be closed and return after the current statement
sequence has been completed.

Any changes the user has made to the dialog values will be discarded. The variables that have been
given when the dialog objects were defined will be reset to their original values when the dialog
returns.

The optional Result is the value that will be returned by the dialog. Typically this should be 0 or
a negative integer value. If no value is given, it defaults to O.

Note that d1gReject () does return to the normal program execution, so in a sequence like

dlgPushButton ("Cancel™) {

dlgReject () ;
dlgMessageBox ("Rejecting!") ;
}
the statement after d1gReject () will still be executed!

Calling d1gReject () implies a call to d1gReset ().

Example

int Result = dlgDialog("Test") {
dlgPushButton ("+0K") dlgAccept (42) ;
dlgPushButton ("Cancel") dlgReject();
}i

dlgSelectionChanged()

Function
Tells whether the current selection in a dlgListView or dlgListBox has changed.
Syntax
int dlgSelectionChanged (void) ;
Returns
The d1gSelectionChanged function returns a nonzero value if only the selection in the
list has changed.

See also dlgListView, dlgListBox

The dlgSelectionChanged function can be used in a list context to determine whether the
statement of the d1gListView or d1gListBox was called because the user double clicked on
an item, or whether only the current selection in the list has changed.

If the statement of a d1gListView or dlgListBox doesn't contain any call to
dlgSelectionChanged, that statement is only executed when the user double clicks on an item
in the list. However, if a ULP needs to react on changes to the current selection in the list, it can call
dlgSelectionChanged within the list's statement. This causes the statement to also be called if
the current selection in the list changes.

If a list item is initially selected when the dialog is opened and the list's statement contains a call to
dlgSelectionChanged, the statement is executed with d1gSelectionChanged returning
true in order to indicate the initial change from "no selection" to an actual selection. Any later
programmatical changes to the strings or the selection of the list will not trigger an automatic
execution of the list's statement. This is important to remember in case the current list item controls
another dialog object, for instance a d1gTextView that shows an extended representation of the
currently selected item.

Example

string Colors[] = { "red\tThe color RED", "green\tThe color GREEN", "blue\tThe
color BLUE" };
int Selected = 0; // initially selects "red"
string MyColor;
dlgLabel (MyColor, 1);
dlgListView ("Name\tDescription", Colors, Selected) {

if (dlgSelectionChanged())

MyColor = Colors|[Selected];

else
dlgMessageBox ("You have chosen " + Colors[Selected]);

Escape Character

Some characters have special meanings in button or label texts, so they need to be escaped if they
shall appear literally.

To do this you need to prepend the character with a backslash, as in
dlgLabel ("Miller \\& Co.");

This will result in "Miller & Co." displayed in the dialog.

Note that there are actually two backslash characters here, since this line will first go through the
User Language parser, which will strip the first backslash.

A Complete Example

Here's a complete example of a User Language Dialog.

int hor = 1;
int ver 1;
string fileName;
int Result = dlgDialog("Enter Parameters") {
dlgHBoxLayout ({
dlgStretch(1l);
dlgLabel ("This is a simple dialog");
dlgStretch(1l);
}
dlgHBoxLayout {
dlgGroup ("Horizontal™) {
dlgRadioButton ("&Top", hor);
dlgRadioButton ("&Center", hor);
dlgRadioButton ("&Bottom", hor);
}
dlgGroup ("Vertical") ({
dlgRadioButton ("&Left", ver);
dlgRadioButton ("C&enter", ver);
dlgRadioButton ("&Right", wver);
}

}
dlgHBoxLayout {

dlgLabel ("File &name:");

dlgStringEdit (fileName) ;

dlgPushButton ("Bro&wse") {
fileName = dlgFileOpen ("Select a file", fileName);
}

}

dlgGridLayout {
dlgCell (0, 0) dlgLabel ("Row 0/Col 0");
dlgCell (1, 0) dlgLabel ("Row 1/Col 0O");
dlgCell (0, 1) dlgLabel ("Row 0/Col 1");
dlgCell (1, 1) dlgLabel("Row 1/Col 1");

}
dlgSpacing (10) ;
dlgHBoxLayout {
dlgStretch(1l);
dlgPushButton ("+0K") dlgAccept () ;

dlgPushButton ("Cancel") dlgReject();
}
}i

Supported HTML tags

EAGLE supports a subset of the tags used to format HTML pages. This can be used to format the
text of several User Language Dialog objects, in the #usage directive or in the description of
library objects.

Text is considered to be HTML if the first line contains a tag. If this is not the case, and you want
the text to be formatted, you need to enclose the entire text in the <html>...</html> tag.

The following table lists all supported HTML tags and their available attributes:

Tag Description
<html>...</html> An HTML document.
The body of an HTML document. It understands the following attribute

* bgcolor - The background color, for example bgcolor="yellow"
or bgcolor="#0000FF". This attribute works only within a

digTextView.

<html>...</html>

<h1>...</h1> A top-level heading.

<h2>...</h2> A sub-level heading.

<h3>...</h3> A sub-sub-level heading.

A left-aligned paragraph. Adjust the alignment with the align attribute.

<p>..</p> .
p>.-</p Possible values are 1eft, right and center.
< >...<
>Center ...</center A centered paragraph.
<blockquote>...</b .
lockquote> An indented paragraph, useful for quotes.
An un-ordered list. You can also pass a type argument to define the bullet style.
.. . . .
The default is type=di sc, other types are circle and square.
.. An ordered list. You can also pass a type argument to define the enumeration

label style. The default is type="1", other types are "a" and "A".
... A list item. This tag can only be used within the context of o1 or ul.
For larger chunks of code. Whitespaces in the contents are preserved. For small
bits of code, use the inline-style code.
An anchor or link. It understands the following attributes:

<pre>...</pre>

* href - The reference target as in You can also specify an
additional anchor within the specified target document, for example <a

<a>... href="target.html#123">.... If you wantto link to a
local file that has a blank in its name, you need to prepend the file name
with file:,asin<a href="file:/path with
blanks/target.html">....

* name - The anchor name, as in

... Emphasized (same as <i>...</1i>).

...</strong Strong (same as ...).

>
<i>..</i> Italic font style.
... Bold font style.
<u>...</u> Underlined font style.
<big>...</big> A larger font size.

<small>...</small> A smaller font size.
Indicates Code. (same as <tt>...</tt>. For larger chunks of code, use the
block-tag pre.
<tt>...</tt> Typewriter font style.
Customizes the font size, family and text color. The tag understands the
following attributes:

<code>...</code>

* color - The text color, for example color="red" or
color="#FF0000".
size - The logical size of the font. Logical sizes 1 to 7 are supported.
The value may either be absolute, for example size=3, or relative like
size=-2. In the latter case, the sizes are simply added.

* face - The family of the font, for example face=times.

...

An image. This tag understands the following attributes:

* src - The image name, for example .
The URL of the image may be external, as in .

* width - The width of the image. If the image does not fit to the
specified size, it will be scaled automatically.

* height - The height of the image.

* align - Determines where the image is placed. Per default, an image is
placed inline, just like a normal character. Specify 1eft or right to
place the image at the respective side.

<img...>

<hr> A horizonal line.

 A line break.

<nobr>...</nobr> No break. Prevents word wrap.
A table definition. The default table is frameless. Specify the boolean attribute
border in order to get a frame. Other attributes are:

* bgcolor - The background color.

* width - The table width. This is either absolute in pixels or relative in
percent of the column width, for example width=80%.
border - The width of the table border. The default is 0 (= no border).

* cellspacing - Additional space around the table cells. The default is
2.

* cellpadding - Additional space around the contents of table cells.
Default is 1.

<table>...</table>

<tr>...</tr> A table row. Can only be used within table. Understands the attribute

* bgcolor - The background color.
A table data cell. Can only be used within t r. Understands the attributes

* bgcolor - The background color.
* width - The cell width. This is either absolute in pixels or relative in
percent of the entire table width, for example width=50%.

<td>...</td> . .
* colspan - Defines how many columns this cell spans. The default is 1.

* rowspan - Defines how many rows this cell spans. The default is 1.
* align - Alignment, possible values are 1eft, right and center.
The default is left-aligned.

<th>...</th> A table header cell. Like td but defaults to center-alignment and a bold font.
<author>...</autho

>

<dl>..</dI> A definition list.

<dt>...</dt> A definition tag. Can only be used within d1.

<dd>...</dd> Definition data. Can only be used within d1.

Tag Meaning

< <

> >

& &

 non-breaking space

ä i
ö
ü
Ä
Ö
Ü
ß
©
°
µ
±

Marks the author of this text.

°O DO T O B

H =

"

	User Language
	Writing a ULP
	Executing a ULP
	Syntax
	Whitespace
	Comments
	Directives
	#include
	Portability note

	#require
	#usage
	Example

	Keywords
	Identifiers
	Constants
	Character Constants
	Integer Constants
	Examples

	Real Constants
	Examples

	String Constants
	Escape Sequences
	Examples

	Punctuators
	Brackets
	Parentheses
	Braces
	Comma
	Semicolon
	Colon
	Equal Sign
	Data Types
	char
	int
	real
	string
	Implementation details

	Type Conversions
	Typecast
	Object Types
	UL_ARC
	Constants
	Note
	Example

	UL_AREA
	Example

	UL_ATTRIBUTE
	Constants
	Note
	Example

	UL_BOARD
	Note
	Example

	UL_BUS
	Constants
	Example

	UL_CIRCLE
	Example

	UL_CLASS
	Note
	Example

	UL_CONTACT
	Constants
	Note
	Example

	UL_CONTACTREF
	Constants
	Example

	UL_DEVICE
	Constants
	Note
	Examples

	UL_DEVICESET
	Constants
	Note
	Example

	UL_DIMENSION
	Constants
	Note
	Example

	UL_ELEMENT
	Constants
	Note
	Examples

	UL_FRAME
	Constants
	Note
	Example

	UL_GATE
	Constants
	Note
	Example

	UL_GRID
	Constants
	Note
	Example

	UL_HOLE
	Note
	Example

	UL_INSTANCE
	Constants
	Note
	Example

	UL_JUNCTION
	Example

	UL_LABEL
	Note
	Example

	UL_LAYER
	Constants
	Example

	UL_LIBRARY
	Constants
	Note
	Example

	UL_NET
	Constants
	Note
	Example

	UL_PACKAGE
	Constants
	Note
	Example

	UL_PAD
	Constants
	Note
	Example

	UL_PART
	Constants
	Note
	Example

	UL_PIN
	Constants
	Note
	Example

	UL_PINREF
	Example

	UL_POLYGON
	Constants
	Note
	Polygon width
	Partial polygons
	Example

	UL_RECTANGLE
	Example

	UL_SCHEMATIC
	Note
	Example

	UL_SEGMENT
	Note
	Example

	UL_SHEET
	Example

	UL_SIGNAL
	Constants
	Example

	UL_SMD
	Constants
	Note
	Example

	UL_SYMBOL
	Constants
	Note
	Example

	UL_TEXT
	Constants
	Note
	Example

	UL_VARIANTDEF
	Example

	UL_VARIANT
	Example

	UL_VIA
	Constants
	Note
	Example

	UL_WIRE
	Constants
	Wire Style
	Arcs at Wire level
	Example

	Definitions
	Constant Definitions
	Variable Definitions
	Examples

	Function Definitions
	The special function main()
	Example

	Operators
	Bitwise Operators
	Logical Operators
	Comparison Operators
	Evaluation Operators
	Arithmetic Operators
	String Operators
	Expressions
	Arithmetic Expression
	Examples

	Assignment Expression
	Examples

	String Expression
	Examples

	Comma Expression
	Example

	Conditional Expression
	Example

	Function Call
	Example

	Statements
	Compound Statement
	Expression Statement
	Control Statements
	break
	continue
	do...while
	Example

	for
	Example

	if...else
	return
	switch
	Example

	while
	Example

	Builtins
	Builtin Constants
	Builtin Variables
	Builtin Functions
	Character Functions
	is...()
	Character categories
	Example

	to...()
	File Handling Functions
	fileerror()
	Example

	fileglob()
	Note for Windows users
	Example

	Filename Functions
	Example

	Filedata Functions
	Example

	File Input Functions
	fileread()
	Example

	Mathematical Functions
	Error Messages

	Absolute, Maximum and Minimum Functions
	Example

	Rounding Functions
	Example

	Trigonometric Functions
	Constants
	Note
	Example

	Exponential Functions
	Note
	Example

	Miscellaneous Functions
	Configuration Parameters
	Example

	country()
	Example

	exit()
	Constants

	fdlsignature()
	language()
	Example

	lookup()
	Example

	palette()
	Constants

	sort()
	Sorting a single array
	Sorting a set of arrays

	status()
	system()
	Input/Output redirection
	Background execution
	Example

	Unit Conversions
	Example

	Network Functions
	neterror()
	Example

	netget()
	Example

	netpost()
	Example

	Printing Functions
	printf()
	Format string
	Format specifiers
	Conversion type characters
	Flag characters
	Width specifiers
	Precision specifiers
	Default precision values
	How precision specification (.n) affects conversion
	Binary zero characters
	Example

	sprintf()
	Format string
	Binary zero characters
	Example

	String Functions
	strchr()
	Example

	strjoin()
	Example

	strlen()
	Example

	strlwr()
	Example

	strrchr()
	Example

	strrstr()
	Example

	strsplit()
	Example

	strstr()
	Example

	strsub()
	Example

	strtod()
	Example

	strtol()
	Example

	strupr()
	Example

	strxstr()
	Example

	Time Functions
	time()
	Example

	timems()
	Example

	Time Conversions
	Example

	Object Functions
	clrgroup()
	Example

	ingroup()
	Identifying the context menu object
	Example

	setgroup()
	Example

	setvariant()
	Example

	variant()
	Example

	XML Functions
	xmlattribute(), xmlattributes()
	Example

	xmlelement(), xmlelements()
	Example

	xmltags()
	Example

	xmltext()
	Example

	Builtin Statements
	board()
	Check if there is a board
	Accessing board from a schematic
	Example

	deviceset()
	Check if there is a device set
	Example

	library()
	Check if there is a library
	Example

	output()
	File Modes
	Nested Output statements
	Example

	package()
	Check if there is a package
	Example

	schematic()
	Check if there is a schematic
	Accessing schematic from a board
	Access the current Sheet
	Example

	sheet()
	Check if there is a sheet
	Example

	symbol()
	Check if there is a symbol
	Example

	Dialogs
	Predefined Dialogs
	dlgDirectory()
	Example

	dlgFileOpen(), dlgFileSave()
	Example

	dlgMessageBox()
	Example

	Dialog Objects
	dlgCell
	Example

	dlgCheckBox
	Example

	dlgComboBox
	Example

	dlgDialog
	Examples

	dlgGridLayout
	Example

	dlgGroup
	Example

	dlgHBoxLayout
	Example

	dlgIntEdit
	Example

	dlgLabel
	Example

	dlgListBox
	Example

	dlgListView
	Example

	dlgPushButton
	Example

	dlgRadioButton
	Example

	dlgRealEdit
	Example

	dlgSpacing
	Example

	dlgSpinBox
	Example

	dlgStretch
	Example

	dlgStringEdit
	Example

	dlgTabPage
	Example

	dlgTabWidget
	Example

	dlgTextEdit
	Example

	dlgTextView
	Example

	dlgVBoxLayout
	Example

	Layout Information
	Grid Layout Context
	Horizontal Layout Context
	Vertical Layout Context
	Mixing Layout Contexts

	Dialog Functions
	dlgAccept()
	Example

	dlgRedisplay()
	Example

	dlgReset()
	Example

	dlgReject()
	Example

	dlgSelectionChanged()
	Example

	Escape Character
	A Complete Example
	Supported HTML tags

