
EAGLE
EASILY APPLICABLE GRAPHICAL LAYOUT EDITOR

EAGLE Help
extracted from the EAGLE Help Function

of
Version 6.4.0

© 2013 CadSoft Computer GmbH All rights reserved

®



Table Of Contents -- EAGLE Help 6.4.0
General Help...........................................................................................................23
Configuring EAGLE...............................................................................................23

User Interface..................................................................................................................23
Screen Display.................................................................................................................24
Mode Parameters............................................................................................................24
Presettings.......................................................................................................................24

Command Line Options.........................................................................................25
Options.............................................................................................................................25
User settings....................................................................................................................26
Defining Tolerance Values...............................................................................................26
Executing commands......................................................................................................26
Filename..........................................................................................................................27

Quick Introduction.................................................................................................27
Control Panel and Editor Windows......................................................................27
Entering Parameters and Values..........................................................................27
Drawing a Schematic.............................................................................................28

Create a Schematic File..................................................................................................28
Load a Drawing Frame....................................................................................................28
Place Symbols.................................................................................................................28
Draw Bus Connections....................................................................................................28
Draw Net Connections.....................................................................................................28

Checking the Schematic........................................................................................28
Generating a Board from a Schematic.................................................................28

Set Board Outlines and Place Components....................................................................29
Define Restricted Areas...................................................................................................29
Routing.............................................................................................................................29

Checking the Layout..............................................................................................29
Creating a Library Device......................................................................................29

Create a Package............................................................................................................29
Create a Symbol..............................................................................................................29
Create the Device............................................................................................................30

Control Panel..........................................................................................................30
Directories........................................................................................................................30
Context menu...................................................................................................................30
Descriptions.....................................................................................................................30
Drag&drop........................................................................................................................31
Information window..........................................................................................................31
Pulldown menu................................................................................................................31
File...................................................................................................................................31
View.................................................................................................................................31
Options.............................................................................................................................31
Window............................................................................................................................31
Help..................................................................................................................................32
Search Bar.......................................................................................................................32
Status line........................................................................................................................32

Context Menus.......................................................................................................32
New Folder.......................................................................................................................32
Edit Description................................................................................................................32
Rename...........................................................................................................................32
Copy.................................................................................................................................32



Delete...............................................................................................................................33
Use...................................................................................................................................33
Use all..............................................................................................................................33
Use none..........................................................................................................................33
Update.............................................................................................................................33
Update in Library..............................................................................................................33
Add to Schematic.............................................................................................................33
Add to Board....................................................................................................................33
Copy to Library.................................................................................................................33
New package variant in Library.......................................................................................33
Open/Close Project..........................................................................................................34
New..................................................................................................................................34
Open................................................................................................................................34
Print..................................................................................................................................34
Run in ..............................................................................................................................34
Execute in .......................................................................................................................34
Load into Board................................................................................................................34

Directories..............................................................................................................34
Backup....................................................................................................................35

Maximum backup level....................................................................................................35
Auto backup interval (minutes)........................................................................................35
Automatically save project file.........................................................................................35

User Interface.........................................................................................................35
Controls............................................................................................................................35
Layout..............................................................................................................................36
Schematic........................................................................................................................36
Vertical text......................................................................................................................36
Help..................................................................................................................................36
Misc..................................................................................................................................36

Window positions..................................................................................................36
Check for Update...................................................................................................36
Keyboard and Mouse.............................................................................................37

Alt.....................................................................................................................................37
Ctrl....................................................................................................................................37
Shift..................................................................................................................................37
Esc...................................................................................................................................37
Crsr-Up/Down..................................................................................................................38
Function Keys..................................................................................................................38
Left Mouse Button............................................................................................................38
Center Mouse Button.......................................................................................................38
Right Mouse Button.........................................................................................................38
Mouse Wheel...................................................................................................................39

Selecting objects in dense areas..........................................................................39
Editor Windows......................................................................................................39
Library Editor..........................................................................................................40
Edit Library Object.................................................................................................40
Board Editor...........................................................................................................40
Schematic Editor....................................................................................................40
Text Editor...............................................................................................................41

Using an external text editor............................................................................................41
Editor Commands..................................................................................................41



Change Mode/File Commands........................................................................................41
Edit Drawings or Libraries................................................................................................42
Special Commands for Boards........................................................................................42
Special Commands for Schematics.................................................................................42
Special Commands for Libraries.....................................................................................43
Change Screen Display and User Interface....................................................................43
Miscellaneous Commands...............................................................................................43

Command Syntax...................................................................................................43
Shorten key words...........................................................................................................44
Alternative Parameters....................................................................................................44
Repetition Points..............................................................................................................44
Coordinates......................................................................................................................44
Decimal numbers.............................................................................................................45
Semicolon........................................................................................................................46

ADD..........................................................................................................................46
Fetching a Package or Symbol into a Drawing...............................................................47

Wildcards..................................................................................................................47
Names.......................................................................................................................47
Particular Gates........................................................................................................48
Orientation.................................................................................................................48
Error messages.........................................................................................................48

Fetch Symbol into Device................................................................................................49
Swaplevel..................................................................................................................49
Addlevel....................................................................................................................49

ARC..........................................................................................................................49
Signal name.....................................................................................................................50
Line Width........................................................................................................................50

ASSIGN....................................................................................................................50
Examples.........................................................................................................................51
Define Command Menu...................................................................................................51
Presetting of key assignments.........................................................................................52

ATTRIBUTE.............................................................................................................52
Attributes in the Library....................................................................................................52
Attributes in the Schematic..............................................................................................53
Attributes in the Board.....................................................................................................54
Global attributes...............................................................................................................54
Selecting the layer...........................................................................................................54
Examples.........................................................................................................................55

AUTO.......................................................................................................................55
Example...........................................................................................................................55
Wildcards.........................................................................................................................55
Polygons..........................................................................................................................56
Protocol File.....................................................................................................................56
Board Size.......................................................................................................................56
Signals.............................................................................................................................56
Restricted Areas...............................................................................................................56
Canceling.........................................................................................................................56

BOARD....................................................................................................................56
Creating a board from a schematic.................................................................................57

BUS..........................................................................................................................57
Bus name examples........................................................................................................58
Inverted signals................................................................................................................58



CHANGE..................................................................................................................59
Change Groups................................................................................................................59
What can be changed?....................................................................................................59

CIRCLE....................................................................................................................60
Example...........................................................................................................................61

CLASS.....................................................................................................................61
Width................................................................................................................................62
Clearance.........................................................................................................................62
Drill...................................................................................................................................62
Clearance between net classes.......................................................................................62

CLOSE.....................................................................................................................62
CONNECT...............................................................................................................62

Device with one Gate.......................................................................................................63
Device with several Gates...............................................................................................63
Several Pads connected to the same Pin........................................................................63
Gate or Pin names that contain periods..........................................................................64
Example...........................................................................................................................64

COPY.......................................................................................................................65
Copy to the system's clipboard........................................................................................65
Copy Wires......................................................................................................................65
Copy Parts.......................................................................................................................66
Copy library objects.........................................................................................................66
Copy a group...................................................................................................................66
Copy objects to an other sheet........................................................................................66

CUT..........................................................................................................................66
Reference Point...............................................................................................................67
Note..................................................................................................................................67

DELETE...................................................................................................................67
Deleting Wire Joints.........................................................................................................68
Deleting Polygon Corners................................................................................................68
Deleting Components......................................................................................................68
Deleting Junctions, Nets, and Buses...............................................................................68
Deleting Supply Symbols.................................................................................................68
Deleting Signals...............................................................................................................69
Deleting all Signals..........................................................................................................69
Deleting higher level objects............................................................................................69

DESCRIPTION.........................................................................................................69
Example...........................................................................................................................70

DIMENSION.............................................................................................................70
Dimension Type...............................................................................................................71
Selection..........................................................................................................................72

DISPLAY..................................................................................................................72
Undefined Layers.............................................................................................................73
Pads and Vias..................................................................................................................73
Selecting Objects.............................................................................................................73
Parameter Aliases............................................................................................................73

DRC..........................................................................................................................74
Related SET commands..................................................................................................75

EDIT.........................................................................................................................75
Which Directory?..............................................................................................................76

ERC..........................................................................................................................76



Consistency Check..........................................................................................................76
ERRORS..................................................................................................................77

Marking a message as processed...................................................................................77
Approving a message......................................................................................................77
Clearing the list................................................................................................................78

EXPORT..................................................................................................................78
SCRIPT............................................................................................................................78
NETLIST..........................................................................................................................78
NETSCRIPT.....................................................................................................................78
PARTLIST........................................................................................................................79
PINLIST...........................................................................................................................79
DIRECTORY....................................................................................................................79
IMAGE.............................................................................................................................79
Further formats................................................................................................................79

FRAME.....................................................................................................................79
Example...........................................................................................................................80

GATESWAP.............................................................................................................80
GRID........................................................................................................................81

Examples.........................................................................................................................82
Parameter Aliases............................................................................................................82

GROUP....................................................................................................................83
Move Group.....................................................................................................................84
Extending the group.........................................................................................................84
Individual objects.............................................................................................................84

HELP........................................................................................................................84
Example...........................................................................................................................84

HOLE.......................................................................................................................84
Example...........................................................................................................................85

INFO.........................................................................................................................85
INVOKE....................................................................................................................86

Gates on Different Sheets...............................................................................................86
JUNCTION...............................................................................................................86
LABEL.....................................................................................................................87

Cross-reference labels.....................................................................................................87
Selecting the layer...........................................................................................................88

LAYER.....................................................................................................................89
Choose Drawing Layer....................................................................................................89
Define Layers...................................................................................................................89
Delete Layers...................................................................................................................89
Predefined EAGLE Layers...............................................................................................90

Layout.......................................................................................................................90
Schematic.................................................................................................................91

LOCK.......................................................................................................................91
MARK.......................................................................................................................92
MEANDER...............................................................................................................92

Measuring signal lengths.................................................................................................92
Symmetrical and asymmetrical meanders......................................................................93
Length tolerance..............................................................................................................93

MENU.......................................................................................................................93
Examples.........................................................................................................................94

MIRROR...................................................................................................................95



Mirror a Group..................................................................................................................96
Mirror Texts......................................................................................................................96

MITER......................................................................................................................96
Mitering a point................................................................................................................96
Mitering a wire..................................................................................................................96
Straight versus round mitering.........................................................................................97
Miter radius and wire bend style......................................................................................97

MOVE.......................................................................................................................97
Move Wires......................................................................................................................98
Move Groups...................................................................................................................98
Hints for Schematics........................................................................................................98
Selecting objects at their origin........................................................................................98
Move part of a sheet to an other sheet............................................................................98

NAME.......................................................................................................................99
Library..............................................................................................................................99
Automatic Naming...........................................................................................................99
Schematic......................................................................................................................100
Polygon..........................................................................................................................100

NET........................................................................................................................100
Select Bus Signal...........................................................................................................101
Net Names.....................................................................................................................101
Line Width......................................................................................................................101
Inverted signals..............................................................................................................101

OPEN.....................................................................................................................101
OPTIMIZE..............................................................................................................102

Automatic Optimization..................................................................................................102
PACKAGE..............................................................................................................102

Devices without packages.............................................................................................103
Supply devices........................................................................................................103
External devices......................................................................................................103

PAD........................................................................................................................104
Example.........................................................................................................................104
Pad Shapes...................................................................................................................104
Arbitrary Pad Shapes.....................................................................................................105
Pad Names....................................................................................................................106
Flags..............................................................................................................................106
Single Pads....................................................................................................................106
Alter Package.................................................................................................................106

PASTE....................................................................................................................106
Pasting from a file..........................................................................................................107

PIN.........................................................................................................................108
Options...........................................................................................................................108

Direction..................................................................................................................108
Function..................................................................................................................109
Length.....................................................................................................................109
Orientation...............................................................................................................109
Visible......................................................................................................................109
Swaplevel................................................................................................................109

Using the PIN Command...............................................................................................110
Automatic Naming..........................................................................................................110
Predefine options with CHANGE...................................................................................110



Pins with the same Name..............................................................................................110
Pin Lettering...................................................................................................................110
Inverted pins...................................................................................................................110

PINSWAP...............................................................................................................111
POLYGON..............................................................................................................111

Note................................................................................................................................111
Outlines or Real Mode...................................................................................................112
Other commands and Polygons....................................................................................112
Parameters.....................................................................................................................113

Width.......................................................................................................................113
Layer.......................................................................................................................113
Pour.........................................................................................................................113
Rank........................................................................................................................113
Thermals.................................................................................................................113
Spacing...................................................................................................................113
Isolate......................................................................................................................113
Orphans...................................................................................................................113

Thermal dimensions.......................................................................................................114
Outlines data..................................................................................................................114
Hatched polygons and airwires .....................................................................................114
Polygon cutouts..............................................................................................................114

PREFIX..................................................................................................................115
Example.........................................................................................................................115

PRINT.....................................................................................................................115
Printing to a file..............................................................................................................116
Printing to a given paper size.........................................................................................117
Printing a range of sheets..............................................................................................117
Examples.......................................................................................................................117

QUIT.......................................................................................................................118
RATSNEST............................................................................................................118

Zero length airwires........................................................................................................118
Making sure everything has been routed.......................................................................118
Wildcards.......................................................................................................................119
Hiding selected airwires.................................................................................................119
Differential Pairs.............................................................................................................120

RECT......................................................................................................................120
Not Part of Signals.........................................................................................................120
Restricted Areas............................................................................................................120

REDO.....................................................................................................................120
REMOVE................................................................................................................121

Files...............................................................................................................................121
Devices, Symbols, Packages........................................................................................121
Sheets............................................................................................................................121

RENAME................................................................................................................122
REPLACE..............................................................................................................122
RIPUP....................................................................................................................123

Wildcards.......................................................................................................................124
Polygons........................................................................................................................124

ROTATE.................................................................................................................124
Elements........................................................................................................................125
Text.................................................................................................................................125



ROUTE...................................................................................................................125
Selecting the routing layer and wire width.....................................................................127
Snap Function................................................................................................................127
Follow-me Router..........................................................................................................127
Differential Pair routing..................................................................................................128

RUN........................................................................................................................129
Running a ULP from a script file....................................................................................130
Editor commands resulting from running a ULP............................................................130

SCRIPT..................................................................................................................130
Examples.......................................................................................................................130
Continued Lines.............................................................................................................130
Set Default Parameters.................................................................................................131
Script Labels..................................................................................................................131
Execute Script Files in the Library Editor......................................................................131

SET........................................................................................................................131
User Interface................................................................................................................131
Screen display...............................................................................................................133
Mode parameters...........................................................................................................133
Colors.............................................................................................................................134
Automatic Confirmation.................................................................................................135
EagleRc Parameters......................................................................................................136

SHOW....................................................................................................................139
Cross Probing................................................................................................................139
Different Objects............................................................................................................139
Small Objects.................................................................................................................139
Wildcards.......................................................................................................................140
Objects on different Sheets...........................................................................................140
Examples.......................................................................................................................140

SIGNAL..................................................................................................................140
Mouse Input...................................................................................................................141
Text Input.......................................................................................................................141
On-line Check................................................................................................................141
Outlines data..................................................................................................................141

SMASH..................................................................................................................141
SMD.......................................................................................................................142

Roundness.....................................................................................................................142
Arbitrary Pad Shapes.....................................................................................................142
Names............................................................................................................................143
Flags..............................................................................................................................143
Single Smds...................................................................................................................143
Alter Package.................................................................................................................143

SPLIT.....................................................................................................................144
TECHNOLOGY......................................................................................................144

Example.........................................................................................................................145
TEXT......................................................................................................................145

Orientation.....................................................................................................................146
Special Characters........................................................................................................146
Key Words.....................................................................................................................146
Text Height.....................................................................................................................146
Text Font........................................................................................................................146
Text Alignment................................................................................................................147



Character Sets...............................................................................................................147
Text Variables.................................................................................................................147
Attributes........................................................................................................................148
Overlined text.................................................................................................................148

UNDO.....................................................................................................................149
UNDO buffer dialog........................................................................................................150

UPDATE.................................................................................................................150
Update in a board or schematic.....................................................................................150
Update in a library..........................................................................................................151

USE........................................................................................................................152
Using Libraries via the Control Panel............................................................................152
Used Libraries and Projects..........................................................................................152
Examples.......................................................................................................................152

VALUE...................................................................................................................153
In Boards and Schematics.............................................................................................153
Example.........................................................................................................................153
In Device Mode..............................................................................................................153

VARIANT................................................................................................................154
VIA.........................................................................................................................155

Signal name...................................................................................................................155
Via diameter...................................................................................................................155
Shape.............................................................................................................................155
Layers............................................................................................................................156
Flags..............................................................................................................................156

WINDOW...............................................................................................................156
Refresh screen...............................................................................................................156
New center.....................................................................................................................157
Corner points.................................................................................................................157
New center and zoom....................................................................................................157
Zoom in and out.............................................................................................................157
The whole drawing.........................................................................................................157
Back to the previous window.........................................................................................157
Very large zoom factors.................................................................................................158
Parameter Aliases..........................................................................................................158

WIRE......................................................................................................................159
Signal name...................................................................................................................159
Wire Width.....................................................................................................................159
Wire Style.......................................................................................................................160
Signals in Top, Bottom, and Route Layers....................................................................160
Drawing Arcs..................................................................................................................160

WRITE....................................................................................................................161
Generating Output...............................................................................................162
Printing..................................................................................................................162
Printing a Drawing...............................................................................................162

Paper.............................................................................................................................162
Orientation.....................................................................................................................162
Preview..........................................................................................................................162
Mirror..............................................................................................................................162
Rotate............................................................................................................................162
Upside down..................................................................................................................163
Black..............................................................................................................................163



Solid...............................................................................................................................163
Scale factor....................................................................................................................163
Page limit.......................................................................................................................163
All...................................................................................................................................163
From...to.........................................................................................................................163
This................................................................................................................................163
Printer.............................................................................................................................163
PDF................................................................................................................................163

Printing a Text.......................................................................................................163
Wrap long lines..............................................................................................................164
Printer.............................................................................................................................164
PDF................................................................................................................................164

Printer Page Setup...............................................................................................164
Border............................................................................................................................164
Calibrate.........................................................................................................................164
Aligment.........................................................................................................................165
Caption...........................................................................................................................165

CAM Processor....................................................................................................165
Main CAM Menu...................................................................................................165

File.................................................................................................................................165
Layer..............................................................................................................................165
Window..........................................................................................................................166
Help................................................................................................................................166

CAM Processor Job.............................................................................................166
Section...........................................................................................................................166
Prompt...........................................................................................................................166
Add.................................................................................................................................166
Del..................................................................................................................................167
Process Section.............................................................................................................167
Process Job...................................................................................................................167

Output Device.......................................................................................................167
Device............................................................................................................................167
Scale..............................................................................................................................167
File.................................................................................................................................167
Wheel.............................................................................................................................167
Rack...............................................................................................................................168

Device Parameters...............................................................................................168
Aperture Wheel File.............................................................................................168

Examples.......................................................................................................................168
Aperture Emulation..............................................................................................168
Aperture Tolerances............................................................................................169
Drill Rack File.......................................................................................................169

Example.........................................................................................................................169
Drill Tolerances.....................................................................................................169
Offset.....................................................................................................................169
Printable Area.......................................................................................................169

Height.............................................................................................................................169
Width..............................................................................................................................169

Pen Data................................................................................................................170
Diameter........................................................................................................................170
Velocity...........................................................................................................................170



Defining Your Own Device Driver.......................................................................170
Output File............................................................................................................170

Placeholders..................................................................................................................170
Drill data with blind&buried vias.....................................................................................171

Flag Options.........................................................................................................171
Mirror..............................................................................................................................171
Rotate............................................................................................................................171
Upside down..................................................................................................................172
pos. Coord.....................................................................................................................172
Quickplot........................................................................................................................172
Optimize.........................................................................................................................172
Fill pads..........................................................................................................................172

Layers and Colors................................................................................................172
Outlines data........................................................................................................173

Preparing the board.......................................................................................................173
Extracting the data.........................................................................................................173
Milling tool diameter.......................................................................................................173
Cleaning up....................................................................................................................173

Autorouter.............................................................................................................173
Design Checks.....................................................................................................174
Design Rules........................................................................................................174

File.................................................................................................................................174
Layers............................................................................................................................174
Clearance.......................................................................................................................175
Distance.........................................................................................................................176
Sizes..............................................................................................................................176
Restring..........................................................................................................................176
Shapes...........................................................................................................................176
Supply............................................................................................................................177
Masks.............................................................................................................................177
Misc................................................................................................................................177

Cross-references..................................................................................................177
Cross-reference labels........................................................................................177
Part cross-references..........................................................................................177
Contact cross-references....................................................................................178
User Language.....................................................................................................178
Writing a ULP........................................................................................................179
Executing a ULP...................................................................................................179
Syntax...................................................................................................................180
Whitespace...........................................................................................................180
Comments.............................................................................................................180
Directives..............................................................................................................181
#include.................................................................................................................181

Portability note...............................................................................................................181
#require.................................................................................................................181
#usage...................................................................................................................182

Example.........................................................................................................................182
Keywords..............................................................................................................183
Identifiers..............................................................................................................183
Constants..............................................................................................................183



Character Constants............................................................................................183
Integer Constants.................................................................................................184

Examples.......................................................................................................................184
Real Constants.....................................................................................................184

Examples.......................................................................................................................184
String Constants..................................................................................................185
Escape Sequences...............................................................................................185

Examples.......................................................................................................................185
Punctuators..........................................................................................................186
Brackets................................................................................................................186
Parentheses..........................................................................................................186
Braces...................................................................................................................186
Comma..................................................................................................................186
Semicolon.............................................................................................................187
Colon.....................................................................................................................187
Equal Sign.............................................................................................................187
Data Types............................................................................................................187
char........................................................................................................................188
int...........................................................................................................................188
real.........................................................................................................................188
string.....................................................................................................................188

Implementation details...................................................................................................189
Type Conversions................................................................................................189
Typecast................................................................................................................189
Object Types.........................................................................................................190

Object hierarchy of a Library:........................................................................................191
Object hierarchy of a Schematic:...................................................................................191

Change note from version 5 to version 6, compatibility..........................................192
Object hierarchy of a Board:..........................................................................................192

UL_ARC.................................................................................................................193
Constants.......................................................................................................................193
Note...............................................................................................................................193
Example.........................................................................................................................193

UL_AREA..............................................................................................................193
Example.........................................................................................................................193

UL_ATTRIBUTE....................................................................................................194
Constants.......................................................................................................................194
Note...............................................................................................................................194
Example.........................................................................................................................194

UL_BOARD...........................................................................................................195
Constants.......................................................................................................................195
Note...............................................................................................................................195
Example.........................................................................................................................196

UL_BUS.................................................................................................................196
Constants.......................................................................................................................196
Example.........................................................................................................................196

UL_CIRCLE...........................................................................................................196
Example.........................................................................................................................196

UL_CLASS............................................................................................................197
Note...............................................................................................................................197



Example.........................................................................................................................197
UL_CONTACT.......................................................................................................197

Constants.......................................................................................................................197
Note...............................................................................................................................198
Example.........................................................................................................................198

UL_CONTACTREF................................................................................................198
Constants.......................................................................................................................198
Note...............................................................................................................................198
Example.........................................................................................................................198

UL_DEVICE...........................................................................................................199
Constants.......................................................................................................................199
Note...............................................................................................................................199
Examples.......................................................................................................................200

UL_DEVICESET....................................................................................................200
Constants.......................................................................................................................200
Note...............................................................................................................................201
Example.........................................................................................................................201

UL_DIMENSION....................................................................................................201
Constants.......................................................................................................................202
Note...............................................................................................................................202
Example.........................................................................................................................202

UL_ELEMENT.......................................................................................................202
Constants.......................................................................................................................202
Note...............................................................................................................................203
Examples.......................................................................................................................203

UL_FRAME............................................................................................................203
Constants.......................................................................................................................204
Note...............................................................................................................................204
Example.........................................................................................................................204

UL_GATE...............................................................................................................204
Constants.......................................................................................................................204
Note...............................................................................................................................205
Example.........................................................................................................................205

UL_GRID...............................................................................................................205
Constants.......................................................................................................................205
Note...............................................................................................................................205
Example.........................................................................................................................205

UL_HOLE..............................................................................................................205
Note...............................................................................................................................206
Example.........................................................................................................................206

UL_INSTANCE......................................................................................................206
Constants.......................................................................................................................206
Note...............................................................................................................................207
Example.........................................................................................................................207

UL_JUNCTION......................................................................................................207
Example.........................................................................................................................207

UL_LABEL............................................................................................................208
Note...............................................................................................................................208
Example.........................................................................................................................208

UL_LAYER.............................................................................................................208
Constants.......................................................................................................................209



Example.........................................................................................................................210
UL_LIBRARY.........................................................................................................210

Constants.......................................................................................................................210
Note...............................................................................................................................210
Example.........................................................................................................................211

UL_NET.................................................................................................................211
Constants.......................................................................................................................211
Note................................................................................................................................211
Example.........................................................................................................................211

UL_PACKAGE.......................................................................................................212
Constants.......................................................................................................................212
Note...............................................................................................................................212
Example.........................................................................................................................213

UL_PAD.................................................................................................................213
Constants.......................................................................................................................213
Note...............................................................................................................................214
Example.........................................................................................................................214

UL_PART...............................................................................................................214
Constants.......................................................................................................................215
Note...............................................................................................................................215
Example.........................................................................................................................215

UL_PIN..................................................................................................................215
Constants.......................................................................................................................216
Note...............................................................................................................................216
Example.........................................................................................................................217

UL_PINREF...........................................................................................................217
Example.........................................................................................................................217

UL_POLYGON.......................................................................................................218
Constants.......................................................................................................................218
Note...............................................................................................................................218
Polygon width.................................................................................................................219
Partial polygons.............................................................................................................219
Example.........................................................................................................................219

UL_RECTANGLE..................................................................................................220
Example.........................................................................................................................220

UL_SCHEMATIC...................................................................................................220
Constants.......................................................................................................................221
Note...............................................................................................................................221
Example.........................................................................................................................221

UL_SEGMENT.......................................................................................................221
Note...............................................................................................................................222
Example.........................................................................................................................222

UL_SHEET............................................................................................................222
Example.........................................................................................................................222

UL_SIGNAL...........................................................................................................223
Constants.......................................................................................................................223
Example.........................................................................................................................223

UL_SMD................................................................................................................223
Constants.......................................................................................................................223
Note...............................................................................................................................223
Example.........................................................................................................................224



UL_SYMBOL.........................................................................................................224
Constants.......................................................................................................................225
Note...............................................................................................................................225
Example.........................................................................................................................225

UL_TEXT...............................................................................................................225
Constants.......................................................................................................................225
Note...............................................................................................................................226
Example.........................................................................................................................226

UL_VARIANTDEF..................................................................................................226
Example.........................................................................................................................226

UL_VARIANT.........................................................................................................226
Example.........................................................................................................................226

UL_VIA..................................................................................................................227
Constants.......................................................................................................................227
Note...............................................................................................................................227
Example.........................................................................................................................227

UL_WIRE...............................................................................................................227
Constants.......................................................................................................................228
Wire Style.......................................................................................................................228
Arcs at Wire level...........................................................................................................228
Example.........................................................................................................................229

Definitions.............................................................................................................229
Constant Definitions............................................................................................229
Variable Definitions..............................................................................................229

Examples.......................................................................................................................230
Function Definitions............................................................................................230

The special function main()............................................................................................231
Example.........................................................................................................................231

Operators..............................................................................................................231
Bitwise Operators................................................................................................232
Logical Operators................................................................................................232
Comparison Operators........................................................................................232
Evaluation Operators...........................................................................................232
Arithmetic Operators...........................................................................................233
String Operators...................................................................................................233
Expressions..........................................................................................................234
Arithmetic Expression.........................................................................................234

Examples.......................................................................................................................234
Assignment Expression......................................................................................234

Examples.......................................................................................................................234
String Expression................................................................................................234

Examples.......................................................................................................................235
Comma Expression..............................................................................................235

Example.........................................................................................................................235
Conditional Expression.......................................................................................235

Example.........................................................................................................................235
Function Call........................................................................................................235

Example.........................................................................................................................235
Statements............................................................................................................235
Compound Statement..........................................................................................236



Expression Statement.........................................................................................236
Control Statements..............................................................................................236
break......................................................................................................................236
continue................................................................................................................237
do...while...............................................................................................................237

Example.........................................................................................................................237
for...........................................................................................................................237

Example.........................................................................................................................238
if...else...................................................................................................................238
return.....................................................................................................................238
switch....................................................................................................................238

Example.........................................................................................................................239
while......................................................................................................................239

Example.........................................................................................................................240
Builtins..................................................................................................................240
Builtin Constants.................................................................................................240
Builtin Variables...................................................................................................241
Builtin Functions..................................................................................................241
Character Functions............................................................................................244
is...().......................................................................................................................244

Character categories.....................................................................................................244
Example.........................................................................................................................245

to...().......................................................................................................................245
File Handling Functions......................................................................................245
fileerror()...............................................................................................................246

Example.........................................................................................................................246
fileglob()................................................................................................................246

Note for Windows users.................................................................................................247
Example.........................................................................................................................247

Filename Functions.............................................................................................247
Example.........................................................................................................................247

Filedata Functions...............................................................................................247
Example.........................................................................................................................248

File Input Functions.............................................................................................248
fileread()................................................................................................................248

Example.........................................................................................................................248
Mathematical Functions......................................................................................248

Error Messages..............................................................................................................249
Absolute, Maximum and Minimum Functions...................................................249

Example.........................................................................................................................250
Rounding Functions............................................................................................250

Example.........................................................................................................................250
Trigonometric Functions.....................................................................................250

Constants.......................................................................................................................250
Note...............................................................................................................................251
Example.........................................................................................................................251

Exponential Functions.........................................................................................251
Example.........................................................................................................................251

Miscellaneous Functions....................................................................................251
Configuration Parameters...................................................................................252



Example.........................................................................................................................252
country()................................................................................................................253

Example.........................................................................................................................253
exit().......................................................................................................................253

Constants.......................................................................................................................253
fdlsignature()........................................................................................................253
language().............................................................................................................254

Example.........................................................................................................................254
lookup().................................................................................................................255

Example.........................................................................................................................256
palette().................................................................................................................256

Constants.......................................................................................................................256
sort()......................................................................................................................256

Sorting a single array.....................................................................................................257
Sorting a set of arrays....................................................................................................257

status()..................................................................................................................258
system()................................................................................................................258

Input/Output redirection.................................................................................................258
Background execution...................................................................................................258
Example.........................................................................................................................259

Unit Conversions.................................................................................................259
Example.........................................................................................................................260

Network Functions...............................................................................................260
neterror()...............................................................................................................260

Example.........................................................................................................................260
netget()..................................................................................................................261

Example.........................................................................................................................261
netpost()................................................................................................................262

Example.........................................................................................................................262
Printing Functions...............................................................................................262
printf()....................................................................................................................263

Format string..................................................................................................................263
Format specifiers...........................................................................................................263
Conversion type characters...........................................................................................263
Flag characters..............................................................................................................264
Width specifiers..............................................................................................................264
Precision specifiers........................................................................................................264
Default precision values.................................................................................................265
How precision specification (.n) affects conversion.......................................................265
Binary zero characters...................................................................................................265
Example.........................................................................................................................265

sprintf()..................................................................................................................265
Format string..................................................................................................................266
Binary zero characters...................................................................................................266
Example.........................................................................................................................266

String Functions...................................................................................................266
strchr()...................................................................................................................266

Example.........................................................................................................................267
strjoin()..................................................................................................................267

Example.........................................................................................................................267



strlen()...................................................................................................................267
Example.........................................................................................................................267

strlwr()...................................................................................................................268
Example.........................................................................................................................268

strrchr().................................................................................................................268
Example.........................................................................................................................268

strrstr()..................................................................................................................268
Example.........................................................................................................................269

strsplit().................................................................................................................269
Example.........................................................................................................................269

strstr()....................................................................................................................269
Example.........................................................................................................................270

strsub()..................................................................................................................270
Example.........................................................................................................................270

strtod()...................................................................................................................270
Example.........................................................................................................................270

strtol()....................................................................................................................271
Example.........................................................................................................................271

strupr()..................................................................................................................271
Example.........................................................................................................................271

strxstr()..................................................................................................................271
Example.........................................................................................................................272

Time Functions.....................................................................................................272
time()......................................................................................................................272

Example.........................................................................................................................272
timems()................................................................................................................273

Example.........................................................................................................................273
Time Conversions................................................................................................273

Example.........................................................................................................................274
Object Functions..................................................................................................274
clrgroup()..............................................................................................................274

Example.........................................................................................................................275
ingroup()...............................................................................................................275

Identifying the context menu object ..............................................................................276
Example.........................................................................................................................276

setgroup().............................................................................................................276
Example.........................................................................................................................276

setvariant()............................................................................................................277
Example.........................................................................................................................277

variant().................................................................................................................277
Example.........................................................................................................................277

XML Functions......................................................................................................277
xmlattribute(), xmlattributes().............................................................................278

Example.........................................................................................................................278
xmlelement(), xmlelements()...............................................................................278

Example.........................................................................................................................279
xmltags()...............................................................................................................279

Example.........................................................................................................................280
xmltext()................................................................................................................280

Example.........................................................................................................................281



Builtin Statements................................................................................................281
board()...................................................................................................................281

Check if there is a board................................................................................................282
Accessing board from a schematic................................................................................282
Example.........................................................................................................................282

deviceset()............................................................................................................282
Check if there is a device set.........................................................................................283
Example.........................................................................................................................283

library()..................................................................................................................283
Check if there is a library...............................................................................................283
Example.........................................................................................................................283

output()..................................................................................................................284
File Modes.....................................................................................................................284
Nested Output statements.............................................................................................284
Example.........................................................................................................................284

package()..............................................................................................................284
Check if there is a package...........................................................................................285
Example.........................................................................................................................285

schematic()...........................................................................................................285
Check if there is a schematic.........................................................................................286
Accessing schematic from a board................................................................................286
Access the current Sheet...............................................................................................286
Example.........................................................................................................................286

sheet()...................................................................................................................286
Check if there is a sheet................................................................................................287
Example.........................................................................................................................287

symbol()................................................................................................................287
Check if there is a symbol..............................................................................................287
Example.........................................................................................................................287

Dialogs..................................................................................................................287
Predefined Dialogs...............................................................................................288
dlgDirectory()........................................................................................................288

Example.........................................................................................................................288
dlgFileOpen(), dlgFileSave()................................................................................288

Example.........................................................................................................................289
dlgMessageBox().................................................................................................289

Example.........................................................................................................................290
Dialog Objects......................................................................................................290
dlgCell...................................................................................................................291

Example.........................................................................................................................291
dlgCheckBox........................................................................................................291

Example.........................................................................................................................292
dlgComboBox.......................................................................................................292

Example.........................................................................................................................292
dlgDialog...............................................................................................................292

Examples.......................................................................................................................293
dlgGridLayout.......................................................................................................293

Example.........................................................................................................................294
dlgGroup...............................................................................................................294

Example.........................................................................................................................294



dlgHBoxLayout.....................................................................................................294
Example.........................................................................................................................294

dlgIntEdit...............................................................................................................295
Example.........................................................................................................................295

dlgLabel................................................................................................................295
Example.........................................................................................................................296

dlgListBox.............................................................................................................296
Example.........................................................................................................................296

dlgListView...........................................................................................................296
Example.........................................................................................................................297

dlgPushButton.....................................................................................................298
Example.........................................................................................................................298

dlgRadioButton....................................................................................................298
Example.........................................................................................................................299

dlgRealEdit...........................................................................................................299
Example.........................................................................................................................299

dlgSpacing............................................................................................................299
Example.........................................................................................................................300

dlgSpinBox...........................................................................................................300
Example.........................................................................................................................300

dlgStretch.............................................................................................................300
Example.........................................................................................................................301

dlgStringEdit.........................................................................................................301
Example.........................................................................................................................301

dlgTabPage...........................................................................................................301
Example.........................................................................................................................302

dlgTabWidget........................................................................................................302
Example.........................................................................................................................302

dlgTextEdit............................................................................................................302
Example.........................................................................................................................303

dlgTextView...........................................................................................................303
Example.........................................................................................................................303

dlgVBoxLayout.....................................................................................................303
Example.........................................................................................................................304

Layout Information...............................................................................................304
Grid Layout Context.......................................................................................................304
Horizontal Layout Context.............................................................................................304
Vertical Layout Context..................................................................................................304
Mixing Layout Contexts.................................................................................................305

Dialog Functions..................................................................................................305
dlgAccept()...........................................................................................................305

Example.........................................................................................................................305
dlgRedisplay()......................................................................................................305

Example.........................................................................................................................306
dlgReset()..............................................................................................................306

Example.........................................................................................................................306
dlgReject().............................................................................................................307

Example.........................................................................................................................307
dlgSelectionChanged()........................................................................................307

Example.........................................................................................................................308



Escape Character.................................................................................................308
A Complete Example............................................................................................308
Supported HTML tags..........................................................................................309
Automatic Backup................................................................................................312

Maximum backup level..................................................................................................312
Auto backup interval......................................................................................................312

Forward&Back Annotation..................................................................................313
Consistency Check..............................................................................................313

Making a Board and Schematic consistent...................................................................314
Limitations............................................................................................................314
Technical Support................................................................................................314
License..................................................................................................................315

Single-User License.......................................................................................................315
Multi-user License..........................................................................................................315
Commercial License......................................................................................................315
Educational License.......................................................................................................315
Student License.............................................................................................................315

EAGLE License....................................................................................................315
Installing additional modules.........................................................................................316

EAGLE Editions....................................................................................................316
Professional...................................................................................................................316
Standard........................................................................................................................316
Light...............................................................................................................................316
Freemium.......................................................................................................................316



General Help
While inside a board, schematic, or library editor window, pressing F1 or entering the 
command HELP will open the help page for the currently active command. 

You can also display an editor command's help page by entering 

HELP command

replacing "command" with, e.g., MOVE, which would display the help page for the MOVE 
command. 

Anywhere else, pressing the F1 key will bring up a context sensitive help page for the menu, 
dialog or action that is currently active. 

For detailed information on how to get started with EAGLE please read the following help 
pages: 

• Quick Introduction   
• Configuring EAGLE   
• Command Line Options   
• Control Panel   

Configuring EAGLE
Global EAGLE parameters can be adjusted in the Control Panel. 

The following editor commands can be used to customize the way EAGLE works. They can 
be given either directly from an editor window's command line, or in the eagle.scr file. 

User Interface
Command menu MENU command..;
Assign keys ASSIGN function_key command..;
Snap function SET SNAP_LENGTH number;

SET CATCH_FACTOR value;
SET SELECT_FACTOR value;

Content of menus 
SET USED_LAYERS name | 
number;



SET WIDTH_MENU value..;
SET DIAMETER_MENU value..;
SET DRILL_MENU value..;
SET SMD_MENU value..;
SET SIZE_MENU value..;
SET ISOLATE_MENU value..;
SET SPACING_MENU value..;
SET MITER_MENU value..;

Wire bend SET WIRE_BEND bend_nr;
Beep on/off SET BEEP OFF | ON;

Screen Display
Color for grid lines SET COLOR_GRID color;
Color for layer SET COLOR_LAYER layer color;
Fill style for layer SET FILL_LAYER layer fill;
Grid parameter SET MIN_GRID_SIZE pixels;
Min. text size displayed SET MIN_TEXT_SIZE size;
Display of net lines SET NET_WIRE_WIDTH width;

Display of pads 
SET DISPLAY_MODE REAL | 
NODRILL;
SET PAD_NAMES OFF | ON;

Display of bus lines SET BUS_WIRE_WIDTH width;
DRC fill style SET DRC_FILL fill_name;
Polygon processing SET POLYGON_RATSNEST OFF | ON;
Vector font SET VECTOR_FONT OFF | ON;

Mode Parameters
Package check SET CHECK_CONNECTS OFF | ON;
Grid parameters GRID options;

Replace mode 
SET REPLACE_SAME NAMES | 
COORDS;

UNDO Buffer SET UNDO_LOG OFF | ON;
Wire Optimizing SET OPTIMIZING OFF | ON;
Net wire termination SET AUTO_END_NET OFF | ON;
Automatic junctions SET AUTO_JUNCTION OFF | ON;

Presettings
Pad shape CHANGE SHAPE shape;
Wire width CHANGE WIDTH value;
Pad/via diameter CHANGE DIAMETER diameter;
Pad/via/hole drill diam. CHANGE DRILL value;
Smd size CHANGE SMD width height;
Text height CHANGE SIZE value;
Text thickness CHANGE RATIO ratio;
Text font CHANGE FONT font;
Text alignment CHANGE ALIGN align;
Polygon parameter CHANGE THERMALS OFF | ON;
Polygon parameter CHANGE ORPHANS OFF | ON;
Polygon parameter CHANGE ISOLATE distance;
Polygon parameter CHANGE POUR SOLID | HATCH | 



CUTOUT;
Polygon parameter CHANGE RANK value;
Polygon parameter CHANGE SPACING distance;
Dimension type CHANGE DTYPE value;

Command Line Options
You can call up EAGLE with command line parameters. Use the following format: 

eagle [ options [ filename [ layer ] ] ]

Options
-Axxx Assembly variant

-Cxxx execute the given 
Command

-Dxxx Draw tolerance (0.1 = 10%)
-Exxx Drill tolerance (0.1 = 10%)
-Fxxx Flash tolerance (0.1 = 10%)
-N- no command line prompts
-O+ Optimize pen movement
-Pxxx plotter Pen (layer=pen)
-Rxxx drill Rack file
-Sxxx Scriptfile
-Uxxx User settings file
-Wxxx aperture Wheel file
-X- eXecute CAM Processor
-c+ positive Coordinates
-dxxx Device (-d? for list)
-e- Emulate apertures
-f+ Fill pads
-hxxx page Height (inch)
-m- Mirror output
-oxxx Output filename
-pxxx Pen diameter (mm)
-q- Quick plot
-r- Rotate output 90 degrees
-sxxx Scale factor
-u- output Upside down
-vxxx pen Velocity
-wxxx page Width (inch)
-xxxx offset X (inch)
-yxxx offset Y (inch)
where xxx means that further data, e.g. a file name or a decimal number needs to be 
appended to the option character (without space or separated by a space), as in 

-Wmywheel.whl
-W mywheel.whl
-e      Aperture emulation on
-e+     dto.
-e-     Aperture emulation off

For flag options, a '-' means that the option is off by default, while '+' means it is on by 



default. 

Flag options (e.g. -e) can be used without repeating the '-' character: 
-ecfm Aperture emulation on, positive oordinates on, fill pads on

-ec-f+ Aperture emulation on, positive oordinates off, fill pads 
on

User settings
User settings are stored in the eaglerc file, which, by default, is stored in 
$HOME/.eaglerc. 

On Windows it is stored in the file eaglerc.usr under the directory that is defined by 
the registry key 
"HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell 
Folders\AppData" if no environment variable named HOME is defined. 

With the command line option -U another file can be specified for this. This makes 
particular sense when you want to use several EAGLE versions with different settings. 
Example: 

C:/Program Files/MyEAGLE5/bin/eagle.exe 
-UC:/Settings/eaglerc5.usr

may start version 5 with a V5 specific, 
C:/Program Files/MyEAGLE6/bin/eagle.exe 

-UC:/Settings/eaglerc6.usr
may start version 6 with a V6 specific eaglerc file, which may differ from eaglerc5.usr in 
the project directories for instance. 

If a '-' sign is given as the file name, as in -U-, no eaglerc file will be read or written. 

Defining Tolerance Values
Without '+' or '-' sign, a tolerance value applies to both directions: 
-D0.10 adjusts the draw tolerance to ±10%

-D+0.1 -D-0.05 adjusts the draw toleranceto +10% and 
-5%

Executing commands
If a command is given with the '-C' option, as in 

eagle -C "window (1 1) (2 2);" myboard.brd

EAGLE will load the given file and execute the command as if it had been typed into the 
editor window's command line. 

The following conditions apply for the '-C' option: 

• A file name (board, schematic or library) must be given, so that an editor window 
will be opened in which the command can be executed. That file doesn't necessarily 
need to exist. The command is executed after loading and confirming of related 
messages. 

• The eagle.scr file will not be executed automatically. 
• The option '-s' will be ignored. 
• The user settings will not be written back to the eaglerc file. 



• Any project that has been open when EAGLE was left the last time will not be 
opened. 

• The command can be a single command, or a sequence of commands delimited by 
semicolons. 

To run EAGLE without automatically executing the eagle.scr file or loading a project, 
the command string can be empty, as in 

eagle -C ""

Note that in this special case there must be a blank between the option character and the 
quotes, so that the program will see the explicitly empty string. There also doesn't have to be 
a file name here, because no command will actually be executed. 

Filename
If the given filename is eagle.epf (optionally preceded by a directory name), EAGLE 
will load that Project File. Otherwise, if no file extension is given, it defaults to .brd, to 
load a board file. 

Quick Introduction
For a quick start you should know more about the following topics: 

• Control Panel and Editor Windows   
• Using Editor Commands   
• Entering Parameters and Values   
• Drawing a Schematic   
• Checking the Schematic   
• Generating a Board from a Schematic   
• Checking the Layout   
• Creating a Library Device   
• Using the Autorouter   
• Using the System Printer   
• Using the CAM Processor   

In case of problems please contact our free Technical Support. 

Control Panel and Editor Windows
From the Control Panel you can open schematic, board, or library editor windows by using 
the File menu or double clicking an icon. 

Entering Parameters and Values
Parameters and values can be entered in the EAGLE command line or, more conveniently, 
in the Parameter Toolbars which appear when a command is activated. As this is quite self-
explanatory, the help text does not explicitly mention this option at other locations. 

Wherever coordinates or sizes (like width, diameter etc.) can be entered, they may be given 



with units, as in 50mil or 0.8mm. If no unit is given, the current grid unit is used. 

Drawing a Schematic

Create a Schematic File
Use File/New and Save as to create a schematic with a name of your choice. 

Load a Drawing Frame
Load library FRAMES with USE and place a frame of your choice with ADD. 

Place Symbols
Load appropriate libraries with USE and place symbols (see ADD, MOVE, DELETE, 
ROTATE, NAME, VALUE). Where a particular component is not available, define a new 
one with the library editor. 

Draw Bus Connections
Using the BUS command, draw bus connections. You can NAME a bus in such a way that 
you can drag nets out of the bus which are named accordingly. 

Draw Net Connections
Using the NET command, connect up the pins of the various elements on the drawing. 
Intersecting nets may be made into connections with the JUNCTION command. 

Checking the Schematic
Carry out an electrical rule check (ERC) to look for open pins, etc., and use the messages 
generated to correct any errors. Use the SHOW command to follow complete nets across the 
screen. Use the EXPORT command to generate a netlist, pinlist, or partlist if necessary. 

Generating a Board from a Schematic
By using the BOARD command or clicking the Switch-to-Board icon you can generate a 
board from the loaded schematic (if there is no board with the same name yet). 

All the components, together with their connections drawn as airwires, appear beside a 
blank board ready for placing. Power pins are automatically connected to the appropriate 
supply (if not connected by a net on the schematic). 

The board is linked to the schematic via Forward&Back Annotation. This mechanism makes 
sure that schematic and board are consistent. When editing a drawing, board and schematic 
must be loaded to keep Forward&Back Annotation active. 



Set Board Outlines and Place Components
The board outlines can be adjusted with the MOVE and SPLIT commands as appropriate 
before moving each package on the board. Once all packages have been placed, the 
RATSNEST command is used to optimize airwires. 

Define Restricted Areas
If required, restricted areas for the Autorouter can be defined as RECTangles, POLYGONs, 
or CIRCLEs on the tRestrict, bRestrict, or vRestrict layers. Note: areas enclosed by wires 
drawn on the Dimension layer are borders for the Autorouter, too. 

Routing
Airwires are now converted into tracks with the aid of the ROUTE command. This function 
can also be performed automatically by the Autorouter, when available. 

Checking the Layout
Check the layout (DRC) and correct the errors (ERRORS). Generate net, part, or pin list if 
necessary(EXPORT). 

Creating a Library Device
Creating a new component part in a library has three steps. You must follow these steps as 
they build upon each other. 

To start, open a library. Use the File menu Open or New command (not the USE command). 

Create a Package
Packages are the part of the device that are added to a board. 

Click the Edit Package icon and edit a new package by typing its name in the New field of 
the dialog box. 

Set the proper distance GRID. 

NAME and place PADs properly. 

Add texts >NAME and >VALUE with the TEXT command (show actual name and value in 
the board) and draw package outlines (WIRE command) in the proper layers. 

Create a Symbol
Symbols are the part of the device that are added to a schematic. 

Click the Edit Symbol icon and edit a new symbol by typing its name in the New field of the 
dialog box. 

Place and name pins with the commands PIN and NAME and provide pin parameters 
(CHANGE). 

Add texts >NAME and >VALUE with the TEXT command (show actual name and value in 



the schematic) and draw symbol outlines (WIRE command) in the proper layers. 

Create the Device
Devices are the "master" part of a component and use both a package and one or more 
symbols. 

Click the Edit Device icon and edit a new device by typing its name in the New field of the 
dialog box. 

Assign the package with the PACKAGE command. 

Add the gate(s) with ADD, you can have as many gates as needed. 

Use CONNECT to specify which of the packages pads are connected to the pins of each 
gate. 

Save the library and you can USE it from the schematic or board editor. 

Control Panel
The Control Panel is the top level window of EAGLE. It contains a tree view on the left 
side, and an information window on the right side. 

Directories
The top level items of the tree view represent the various types of EAGLE files. Each of 
these can point to one or more directories that contain files of that type. The location of 
these directories can be defined with the directories dialog. If a top level item points to a 
single directory, the contents of that directory will appear if the item is opened (either by 
clicking on the little symbol to the left, or by double clicking the item). If such an item 
points to more directories, all of these directories will be listed when the item is opened. 

Context menu
The context menu of the tree items can be accessed by clicking on them with the right 
mouse button. It contains options specific to the selected item. 

Descriptions
The Description column of the tree view contains a short description of the item (if 
available). These descriptions are derived from the first non-blank line of the text from the 
following sources: 

Directories
a file named DESCRIPTION in that 
directory

Libraries the description of the library
Devices the description of the device
Packages the description of the package
Design Rules the description of the design rules file
User Language 
Programs

the text defined with the #usage directive

Scripts the comment at the beginning of the script 



file
CAM Jobs the description of the CAM job

Drag&drop
You can use Drag&Drop to copy or move files and directories within the tree view. It is also 
possible to drag a device or package to a schematic, board or library window, respectively, 
and drop it there to add it to the drawing. User Language Programs and Scripts will be 
executed if dropped onto an editor window, and Design Rules will be applied to a board if 
dropped onto a board editor window. If a board, schematic or library file is dropped onto its 
respective editor window, it will be loaded into the editor. All of these functions can also be 
accessed through the context menu of the particular tree item. 

Information window
The right hand side of the Control Panel displays information about the current item in the 
tree view. That information is derived from the places listed above under Descriptions. 
Devices and packages also show a preview of their contents. 

Pulldown menu
The Control panel's pulldown menu contains the following options: 

File
New create a new file
Open open an existing file
Open recent 
projects

open a recently used project

Save all 
save all modified editor 
files

Close project close the current project
Exit exit from the program

View
Refresh refresh the contents of the tree view
Search in 
tree

search in the contents of the tree view (see 
below)

Sort change the sorting of the tree view

Options
Directories... opens the directories dialog
Backup... opens the backup dialog
User interface... opens the user interface dialog

Window positions...
opens the window positions 
dialog

Window
Control Panel switch to the Control Panel
1 Schematic - ... switch to window number 



1

2 Board - ... 
switch to window number 
2

Help
General opens a general help page
Context opens the help page for the current context
Control Panel opens the help page you are currently looking at
EAGLE License opens the license dialog
Check for Update checks if a new version of EAGLE is available

About EAGLE 
displays details on your EAGLE version and 
license

Search Bar
The Search pattern can be one or more words, separated by blanks. These words are 
searched case insensitively in the tree names and descriptions and must all match. The 
wildcard character '*' matches any number of non-whitespace characters, while '?' matches 
exactly one of these characters. To search for a wildcard character itself it has to be escaped 
like '\*'. To restrict the search to a branch of the tree, the search can be started in its context 
menu. To find a NAND device from the 74xx series, e.g. enter: 74* nand 

Status line
The status line at the bottom of the Control Panel contains the full name of the currently 
selected item. 

Context Menus
Clicking on an item in the Control Panel with the right mouse button opens a context menu 
which allows the following actions (not all of them may be present on a particular item): 

New Folder
Creates a new folder below the selected folder and puts the newly created tree item into 
Rename mode. 

Edit Description
Loads the DESCRIPTION file of a directory into the HTML editor. 

Rename
Puts the tree item's text into edit mode, so that it can be renamed. 

Copy
Opens a file dialog in which you can enter a name to which to copy this file or directory. 
You can also use Drag&Drop to do this. 



Delete
Deletes the file or directory (you will be prompted to confirm that you really want this to 
happen). 

Use
Marks this library to be used when searching for devices or packages. You can also click on 
the icon in the second column of the tree view to toggle this flag. 

Use all
Marks all libraries in the Libraries path to be used when searching for devices or packages. 

Use none
Removes the use marks from all libraries (including such libraries that are not in the 
Libraries path). 

Update
Updates all parts used from this library in the loaded board and schematic. 

Update in Library
Updates all packages used from this library in the loaded library. 

Add to Schematic
Starts the ADD command in the schematic window with this device. You can also use 
Drag&Drop to do this. 

Add to Board
Starts the ADD command in the board window with this package. You can also use 
Drag&Drop to do this. 

Copy to Library
Copies the selected device set or package into the loaded library. You can also use 
Drag&Drop to do this. 

New package variant in Library
Creates a new package variant with the selected package in the current device set of the 
loaded library. You can also use Drag&Drop to do this. 



Open/Close Project
Opens or closes this project. You can also click on the icon in the second column of the tree 
view to do this. 

New
Opens a window with a new file of the given type. 

Open
Opens this file in the propper window. You can also use Drag&Drop to do this. 

Print...
Prints the file to the system printer. See the chapter on printing to the system printer for 
more information on how to use the print dialogs. 

Printing a file through this context menu option will always print the file as it is on disk, 
even if you have an open editor window in which you have modified the file! Use the 
PRINT command to print the drawing from an open editor window.
Please note that polygons in boards will not be automatically calculated when printing 
via the context menu! Only the outlines will be drawn. To print polygons in their 
calculated shape you have to load the drawing into an editor window, enter 
RATSNEST and then PRINT. 

Run in ...
Runs this User Language Program in the current schematic, board or library. You can also 
use Drag&Drop to do this. 

Execute in ...
Executes this script file in the current schematic, board or library. You can also use 
Drag&Drop to do this. 

Load into Board
Loads this set of Design Rules into the current board. You can also use Drag&Drop to do 
this. 

Directories
The Directories dialog is used to define the directory paths in which to search for files. 

All entries may contain one or more directories, separated by a colon (':'), in which to 
look for the various types of files. 

On Windows the individual directory names are separated by a semicolon (';'). 

When entering an OPEN, USE, SCRIPT or RUN command, these paths will be searched 



left-to-right to locate the file. If the file dialog is used to access a file of one of these types, 
the directory into which the user has navigated through the file dialog will be implicitly 
added to the end of the respective search path. 

The special variables $HOME and $EAGLEDIR can be used to reference the user's home 
directory and the EAGLE program directory, respectively. 

On Windows the value of $HOME is either that of the environment variable HOME (if set), 
or the value of the registry key 
"HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell F
olders\Personal", which contains the actual name of the "My Documents" directory. 

Backup
The Backup dialog allows you to customize the automatic backup function. 

Maximum backup level
Defines how many backup copies of your EAGLE data files shall be kept when regularly 
saving a file to disk with the WRITE command (default is 9). 

Auto backup interval (minutes)
Defines the maximum time after which EAGLE automatically creates a safety backup copy 
of any modified drawing (default is 5). 

Automatically save project file
If this option is checked, your project settings will be automatically saved when you exit 
from the program. Note that if you uncheck this option while you have a project open, this 
project will not be saved when you close it, and thus this setting will not be stored in the 
project's eagle.epf file. This means that the next time you open the project, this option will 
be checked again. If you want this option to remain unchecked for the current project, you 
need to manually select "File/Save all" from the pulldown menu after unchecking this 
option. 

User Interface
The User interface dialog allows you to customize the appearance of the layout, schematic 
and library editor windows. 

Controls
Pulldown menu activates the pulldown menu at the top of the editor window
Action toolbar activates the action toolbar containing buttons for "File", "Print" etc.
Parameter 
toolbar 

activates the dynamic parameter toolbar, which contains all the parameters that 
are available for the currently active command

Command 
buttons 

activates the command buttons

Command texts activates the textual command menu
Sheet aktivates the sheet thumbnail preview



thumbnails 

Layout

Background 
selects a black, white or colored background for the layout 
mode

Cursor selects a small or large cursor for the layout mode

Schematic

Background 
selects a black, white or colored background for the schematic 
mode

Cursor selects a small or large cursor for the schematic mode

Vertical text
New drawings selects the reading direction of vertical texts in newly created drawings

This drawing 
selects the reading direction of vertical texts in the currently loaded 
drawing

Help

Bubble help 
activates the "Bubble Help" function, which pops up a short hint about the meaning of 
several buttons when moving the cursor over them

User 
guidance 

activates the "User Guidance" function, which displays a helping text telling the user 
what would be the next meaningful action when a command is active

Misc
Always 
vector font 

always displays texts in drawings with the builtin vector font, regardless of which 
font is actually set for a particular text

Mouse 
wheel zoom 

defines the zoom factor that will be used to zoom in and out of an editor window 
when the mouse wheel is turned ('0' disables this feature, the sign of this value defines 
the direction of the zoom operation)

Window positions
The Window positions dialog allows you to store the positions of all currently open 
windows, so that later, when a window of the same type is opened again, it will appear at 
the same position as before. 

You can also delete all stored window positions, so that the window manager can decide 
again where to place newly opened windows. 

Check for Update
The option "Help/Check for Update" in the Control Panel's pulldown menu opens a dialog 
that displays whether there is a new version of EAGLE available on the CadSoft server. 

The Configure button opens a dialog in which you can specify if and how often a check for 
new versions should be done automatically upon program start (by default it checks once 
per day). If you need to use a proxy to access the Internet, this can also be specified in the 
configuration dialog. In the "Host" field enter the full name of the proxy host, without any 
http:// prefix, and enter an optional port number in the "Port" field. 



If you would like to be informed about beta versions of EAGLE, you can check the "Also 
check for beta versions" box. 

Keyboard and Mouse
The modifier keys (Alt, Ctrl and Shift) are used to modify the behavior of certain 
mouse actions. Note that depending on which operating system or window manager you 
use, some of these keys (in combination with mouse events) may not be delivered to 
applications, which means that some of the functions described here may not be available. 

Alt
Pressing the Alt key switches to an alternate GRID. This can typically be a finer grid than 
the normal one, which allows you to quickly do some fine positioning in a dense area, for 
instance, where the normal grid might be too coarse. The alternate grid remains active as 
long as the Alt key is held pressed down. 

Ctrl
Pressing the Ctrl key while clicking on the right mouse button toggles between 
corresponding wire bend styles (only applies to commands that support wire bend styles, 
like, for instance, WIRE). 

The Ctrl key together with the left mouse button controls special functionality of 
individual commands, like, for instance, selecting an object at its origin with the MOVE 
command. 

If a command can select a group, the Ctrl key must be pressed together with the right 
mouse button when selecting the group (otherwise a context menu for the selected object 
would be opened). 

On Mac OS X the Cmd key has to be used instead of the Ctrl key. 

Shift
Pressing the Shift key while clicking on the right mouse button reverses the direction in 
which the wire bend styles are switched through (only applies to commands that support 
wire bend styles, like, for instance, WIRE). 

The Shift key together with the left mouse button controls special functionality of 
individual commands, like, for instance, deleting a higher level object with the DELETE 
command. 

Esc
Pressing the Esc key when a command is active will cancel the current activity of that 
command without canceling the entire command (if there is text in the command line, that 
text will be deleted first, and the next press of the Esc key will act on the command). For 
the MOVE command, for example, this means that an object that is currently attached to the 
cursor will be dropped and an other object can be selected. 



Crsr-Up/Down
The keys Crsr-Up (cursor up) and Crsr-Down (cursor down) can be used in the 
command line of an editor window to scroll through the command history. 

Function Keys
Function keys can be assigned any commands by using the ASSIGN command. 

Left Mouse Button
The left mouse button is generally used to select, draw or place objects. 

Center Mouse Button
The center mouse button changes the current layer or mirrors the object currently attached 
to the mouse cursor. 

The following commands support the center mouse button: 
ADD mirror part
ARC change active layer
CIRCLE change active layer
COPY mirror object
INVOKE mirror gate
LABEL change active layer
MOVE mirror object or group
PASTE mirror group
POLYGON change active layer
RECT change active layer
ROUTE change active layer
SMD change active layer
TEXT change active layer
WIRE change active layer
Click&Drag with the center mouse button will pan the drawing within the editor window. 

Right Mouse Button
The right mouse button is mostly used to select a group, rotate objects attached to the mouse 
cursor, change wire bend styles and several other command specific functions. 

When selecting an object with the right mouse button, a context specific popup menu is 
displayed from which commands that apply to this object can be selected. If there is 
currently a command active that can be applied to a group, the popup menu will contain an 
entry for this. 

The following commands support the right mouse button: 
ADD rotate part
ARC change direction of arc
BUS change wire bend
CHANGE apply change to group
DELETE delete group
GROUP close polygon
INVOKE rotate gate



LABEL rotate label
MIRROR mirror group
MOVE rotate object, select group
NET change wire bend
PAD rotate pad
PASTE rotate group
PIN rotate pin
POLYGON change wire bend
RIPUP ripup group
ROTATE rotate group
ROUTE change wire bend
SMD rotate smd
SPLIT change wire bend
TEXT rotate text
WIRE change wire bend

Mouse Wheel
Inside an editor window the mouse wheel can be used to zoom in and out. 

Selecting objects in dense areas
When you try to select an object at a position where several objects are placed close 
together, a four way arrow and the question 

Select highlighted object? (left=yes, right=next, ESC=cancel) 

indicates that you can now choose one of these objects. 

Press the right mouse button to switch to the next object. 

Press the left mouse button to select the highlighted object. 

Press Esc to cancel the selection procedure. 

The command 

SET Select_Factor select_radius;

defines the selection radius. 

If the original selection was done with the right mouse button, a context specific popup 
menu will be displayed which applies to the first selected object, and which contains "Next" 
as the first entry. Clicking on this entry will cyclically switch through the objects within the 
selection radius. 

Editor Windows
EAGLE knows different types of data files, each of which has its own type of editor 
window. By double clicking on one of the items in the Control Panel or by selecting a file 
from the File/Open menu, an editor window suitable for that file will be opened. 

• Library Editor   
• Schematic Editor   
• Board Editor   



• Text Editor   

Library Editor
The Library Editor is used to edit a part library (*.lbr). 

After opening a new library editor window, the edit area will be empty and you will have to 
use the EDIT command to select which package, symbol or device you want to edit or 
create. 

Edit Library Object
In library edit mode you can edit packages, symbols, and devices. 

Package: the package definition. 

Symbol: the symbol as it appears in the circuit diagram. 

Device: definition of the whole component. Contains one or more package variants and one 
or several symbols (e.g. gates). The symbols can be different from each other. 

Click on the Dev, Pac or Sym button to select Device, Packages or Symbols, respectively. 

If you want to create a new object, write the name of the new object into the New field. You 
can also edit an existing object by typing its name into this field. If you omit the extension, 
an object of the type indicated by the Choose... prompt will be loaded. Otherwise an object 
of the type indicated by the extension will be loaded. 

If your license does not include the Schematic Module, the object type buttons (Dev...) will 
not appear in the menu. 

Board Editor
The Board Editor is used to edit a board (*.brd). 

When there is a schematic file (*.sch) with the same name as the board file (in the same 
directory), opening a board editor window will automatically open a Schematic Editor 
window containing that file and will put it on the desktop as an icon. This is necessary to 
have the schematic file loaded when editing the board causes modifications that have to be 
back-annotated to the schematic. 

Schematic Editor
The Schematic Editor is used to edit a schematic (*.sch). 

When there is a board file (*.brd) with the same name as the schematic file (in the same 
directory), opening a schematic editor window will automatically open a Board Editor 
window containing that file and will put it on the desktop as an icon. This is necessary to 
have the board file loaded when editing the schematic causes modifications that have to be 
forward-annotated to the board. 

The combo box in the action toolbar of the schematic editor window allows you to switch 
between the various sheets of the schematic, or to add new sheets to the schematic (this can 



also be done using the EDIT command). 

Text Editor
The Text Editor is used to edit any kind of text. 

The text must be a pure ASCII file and must not contain any control codes. The main area of 
use for the text editor is writing User Language Programs and Script files. 

Using an external text editor
If you prefer to use an external text editor instead of EAGLE's builtin text editor, you can 
specify the command necessary to start that editor in the "Options/User interface" dialog. 

Within that command the following placeholders will be replaced with actual values: 

%C the column in which to place the cursor (currently always 
1)

%F the name of the file to load
%L the line in which to place the cursor
If the command consists only of a hyphen ('-'), EAGLE will never open a text editor 
window. This may be useful for people who always start their text editor by themselves. 

The following restrictions apply when using an external text editor: 

• The external text editor runs as a separate process, and EAGLE has no way of 
knowing whether the loaded file has been modified or not. It is up to you to save the 
file after you have made modifications. 

• If the same file is loaded into the text editor several times, it depends on the 
configuration of the text editor in use whether it opens a new window each time, or 
whether it loads the file into the same window. 

• The external text editor windows do not show up in EAGLE's window list, and are 
therefore not stored in the project file, and are not reopened when the project is 
opened again later. 

• When leaving EAGLE, the external text editor processes will be terminated. It 
depends on the operating system and the particular text editor whether or not you are 
queried if a file has been modified and should be saved. 

• The "File/Save all" function will not save files edited with an external text editor. 
• The update report that may be given when loading a file from an older version of 

EAGLE is always displayed with the internal text editor. 

Editor Commands

Change Mode/File Commands
CLOSE Close drawing after editing
EDIT Load/create a drawing
EXPORT Generate ASCII list (e.g. netlist)
OPEN Open library for editing
QUIT Quit EAGLE
REMOVE Delete files/library elements



SCRIPT Execute command file

USE 
Load library for placing 
elements

WRITE Save drawing/library

Edit Drawings or Libraries

ADD 
Add element to drawing/symbol to 
device

ARC Draw arc
ATTRIBUTE Define attributes
CIRCLE Draw circle
CLASS Define net classes
COPY Copy objects/elements
CUT Cut previously defined group
DELETE Delete objects
DESCRIPTION Change an object's description
GROUP Define group for upcoming operation
HOLE Define non-conducting hole
LAYER Create/change layer
MIRROR Mirror objects
MITER Miter wire joints
MOVE Move or rotate objects
NAME Name object
PASTE Paste previously cut group to a drawing
POLYGON Draw polygon
RECT Draw rectangle
ROTATE Rotate objects
SMASH Prepare NAME/VALUE text for moving
SPLIT Bend wires/lines (tracks, nets, etc.)
TEXT Add text to a drawing
VALUE Enter/change value for component
WIRE Draw line or routed track

Special Commands for Boards
DRC Perform design rule check
ERRORS Show DRC errors
LOCK Lock component's position
RATSNEST Show shortest air lines
REPLACE Replace component
RIPUP Ripup routed track
ROUTE Route signal
SIGNAL Define signal (air line)
VIA Place via-hole

Special Commands for Schematics
BOARD Create a board from a schematic
BUS Draw bus line
ERC Perform electrical rule check
GATESWAP Swap equivalent 'gates'
INVOKE Add certain 'gate' from a placed 



device
JUNCTION Place connection point
LABEL Provide label to bus or net
NET Define net
PINSWAP Swap equivalent pins

Special Commands for Libraries
CONNECT Define pin/pad assignment
PACKAGE Define package for device
PAD Add pad to a package
PIN Add pin to a symbol
PREFIX Define default prefix for device
REMOVE Delete library elements
RENAME Rename symbol/package/device
SMD Add smd pad to a package
TECHNOLOGY Define technologies for a device

VALUE 
Define if value text can be 
changed

Change Screen Display and User Interface
ASSIGN Assign keys
CHANGE Change parameters
DISPLAY Display/hide layers
GRID Define grid/unit

MENU 
Configure command 
menu

SET Set program parameters
WINDOW Choose screen window

Miscellaneous Commands
AUTO Start Autorouter
HELP Show help page
INFO Show information about object

MARK 
Set/remove mark (for 
measuring)

OPTIMIZE Optimize (join) wire segments
PRINT Print to the system printer
REDO Redo commands
RUN Run User Language Program
SHOW Highlight object
UNDO Undo commands
UPDATE Update library objects

Command Syntax
EAGLE commands can be entered in different ways: 

• with the keyboard as text 
• with the mouse by selecting menu items or clicking on icons 
• with assigned keys (see ASSIGN command) 



• with command files (see SCRIPT command) 

All these methods can be mixed. 

Commands and parameters in CAPITAL LETTERS are entered directly (or selected in the 
command menu with the mouse). For the input there is no difference between small and 
capital letters. 

Parameters in lowercase letters are replaced by names, number values or key 
words. Example: 

Syntax: GRID grid_size grid_multiple;
Input: GRID 1 10;

Shorten key words
For command names and other key words, only so many characters must be entered that 
they clearly differ from other key words. 

Alternative Parameters
The sign | means that alternative parameters can be indicated. Example: 

Syntax: SET BEEP OFF | ON;
Input: SET BEEP OFF;

or
SET BEEP ON;

Repetition Points
The signs .. mean that the function can be executed several times or that several parameters 
of the same type are allowed. Example: 

Syntax: DISPLAY option layer_name..
Input: DISPLAY TOP PINS VIAS

Coordinates
The sign  normally means that an object has to be selected with the left mouse button at �
this point in the command. Example: 

Syntax: MOVE  ..� �
Input: MOVE

Mouse click on the first element to be moved
Mouse click on the target position
Mouse click on the second element to be moved
etc.

This example also explains the meaning of the repetition points for commands with mouse 
clicks. 

For the program each mouse click is the input of a coordinate. If coordinates are to be 
entered as text, the input via the keyboard must be as follows: 

(x y)

x and y are numbers in the unit which has been selected with the GRID command. The input 
as text is mainly required for script files.



If a unit other than the one selected with the GRID command shall be used, it can be 
appended to the given coordinates, as in 

(100mil 200mil)

Allowed units are mm, mic, mil and in. It is possible to use different units for x and y.
The special coordinate 

(@)

can be used to reference the current position of the mouse cursor within the draw window. 
For example, the input 

MOVE R1 (@)

would move the part named R1 to the place currently pointed to with the mouse. 

Any combination of the following modifiers may follow the opening brace in order to 
simulate a particular key that is held pressed with the "mouse click" or to change the type of 
coordinates: 
> right mouse button click
A Alt key
C Ctrl key

P Polar coordinates (relative to the mark, x = radius, y = angle in degrees, 
counterclockwise)

R Relative coordinates (relative to the mark)
S Shift key
For example, the input 

(CR> 1 2)

would result in a "right button mouse click" at (1 2) relative to the mark, with the Ctrl key 
held down (of course what happens with this kind of input will depend on the actual 
command). Note that if there is currently no mark defined, coordinates with R or P will be 
relative to the drawing's origin. Also, the modifier characters are not case sensitive, their 
sequence doesn't matter and there doesn't have to be a blank between them and the first 
coordinate digit. So the above example could also be written as (r>c1 2). Values entered 
as "polar coordinates" will be stored internally as the corresponding pair of (x y) 
coordinates. 

As an example for entering coordinates as text let's assume you wish to enter the exact 
dimensions for board outlines: 

GRID 1 MM;
CHANGE LAYER DIMENSION;
WIRE 0 (0 0) (160 0) (160 100) (0 100) (0 0);
GRID LAST;

Decimal numbers
When entering decimal numbers in the command line of the editor window or in dialog 
input fields, you can use the comma as the decimal delimiter (as in 12,34), if your locale 
settings allow this. However, when writing a script or a ULP that returns EAGLE 
commands through the exit() function, you should always use the 'dot' as the decimal 



delimiter (as in 12.34), because otherwise your script or ULP might not work on other 
systems. In general, it is recommended to always use the 'dot' as the decimal delimiter. 

Semicolon
The semicolon (';') terminates commands. A command needs to be terminated with a 
semicolon if there fewer than the maximum possible number of options. For example the 
command 

WINDOW;

redraws the drawing window, whereas 

WINDOW FIT

scales the drawing to fit entirely into the drawing window. There is no semicolon necessary 
here because it is already clear that the command is complete. 

ADD
Function 

Add elements into a drawing.
Add symbols into a device. 

Syntax 
ADD package_name[@library_name] [name] [orientation] ..�
ADD device_name[@library_name] [name [gate]] [orientation] ..�
ADD symbol_name [name] [options] ..�  

Mouse keys 
Center mirrors the part.
Right rotates the part.
Shift+Right reverses the direction of rotating. 

See also UPDATE, USE, INVOKE 

The ADD command fetches a circuit symbol (gate) or a package from the active library and 
places it into the drawing. 

During device definition the ADD command fetches a symbol into the device. 

Usually you click the ADD command and select the package or symbol from the menu 
which opens. If necessary, parameters can now be entered via the keyboard. 

If device_name contains wildcard characters ('*' or '?') and more than one device 
matches the pattern, the ADD dialog will be opened and the specific device can be selected 
from the list. Note that the Description checkbox in the ADD dialog will be unchecked after 
any ADD command with a device_name has been given in the command line, no matter 
if it contains wildcards or not. This is because a device_name entered in the command 
line is only searched for in the device names, not in the descriptions. 

The package or symbol is placed with the left button and rotated with the right button. After 
it has been placed another copy is immediately hanging from the cursor. 

If there is already a device or package with the same name (from the same library) in the 
drawing, and the library has been modified after the original object was added, an automatic 



library update will be started and you will be asked whether objects in the drawing shall be 
replaced with their new versions. Note: You should always run a Design Rule Check 
(DRC) and an Electrical Rule Check (ERC) after a library update has been 
performed! 

Fetching a Package or Symbol into a Drawing

Wildcards

The ADD command can be used with wildcards ('*' or '?') to find a specific device. The 
ADD dialog offers a tree view of the matching devices, as well as a preview of the device 
and package variant. 

To add directly from a specific library, the command syntax 

ADD devicename@libraryname

can be used. devicename may contain wildcards and libraryname can be either a 
plain library name (like "ttl" or "ttl.lbr") or a full file name (like 
"/home/mydir/myproject/ttl.lbr" or "../lbr/ttl"). In case of blanks in the file name the whole 
expression has to be enclosed by apostrophs (like ADD 'DEV1A@/home/my dir/ttl.lbr'). 

Names

The package_name, device_name or symbol_name parameter is the name under which the 
package, device or symbol is stored in the library. It is usually selected from a menu. The 
name parameter is the name which the element is to receive in the drawing. If the name 
could be interpreted as an orientation or option, it must be enclosed in single quotes. If a 
name is not explicitly given it will receive an automatically generated name. 

Example: 

ADD DIL14 IC1 �

fetches the DIL14 package to the board and gives it the name IC1. 

If no name is given in the schematic, the gate will receive the prefix that was specified in the 
device definition with PREFIX, expanded with a sequential number (e.g. IC1). 

Example: 

ADD 7400     � � � � �

This will place a sequence of five gates from 7400 type components. Assuming that the 
prefix is defined as "IC" and that the individual gates within a 7400 have the names A..D, 
the gates in the schematic will be named IC1A, IC1B, IC1C, IC1D, IC2A. (If elements with 
the same prefix have already been placed the counting will proceed from the next sequential 
number.) See also INVOKE. 

While an object is attached to the cursor, you can change the name under which it will be 
added to the drawing. This allows you to add several parts of the same type, but with 
different, explicitly defined names: 

Example: 



ADD CAP C1  C5  C7 � � �

Particular Gates

To fetch a particular gate of a newly added device the name of that gate can be given 
following the part name: 

Example: 

ADD 7400 IC1 A �

This is mainly useful if a schematic is to be generated through a script. Note that if a 
particular gate is added, no other gates with add level MUST or ALWAYS will be fetched 
automatically, and you will have to use the INVOKE command to invoke at least the MUST 
gates (otherwise the Electrical Rule Check will report them as missing). 

Orientation

This parameter defines the orientation of the object in the drawing. Objects are normally 
rotated using the right mouse button. In Script files textual descriptions of this parameter are 
used: 

[S][M]Rnnn 

S 
sets the Spin flag, which disable keeping texts readable from the bottom or right side of the 
drawing (only available in a board context)

M sets the Mirror flag, which mirrors the object about the y-axis

Rnnn

sets the Rotation to the given value, which may be in the range 0.0...359.9 (at a 
resolution of 0.1 degrees) in a board context, or one of 0, 90, 180 or 270 in a schematic 
context (angles may be given as negative values, which will be converted to the 
corresponding positive value)

The key letters S, M and R may be given in upper- or lowercase, and there must be at least R 
followed by a number. 

If the Mirror flag is set in an element as well as in a text within the element's package, they 
cancel each other out. The same applies to the Spin flag. 

Examples: 

R0 no rotation
R90 rotated 90° counterclockwise
R-90 rotated 90° clockwise (will be converted to 270°)
MR0 mirrored about the y-axis
SR0 spin texts

SMR33.3
rotated 33.3° counterclockwise, mirrored and spin 
texts

Default: R0 

ADD DIL16 R90 (0 0);

places a 16-pin DIL package, rotated 90 degrees counterclockwise, at coordinates (0 0). 

Error messages

An error message appears if a gate is to be fetched from a device which is not fully defined 



(see BOARD command). This can be prevented with the "SET CHECK_CONNECTS 
OFF;" command. Take care: The BOARD command will perform this check in any case. 
Switching it off is only sensible if no pcb is to be made. 

Fetch Symbol into Device
During device definition the ADD command fetches a previously defined symbol into the 
device. Two parameters (swaplevel and addlevel) are possible, and these can be entered in 
any sequence. Both can be preset and changed with the CHANGE command. The value 
entered with the ADD command is also retained as a default value. 

Swaplevel

The swaplevel is an integer number, to which the following rules apply: 

0: The symbol (gate) can not be swapped with any other in the schematic.

>0 
The symbol (gate) can be swapped with any other symbol of the same type in the schematic 
that has the same swaplevel (including swapping between different devices).

Default: 0 

Addlevel

The following possibilities are available for this parameter: 

Next 
If a device has more than one gate, the symbols are fetched into the schematic with 
Addlevel Next.

Must 

If any symbol from a device is fetched into the schematic, then a symbol defined with 
Addlevel Must must also appear. This happens automatically. It cannot be deleted until 
all the other symbols in the device have been deleted. If the only symbols remaining 
from a device are Must-symbols, the DELETE command will delete the entire device.

Always 
Like Must, although a symbol with Addlevel Always can be deleted and brought back 
into the schematic with INVOKE.

Can 
If a device contains Next-gates, then Can-gates are only fetched if explicitly called with 
INVOKE. A symbol with Addlevel Can is only then fetched into the schematic with 
ADD if the device only contains Can-gates and Request-gates.

Request

This property is usefully applied to devices' power-symbols. Request-gates can only be 
explicitly fetched into the schematic (INVOKE) and are not internally counted. The 
effect of this is that in devices with only one gate and one voltage supply symbol, the 
gate name is not added to the component name. In the case of a 7400 with four gates 
(plus power supply) the individual gates in the schematic are called, for example, IC1A, 
IC1B, IC1C and IC1D. A 68000 with only one Gate, the processor symbol, might on the 
other hand be called IC1, since its separate voltage supply symbol is not counted as a 
gate. 

Example: 

ADD PWR 0 REQUEST �

fetches the PWR symbol (e.g. a power pin symbol), and defines a Swaplevel of 0 (not 
swappable) and the Addlevel Request for it. 

ARC
Function 



Draw an arc of variable diameter, width, and length. 
Syntax 

ARC ['signal_name'] [CW | CCW] [ROUND | FLAT] [width]   � � � 
Mouse keys 

Center selects the layer.
Right changes the orientation. 

See also CHANGE, WIRE, CIRCLE 

The ARC command, followed by three mouse clicks on a drawing, draws an arc of defined 
width. The first point defines a point on a circle, the second its diameter. Entering the 
second coordinate reduces the circle to a semi-circle, while the right button alters the 
direction from first to second point. Entry of a third coordinate truncates the semi-circle to 
an arc extending to a point defined by the intersection of the circumference and a line 
between the third point and the arc center. 

The parameters CW and CCW enable you to define the direction of the arc (clockwise or 
counterclockwise). ROUND and FLAT define whether the arc endings are round or flat, 
respectively. 

Signal name
The signal_name parameter is intended mainly to be used in script files that read in 
generated data. If a signal_name is given, the arc will be added to that signal and no 
automatic checks will be performed.
This feature should be used with great care because it could result in short circuits if 
an arc is placed in a way that it would connect different signals. Please run a Design 
Rule Check after using the ARC command with the signal_name parameter! 

Line Width
The parameter "width" defines the thickness of the drawn line. It can be changed or 
predefined with the command: 

CHANGE WIDTH width;

The adjusted width is identical to the line width for wires. 

Arcs with angles of 0 or 360 degrees or a radius of 0 are not accepted. 

Example for text input: 

GRID inch 1;
ARC CW (0 1) (0 -1) (1 0);

generates a 90-degree arc with the center at the origin. 

ASSIGN
Function 

Modify key assignments. 
Syntax 

ASSIGN
ASSIGN function_key command..;



ASSIGN function_key; 

function_key = modifier+key
modifier = any combination of S (Shift), C (Control), A (Alt) and M (Cmd, Mac OS X 
only)
key = F1..F12, A-Z, 0-9, BS (Backspace) 

See also SCRIPT, Keyboard and Mouse 

The ASSIGN command can be used to define the meaning of the function keys F1 thru 
F12, the letter keys A thru Z, the (upper) digit keys 0 thru 9 and the backspace key 
(each also in combination with modifier keys). 

The ASSIGN command without parameters displays the present key assignments in a 
dialog, which also allows you to modify these settings. 

Keys can be assigned a single command or multiple commands. The command sequence to 
be assigned should be enclosed in apostrophes. 

If key is one of A-Z or 0-9, the modifier must contain at least A, C or M. 

The M modifier is only available on Mac OS X. 

Please note that any special operating system function assigned to a function key will be 
overwritten by the ASSIGN command (depending on the operating system, ASSIGN may 
not be able to overwrite certain function keys).
If you assign to a letter key together with the modifier A, (e.g. A+F), a corresponding hotkey 
from the pulldown menu is no longer available. 

To remove an assignment from a key you can enter ASSIGN with only the function_key 
code, but no command. 

Examples
ASSIGN F7 'change layer top; route';
ASS A+F7 'cha lay to; rou';
ASSIGN C+F10 menu add mov rou ''';''' edit;
ASSIGN CA+R 'route';

The first two examples have the same effect, since EAGLE allows abbreviations not only 
with commands but also with parameters (as long as they are unmistakable). 

Please note that here, for instance, the change layer top command is terminated by a 
semicolon, but not the route command. The reason is that in the first case the command 
already contains all the necessary parameters, while in the second case coordinates still have 
to be added (usually with the mouse). Therefore the ROUTE command must not be 
deactivated by a semicolon. 

Define Command Menu
If you want to assign the MENU command to a key, the separator character in the MENU 
command (semicolon) has to be enclosed in three pairs of apostrophes (see the third 
example). This semicolon will show up in the new menu. 



Presetting of key assignments
F1 HELP Help function

Alt+F2 WINDOW FIT 
The whole drawing is 
displayed

F2 WINDOW; Screen redraw
F3 WINDOW 2 Zoom in by a factor of 2
F4 WINDOW 0.5 Zoom out by a factor of 2
F5 WINDOW (@); Cursor pos. is new center
F6 GRID; Grid on/off
Further, many useful key assignments are contained in the initialisation script eagle.scr and 
can be adjusted to your individual needs. 

ATTRIBUTE
Function 

Definition of attributes for parts. 
Syntax 

ATTRIBUTE name [ 'value' ] [ options ]
ATTRIBUTE part_name attribute_name
ATTRIBUTE part_name attribute_name 'attribute_value' 
[ [ orientation ]  ]�
ATTRIBUTE part_name attribute_name DELETE
ATTRIBUTE * [ name [ 'value' ] ]
ATTRIBUTE * name DELETE
ATTRIBUTE ..�  

See also TECHNOLOGY, NAME, VALUE, SMASH, TEXT 

See the description of orientation at ADD. 

An attribute is an arbitrary combination of a name and a value, that can be used to specify 
any kind of information for a given part. 

Attributes can be defined in the library (for individual devices), in the schematic (for an 
actual part) or in the board (for an actual element). Attributes defined on the device level 
will be used for every part of that device type in the schematic. In a schematic, additional 
attributes can be defined for each part, and existing attributes from the devices can be 
overwritten with new values (if the attributes have been defined as variable). An element in 
the board has all the attributes of its corresponding part, and can have further attributes of its 
own. 

Attributes in the Library
In a library the ATTRIBUTE command can be used to define the attributes of a given 
technology variant, using the syntax 

ATTRIBUTE name [ 'value' ] [ options ]

The name may consist of any letters, digits, '_', '#' and '-' and may have any length; the first 
character must not be '-', though. Names are treated case insensitive, so PartNo is the same 
as PARTNO. The value may contain any characters and must be enclosed in single quotes. 



The valid options are: 

delete 
Delete the attribute with the given name from all technology variants (in this case 
there must be no 'value').

variable Mark this attribute as variable, so that it can be overwritten in the schematic (this is 
the default).

constant Attributes marked as constant cannot be overwritten in the schematic (unless the user 
insists).

Options may be abbreviated and are case insensitive. 

An already existing attribute can be switched between variable and constant without the 
need to repeat its value, as in 
ATTRIBUTE ABC '123' (variable by default)

ATTRIBUTE ABC constant (ABC retains its value 
'123')

If the value of an attribute is changed, its constant/variable setting remains unchanged 
(unless explicitly given). 

The attribute name _EXTERNAL_ is reserved for marking of external devices (see 
PACKAGE). 

Some special attribute names are not allowed, since they would interfere with the already 
existing text variables. If an attribute named VALUE is defined, its value will be used to 
initialize the actual value when placing a part in a schematic (in case the device set has 
'Value On'). 

Attributes in the Schematic
In a schematic, the ATTRIBUTE command can be used to assign attributes to a part, in 
which case the value of such an attribute overwrites the value of the attribute with the same 
name in the library (if the device has such an attribute and allows overwriting). A part may 
also be given attributes that are not defined in the library at all. 

Selecting the ATTRIBUTE command and clicking on a part shows a dialog in which all 
attributes of that part are listed and can be edited. 

For a fully textual definition of an attribute, the following syntax can be used: 

ATTRIBUTE part_name attribute_name 'attribute_value' orientation �

Note that in case of a multi-gate part, actually one of the gates (i.e. "instances") is selected. 
When selecting it via a mouse click it is already clear which gate is meant, while when 
selecting it via part_name, the full name consisting of the part and gate name should be 
given. While a specific part can only have one attribute with a given name, the attribute can 
be attached to any or all of its gates. If only the part name is given, the first visible gate will 
be implicitly selected. 

If no coordinates are given (and the command is terminated with a ';'), the behavior 
depends on whether the given attribute already exists for that part (either in the device or in 
the schematic). If the attribute already exists, only its value will be changed. If it doesn't 
exist yet, a new attribute with the given name and value will be placed at the origin of the 
selected gate of the part. 

To delete an attribute from a part, the command 

ATTRIBUTE part_name attribute_name DELETE



can be used. 

When defining attributes via the command line or a script, use the CHANGE DISPLAY 
command to define which parts of the attribute (name, value, both or none of these) shall be 
visible. 

Attributes in the Board
In a board, attributes can be assigned to elements with the ATTRIBUTE command, much 
the same as in schematics. By default elements have all the attributes that are defined for 
their part in the schematic (and their device in the library). Attributes with the same name 
for a given element/part pair will always have the same value (through Forward&Back 
Annotation). Elements can have additional attributes that are not present in the schematic or 
library. 

Global attributes
Global attributes can be defined in boards and schematics by using '*' as the part name 
(which implies that this attribute applies to all parts). Alternatively global attributes can be 
defined through the menu option "Edit/Global attributes...". The global attributes of board 
and schematic are handled separately and are not connected via Forward&Back-Annotation. 

Such an attribute could for instance be the author of a drawing, and can be used in the title 
block of a drawing's frame. It will be shown on every schematic sheet that has a drawing 
frame that contains a text variable with the same name. 

Selecting the layer
Unlike other commands (like WIRE, for instance), the ATTRIBUTE command keeps track 
of its last used layer by itself. This has the advantage of making sure that attributes are 
always drawn into the right layer, no matter what layers other commands draw into. The 
downside of this is that the usual way of setting the layer in a script, as in 

LAYER layer;
WIRE (1 2) (3 4);

doesn't work here. The layer needs to be selected while the ATTRIBUTE command is 
already active, which can be done like this 

ATTRIBUTE parameters
LAYER layer
more parameters;

Note that the ATTRIBUTE line is not terminated with a ';', and that the LAYER 
command starts on a new line.
The commands 

ATTRIBUTE
LAYER layer;

set the layer to use with subsequent ATTRIBUTE commands. 



Examples
First the package and technology has to be selected (in case there is more than one) and then 
attributes for that technology can be defined: 

PACKAGE N;
TECHNOLOGY LS;
ATTRIBUTE PartNo '12345-ABC';
ATTRIBUTE Temp '100K' constant;
ATTRIBUTE Remark 'mount manually';

AUTO
Function 

Starts the Autorouter 
Syntax 

AUTO;
AUTO signal_name..;
AUTO ! signal_name..;
AUTO ..;�
AUTO FOLLOWME
AUTO LOAD|SAVE filename; 

See also SIGNAL, ROUTE, WIRE, RATSNEST, SET 

The AUTO command activates the integrated Autorouter. If signal names are specified or 
signals are selected with the mouse, only these signals are routed. Without parameters the 
command will try to route all signals. If a "!" character is specified all signals are routed 
except the signals following the "!" character. The "!" character must be the first parameter 
and must show up only once. 

The LOAD and SAVE options can be used to load the Autorouter parameters from or save 
them to the given file. If filename doesn't have the extension ".ctl" it will be appended 
automatically. 

Without any parameters (or if no terminating ';' is given), the AUTO command opens a 
dialog in which the parameters that control the routing algorithm can be configured. The 
special option FOLLOWME opens this dialog in a mode where only the parameters 
controlling the Follow-me router can be modified. 

Example
AUTO ! GND VCC;

In every case the semicolon is necessary as a terminator. A menu for adjusting the 
Autorouter control parameters opens if you select AUTO from the command menu or type 
in AUTO from the keyboard (followed by Return key). 

Wildcards
If a signal_name parameter is given, the characters '*', '?' and '[]' are wildcards 
and have the following meaning: 



* matches any number of any characters
? matches exactly one character

[...] matches any of the characters between the 
brackets

If any of these characters shall be matched exactly as such, it has to be enclosed in brackets. 
For example, abc[*]ghi would match abc*ghi and not abcdefghi. 

A range of characters can be given as [a-z], which results in any character in the range 
'a'...'z'. 

Polygons
When the Autorouter is started all Polygons are calculated. 

Protocol File
A protocol file (name.pro) is generated automatically. 

Board Size
The Autorouter puts a rectangle around all objects in the board and takes the size of this 
rectangle as the routing area. Wires in the Dimension layer are border lines for the 
Autorouter. This means you can delimit the route area with closed lines drawn into this layer 
with the WIRE command. 

In practice you draw the board outlines into the Dimension layer with the WIRE command 
and place the components within this area. 

Signals
Signals defined with EAGLE's SIGNAL command, polygons, and wires drawn onto the 
Top, Bottom, and ROUTE2...15 layers are recognized by the Autorouter. 

Restricted Areas
Objects in the layers tRestrict, bRestrict, and vRestrict are treated as restricted areas for the 
Top and Bottom side and for vias respectively. 

If you want the Autorouter not to use a layer, select "N/A" in the preferred direction field. 

Canceling
If you cancel the Autorouter by clicking on the STOP button, any airwires that have not yet 
been routed, are not automatically recalculated. Use the RATSNEST command to do this. 

BOARD
Function 

Converts a schematic into a board. 
Syntax 

BOARD [ grid ] 



See also EDIT 

The command BOARD is used to convert a schematic drawing into a board. 

If the board already exists, it will be loaded into a board window. 

If the board does not exist, you will be asked whether to create that new board. If a grid is 
given, the parts on the board will be placed in the given raster, as in 

BOARD 5mm

which would place the parts in a 5 millimeter raster (default is 50mil). The number must be 
given with a unit, and the maximum allowed value is 10mm. 

The BOARD command will never overwrite an existing board file. To create a new board 
file if there is already a file with that name, you have to remove that file first. 

Creating a board from a schematic
The first time you edit a board the program checks if there is a schematic with the same 
name in the same directory and gives you the choice to create the board from that schematic.
If you have opened a schematic window and want to create a board, just type 

edit .brd

in the editor window's command line. 

All relevant data from the schematic file (name.sch) will be converted to a board file 
(name.brd). The new board is loaded automatically as an empty card with a size of 
160x100mm (Light edition: 100x80mm). All packages and connections are shown on the 
left side of the board. Supply pins are already connected (see PIN command). 

If you need board outlines different to the ones that are generated by default, simply delete 
the respective lines and use the WIRE command to draw your own outlines into the 
Dimension layer. The recommended width for these lines is 0. 

A board file cannot be generated: 

• if there are gates in the schematic from a device for which no package has been 
defined (error message: "device name has no package). Exception: if there are only 
pins with Direction "Sup" (supply symbols) 

• if there are gates in the schematic from a device for which not all pins have been 
assigned to related pads of a package (error message: "device name has unconnected 
pins"). Exception: device without pins (e.g. frames) 

BUS
Function 

Draws buses in a schematic. 
Syntax 

BUS [bus_name]  [curve | @radius] ..� �  
Mouse keys 

Right changes the wire bend style (see SET Wire_Bend).
Shift+Right reverses the direction of switching bend styles.
Ctrl+Right toggles between corresponding bend styles. 



See also NET, NAME, SET 

The command BUS is used to draw bus connections onto the Bus layer of a schematic 
diagram. Bus_name has the following form: 

SYNONYM:partbus,partbus,..

where SYNONYM can be any name. Partbus is either a simple net name or a bus name 
range of the following form: 

Name[LowestIndex..HighestIndex]

where the following condition must be met: 

0 <= LowestIndex <= HighestIndex <= 511 

If a name is used with a range, that name must not end with digits, because it would become 
unclear which digits belong to the Name and which belong to the range. 

If a bus wire is placed at a point where there is already another bus wire, the current bus 
wire will be ended at that point. This function can be disabled with "SET AUTO_END_NET 
OFF;", or by unchecking "Options/Set/Misc/Auto end net and bus". 

If the curve or @radius parameter is given, an arc can be drawn as part of the bus (see the 
detailed description in the WIRE command). 

Bus name examples
A[0..15]
RESET
DB[0..7],A[3..4]
ATBUS:A[0..31],B[0..31],RESET,CLOCK,IOSEL[0..1]

If no bus name is used, a name of the form B$1 is automatically allocated. This name can be 
changed with the NAME command at any time. 

The line width used by the bus can be defined for example with 

SET Bus_Wire_Width 40;

to be 40 mil. (Default: 30 mil). 

Inverted signals
The name of an inverted signal ("active low") can be displayed overlined if it is preceded 
with an exclamation mark ('!'), as in 

  ATBUS:A[0..31],B[0..31],!RESET,CLOCK,IOSEL[0..1]

which would result in 

                          _____
  ATBUS:A[0..31],B[0..31],RESET,CLOCK,IOSEL[0..1]

You can find further details about this in the description of the TEXT command. 



CHANGE
Function 

Changes parameters. 
Syntax 

CHANGE option  ..� �  
Mouse keys 

Ctrl+Right changes parameter of the group. 

The CHANGE command is used to change or preset properties of objects. The objects are 
clicked on with the mouse after the desired parameters have been selected from the 
CHANGE command menu or have been typed in from the keyboard. 

Parameters adjusted with the CHANGE command remain as preset properties for objects 
added later. 

All values in the CHANGE command are used according to the actual grid unit. 

Change Groups
When using the CHANGE command with a group, the group is first identified with the 
GROUP command before entering the CHANGE command with appropriate parameters. 
The right button of the mouse is then used to execute the changes. 

What can be changed?
Layer CHANGE LAYER name | number
Text CHANGE TEXT [ text ]
Text height CHANGE SIZE value
Text 
thickness 

CHANGE RATIO ratio

Text line 
distance 

CHANGE LINEDISTANCE value

Text font CHANGE FONT VECTOR | PROPORTIONAL | FIXED
Text 
alignment 

CHANGE ALIGN BOTTOM | LEFT | CENTER | TOP | RIGHT

Wire width CHANGE WIDTH value
Wire style CHANGE STYLE value
Arc cap CHANGE CAP ROUND | FLAT
Pad shape CHANGE SHAPE SQUARE | ROUND | OCTAGON | LONG | OFFSET
Pad/via/smd 
flags 

CHANGE STOP | CREAM | THERMALS | FIRST OFF | ON

Pad/via 
diameter 

CHANGE DIAMETER diameter

Pad/via/hole 
drill 

CHANGE DRILL value

Via layers CHANGE VIA from-to
Smd 
dimensions 

CHANGE SMD width height

Smd 
roundness 

CHANGE ROUNDNESS value

Pin CHANGE DIRECTION NC | IN | OUT | IO | OC | HIZ | SUP | 



parameters PAS | PWR
CHANGE FUNCTION NONE | DOT | CLK | DOTCLK
CHANGE LENGTH POINT | SHORT | MIDDLE | LONG
CHANGE VISIBLE BOTH | PAD | PIN | OFF
CHANGE SWAPLEVEL number

Polygon 
parameters 

CHANGE THERMALS OFF | ON

CHANGE ORPHANS OFF | ON
CHANGE ISOLATE distance
CHANGE POUR SOLID | HATCH | CUTOUT
CHANGE RANK value
CHANGE SPACING distance

Gate 
parameters 

CHANGE SWAPLEVEL number

CHANGE ADDLEVEL NEXT | MUST | ALWAYS | CAN | REQUEST
Net class CHANGE CLASS number | name

Package 
CHANGE PACKAGE part_name [device_name] | 'device_name' 
[part_name]

Technology 
CHANGE TECHNOLOGY part_name [device_name] | 
'device_name' [part_name]

Attribute 
display 

CHANGE DISPLAY OFF | VALUE | NAME | BOTH

Frame 
parameters 

CHANGE COLUMS value

CHANGE ROWS value
CHANGE BORDER NONE | BOTTOM | RIGHT | TOP | LEFT | ALL

Label CHANGE XREF OFF | ON
Dimension 
type 

CHANGE DTYPE value

Dimension 
unit 

CHANGE DUNIT [MIC | MM | MIL | INCH] [OFF | ON] 
[precision]

Dimension 
line 

CHANGE DLINE width [ extension_width [ extension_length 
[ extension_offset ]]] (extension values can be set to 
AUTO; unchanged preceding values can be skipped with 
'-')

CIRCLE
Function 

Adds circles to a drawing. 
Syntax 

CIRCLE  .. [center, circumference]� �
CIRCLE width  ..� �  

Mouse keys 
Center selects the layer. 

See also CHANGE, WIRE 

The CIRCLE command is used to create circles. Circles in the layers tRestrict, bRestrict, 
and vRestrict define restricted areas. They should be defined with a width of 0. 

The width parameter defines the width of the circle's circumference and is the same 
parameter as used in the WIRE command. The width can be changed with the command: 



CHANGE WIDTH width;

where width is the desired value in the current unit. 

A circle defined with a width of 0 will be filled. 

Example
GRID inch 1;
CIRCLE (0 0) (1 0);

generates a circle with a radius of 1 inch and the center at the origin. 

CLASS
Function 

Define and use net classes. 
Syntax 

CLASS
CLASS number|name
CLASS number [ name [ width [ clearance [ drill ] ] ] ] 
[ number:clearance .. ] 

See also Design Rules, NET, SIGNAL, CHANGE 

The CLASS command is used to define or use net classes. 

Without parameters, it offers a dialog in which the net classes can be defined. 

If only a number or name is given, the net class with the given number or name is selected 
and will be used for subsequent NET and SIGNAL commands. 

If both a number and a name are given, the net class with the given number will be 
assigned all the following values and will also be used for subsequent NET and SIGNAL 
commands. If any of the parameters following name are omitted, the net class will keep its 
respective value. 

If number is negative, the net class with the absolute value of number will be cleared. 
The default net class 0 can't be cleared. 

Net class names are handled case insensitive, so SUPPLY would be the same as Supply or 
SuPpLy. 

Using several net classes in a drawing increases the time the Autorouter needs to do its job. 
Therefore it makes sense to use only as few net classes as necessary (only the number of net 
classes actually used by nets or signals count here, not the number of defined net classes). 

In order to avoid conflicts when CUT/PASTEing between drawings it makes sense to define 
the same net classes under the same numbers in all drawings. 

The Autorouter processes signals sorted by their total width requirements (Width plus 
Clearance), starting with those that require the most space. The bus router only routes 
signals with net class 0. 

The net class of an existing net/signal can be changed with the CHANGE command. 



Width
The width parameter defines a minimum width that all objects in this net class must have. 

Clearance
The clearance parameter defines the minimum clearance between objects of different 
signals in this net class and objects in other net classes. 

Drill
The drill parameter defines a minimum drill size that all objects in this net class must have 
(only applies to objects that actually have a drill parameter, like pads and vias). 

Clearance between net classes
If a clearance is given in the form number:clearance, it defines the minimum 
clearance between signals in this net class and signals in the net class with the given 
number. The command 

CLASS 3 1:0.6mm 2:0.8mm

defines a minimum clearance of 0.6mm between signals in net classes 1 and 3, and one of 
0.8mm between signals in net classes 2 and 3. Note that the numbers in 
number:clearance must be less than or equal to the number of the net class itself ('3' 
in the above example), so 

CLASS 3 1:0.6mm 2:0.8mm 3:0.2mm

would also be valid, whereas 

CLASS 3 1:0.6mm 2:0.8mm 3:0.2mm 4:0.5mm

would not be allowed. 

CLOSE
Function 

Closes an editor window. 
Syntax 

CLOSE 

See also OPEN, EDIT, WRITE, SCRIPT 

The CLOSE command is used to close an editor window. If the drawing you are editing has 
been modified you will be prompted whether you wish to save it. 

This command is mainly used in script files. 

CONNECT
Function 

Assigns pads to pins. 



Syntax 
CONNECT
CONNECT [ ALL | ANY ] gate_name.pin_name pad_name..
CONNECT [ ALL | ANY ] pin_name pad_name.. 

See also PREFIX, OPEN, CLOSE, SCRIPT 

This command is used in the device editing mode in order to define the relationship between 
the pins of a gate and the pads of the corresponding package in the library. First of all, it is 
necessary to define which package is to be used by means of the PACKAGE command. 

If the CONNECT command is invoked without parameters, a dialog is presented which 
allows you to interactively assign the connections. 

Device with one Gate
If only one gate is included in a device, the parameter gate_name can be dropped, e.g.: 

CONNECT gnd 1 rdy 2 phi1 3 !irq 4 nc1 5...

(Note: "!" is used to indicate inverted data signals.) 

Device with several Gates
If several gates are present in a device, parameters must be entered with gate_name, 
pin_name and pad_name each time. For example: 

CONNECT A.I1     1  A.I2  2   A.O  3;
CONNECT B.I1     4  B.I2  5   B.O  6;
CONNECT C.I1    13  C.I2  12  C.O 11;
CONNECT D.I1    10  D.I2  9   D.O  8;
CONNECT PWR.gnd  7;
CONNECT PWR.VCC 14;

In this case, the connections for four NAND gates of a good old 7400 are allocated. The 
device includes five gates - A, B, C, D, and PWR. The gate inputs are named I1 and I2 
while the output is named O. 

The CONNECT command can be repeated as often as required. It may be used with all 
pin/pad connections or with only certain pins. Each new CONNECT command overwrites 
the previous conditions for the relevant pins. 

Note that if you have a large number of connections in a single device, the CONNECT 
command works a lot faster if all connections are given in one single call, like shown in the 
example below. 

Several Pads connected to the same Pin
Some parts, like power amplifiers or BGA chips, may have several pads that are connected 
internally. This may be done for better heat dissipation or to allow for higher currents. The 
CONNECT command can handle these cases by simply listing all related pad names, 
separated by blanks (and therefore enclosed in single quotes), as in 

CONNECT ALL I1 '1 3 5';
CONNECT ANY O1 '2 4 6';



In the first example the pin I1 is connected to the three pads 1, 3 and 5. If the pin I1 is 
connected to a net in the schematic, all three pads must be explicitly connected to the 
corresponding signal in the board.
In the second example, the keyword ANY indicates that any one (or even all) of the pads 2, 
4 or 6 can be connected to the signal. It is even allowed to use this internal connection as a 
"bridge" by connecting one segment of the signal to, say, pad 2, while connecting the rest of 
the signal to pad 6, without any explicit external connection between these two pads. Of 
course, when designing a library part and using ANY in a CONNECT command, you need to 
be sure that the part will be able to handle cross currents running through its pads. If in 
doubt, use ALL (which is the default and may be omitted). 

If a pin name would collide with one of the keywords ALL or ANY, the pin name needs to be 
enclosed with single quotes. As soon as one of these keywords appears in a CONNECT 
command, it applies to all pin/pad connections that follow it, until a different keyword is 
seen, as in 

CONNECT 'A' '1' 'B' '2' ANY 'C' '3 4 5 6' 'D' '7 8' ALL 'E' '9 10 11';

The RATSNEST and AUTO command will handle the ALL and ANY cases appropriately. 

In the CONNECT dialog the "Connect" button creates a new connection between the 
selected pin and the selected pads. There can be more than one pad selected, in which case 
all of these pads will be connected to the selected pin. Use the Ctrl and Shift keys in the 
usual way to mark more than one pad as selected.
The "Append" button adds the selected pads to the current connection.
The "Disconnect" button removes the selected connection and puts the pin and pads back in 
their separate lists, keeping them selected so that it is easy to make modifications. A 
Disconnect immediately followed by a Connect results in the same configuration as before 
the Disconnect (and vice versa).
If a connection contains more than one pad, an icon indicates whether any or all of these 
pads need to be externally connected to a signal. Click on this icon to toggle the mode. 
When such a connection item is expanded, all the pads are listed separately, and clicking on 
Disconnect with one of the pads selected will only disconnect that one pad. 

Gate or Pin names that contain periods
If a gate or pin name contains a period, simply enter them without any special consideration 
(no quoting or escape characters are necessary). 

Example
ed 6502.dev;
prefix 'IC';
package dil40;
connect gnd 1 rdy 2 phi1 3 !irq 4 nc1 5 !nmi 6 \
        sync 7 vcc 8  a0 9 a1 10 a2 11 a3 12 a4 \
        13 a5 14 a6 15 a7 16 a8 17 a9 18 a10 19 \
        a11 20 p$0 21 a12 22 a13 23 a14 24 a15 \
        25 d7 26 d6 27 d5 28 d4 29 d3 30 d2 31 \
        d1 32 d0 33 r/w 34 nc2 35 nc3 36 phi0 37 \
        so 38 phi2 39 !res 40;

If a command is continued at the next line, it is advisable to insert the character "\" at the 



end of the line to ensure the following text cannot be confused with an EAGLE command. 

Confusing parameters with commands can also be avoided by enclosing the parameters in 
apostrophes. 

COPY
Function 

Copy objects. 
Syntax 

COPY  ..� �
COPY deviceset@library [name]
COPY package@library [name] 

Mouse keys 
Ctrl+Left selects an object at its origin.
Ctrl+Right selects the group.
Center mirrors the selected object or the group.
Right rotates the selected object or the group.
Shift+Right reverses the direction of rotating. 

See also GROUP, CUT, PASTE, ADD, INVOKE, POLYGON 

The COPY command is used to copy objects within the same drawing, or between libraries. 
EAGLE will generate a new name for the copy but will retain the old value. When copying 
signals (wires), buses, and nets the names are retained, but in all other cases a new name is 
assigned. 

Copy to the system's clipboard
The COPY command in EAGLE traditionally only copied objects by clicking on them with 
the mouse and placing them within the same drawing. It also copied library objects between 
libraries. However, before version 6 it did not copy the current group selection to the 
system's clipboard, like other Windows programs do. In EAGLE, the CUT command was 
used for this. Unfortunately, this has irritated Windows users time and again, so beginning 
with version 6, the COPY command also copies the selected group of objects to the system's 
clipboard, while still retaining the full functionality of previous versions. If you don't like 
this, you can use the SET command 

SET Cmd.Copy.ClassicEagleMode 1

to get back the original behavior of the COPY command (as well as the CUT command). 

Copy Wires
If you copy wires or polygons, belonging to a signal, the copy will belong to the same 
signal. Please note, for this reason, if two wires overlap after the use of the COPY 
command, the DRC will not register an error. If a net or bus wire is copied in a schematic, it 
belongs to the same segment as the original wire, even if there is no visible connection. This 
can lead to unexpected effects, for instance when renaming them later. Therefore COPY 
should not be used with net or bus wires, respectively. 



Copy Parts
When copying a part in a schematic, there will always be a new instance of the complete 
part added, even if only a single gate of a multi-gate part is selected. In addition to the 
selected gate, any other gates of that device which have Add-Level MUST or ALWAYS will 
automatically be invoked. 

If you just want to use another gate of a multi-gate part, you should use the INVOKE 
command instead. 

Copy library objects
By writing COPY deviceset@library or COPY package@library you can copy 
a device set or a package from a given library into the currently loaded library. library 
can be either a plain library name or a file path (see ADD command). In case of ambiguity 
you can add the suffix [.dev] for device sets or [.pac] for packages. If an additional 
name is given, the copied object will be given that name. This can also be done through the 
library objects' context menu or via Drag&Drop from the Control Panel's tree view. 

Note that any existing library objects (device sets, symbols or packages) used by the 
copied library object will be automatically updated. 

Copy a group
Copying a group by selecting it with the right mouse button is actually done by doing an 
implicit CUT operation, immediately followed by a PASTE. 

Copy objects to an other sheet
To copy objects to an other sheet of the same schematic, you need to GROUP the objects, 
do a COPY (or CUT), switch to the target sheet and then do PASTE. 

CUT
Function 

Copies a group into the clipboard. 
Syntax 

CUT �
CUT; 

See also PASTE, COPY, GROUP 

Parts of a drawing (or even a whole board) can be copied onto other drawings by means of 
the commands CUT and PASTE. 

To do this you first define a group (GROUP command). Then use the CUT command, 
followed by a reference point (mouse click or coordinates (x y)) to put the selected objects 
into the buffer. CUT; automatically puts the reference point at the center of the selected 
objects (snapped to the grid). Now you can change to an other drawing (EDIT) and copy the 
contents of the buffer onto the new drawing by executing the PASTE command. 



Reference Point
If you click the mouse after selecting the CUT command, the position of the mouse cursor 
defines a reference point for the group, i.e. when using the PASTE command, the mouse 
cursor will be at the exact position of the group. 

Note
Unlike other (Windows-) programs EAGLE's CUT command does not physically remove 
the marked group from the drawing; it only copies the group into the clipboard. 
Unfortunately, this has irritated Windows users time any again, so beginning with version 6, 
the CUT command no longer appears in the main pulldown menu and the command button 
toolbar (it is still available from the command line and within scripts). Windows users will 
simply use the COPY command to copy the selected group of objects into the system's 
clipboard. This, however, will not allow them to define an explicit reference point for the 
selected group. It will always be selected at the center of the group's bounding rectangle. 
Using a reference point is only possible with the CUT command. If you don't like this, you 
can use the SET command 

SET Cmd.Copy.ClassicEagleMode 1

to get back the original behavior of the CUT command (as well as the COPY command). 

DELETE
Function 

Deletes objects. 
Syntax 

DELETE ..�
DELETE name ..
DELETE SIGNALS 

Mouse keys 
Shift+Left deletes higher level object.
Ctrl+Left deletes a wire joint.
Ctrl+Right deletes the group. 

See also RIPUP, DRC, GROUP 

The DELETE command is used to delete the selected object. 

Parts, pads, smds, pins and gates can also be selected by their name, which is especially 
useful if the object is outside the currently shown window area. Note that when selecting a 
multi-gate part in a schematic by name, you will need to enter the full instance name, 
consisting of part and gate name. 

Attributes of parts can be selected by entering the concatenation of part name and attribute 
name, as in R5>VALUE. 

Clicking the right mouse button deletes a previously defined GROUP. 

After deleting a group it is possible that airwires which have been newly created due to the 
removal of a component may be "left over", because they have not been part of the original 
group. In such a case you should re-calculate the airwires with the RATSNEST command. 



With active Forward&Back Annotation, no wires or vias can be deleted from a signal that is 
connected to components in a board. Also, no components can be deleted that have signals 
connected to them. Modifications like these have to be done in the schematic. 

Use the RIPUP command to convert an already routed connection back into an airwire. 

The DELETE command has no effect on layers that are not visible (refer to DISPLAY). 

The DRC might generate error polygons which can only be deleted with DRC CLEAR. 

Deleting Wire Joints
If the DELETE command, with the Ctrl key pressed, is applied to the joining point of two 
wires, these wires are combined to form one straight wire. For this to work the two wires 
must be in the same layer and have the same width and line style, and must both have round 
endings (in case of arcs). 

Deleting Polygon Corners
The DELETE command deletes one corner at a time from a polygon. The whole polygon is 
deleted if there are only three corners left. 

Deleting Components
Components can be deleted only if the tOrigins layer (or bOrigins with mirrored 
components) is visible and if (with active Forward&Back Annotation) no signals are 
connected to the component (see also REPLACE). Please note that an element may appear 
to be not connected (no airwires or wires leading to any of it's pads), while in fact it is 
connected to a supply voltage through an implicit power pin. In such a case you can only 
delete the corresponding part in the schematic. 

Deleting Junctions, Nets, and Buses
The following rules apply: 

• If a bus is split into two parts, both keep the initial name. 
• If a net is split into two parts, the larger one keeps the initial name while the smaller 

one gets a new (generated) name. 
• After the DELETE command, labels belong to the segment next to them. 
• If a junction point is deleted, the net is separated at this location. Please check the 

names of the segments with the SHOW command. 

Deleting Supply Symbols
If the last supply symbol of a given type is deleted from a net segment that has the same 
name as the deleted supply pin, that segment is given a newly generated name (if there are 
no other supply symbols still attached to that segment) or the name of one of the remaining 
supply symbols. 



Deleting Signals
If you select wires (tracks) or vias belonging to a signal with the DELETE command three 
cases have to be considered: 

• The signal is split into two parts. EAGLE will generate a new name for the smaller 
part of the signal and keep the previous name for the larger one. 

• The signal is deleted from one end. The remaining part of the signal will keep the 
previous name. 

• The signal had only one airwire. It will be deleted completely and its name won't 
exist any longer. 

After wires or vias have been deleted from a signal which contains polygons, all polygons 
belong to the signal keeping the original name (usually the bigger part). 

Deleting all Signals
DELETE SIGNALS can be used to delete all signals on a board. This is useful if you want 
to read in a new or changed netlist (see EXPORT). Only those signals are deleted which are 
connected to pads. 

If you want to delete a part that has the name SIGNALS, you need to write the name in 
single quotes. 

Deleting higher level objects
If the Shift key is pressed when clicking on an object, the object that is hierarchically 
above the selected one will be deleted. This applies to the following objects: 

Gate 

Deletes the entire part containing this gate (even if the gates are spread over 
several sheets). If f/b annotation is active, the wires connected to the element in 
the board will not be ripped up (as opposed to deleting a single gate), except for 
those cases where a pin of the deleted part is only connected directly to one 
single other pin and no net wire

Polygon Wire Deletes the entire polygon
Net/Bus Wire Deletes the entire net or bus segment
Don't forget: Deleting can be reversed by the UNDO command! 

DESCRIPTION
Function 

Defines the description of a drawing or a library object. 
Syntax 

DESCRIPTION [ * ]
DESCRIPTION [ * ] description_string; 

See also CONNECT, PACKAGE, VALUE 

This command is used to define or edit the description of a drawing or a library object. 

The description_string may contain HTML tags. 

The first non-blank line of description_string will be used as a short descriptive 
text (headline) in the Control Panel. 



The DESCRIPTION command without a parameter opens a dialog in which the text can be 
edited. The upper pane of this dialog shows the formatted text, in case it contains HTML 
tags, while the lower pane is used to edit the raw text. At the very top of the dialog the 
headline is displayed as it would result from the first non-blank line of the description. The 
headline is stripped of any HTML tags. 

By default the DESCRIPTION command works on the description of the object that is 
currently edited, like a device set, package, symbol, board or sheet. If, in a library, there is 
no currently edited object (as can be the case after it has been newly loaded) the description 
of the library will be changed. 

To explicitly access the description of a library, even if a device, package or symbol is 
already being edited, enter the asterisk character ('*') as the first parameter to the 
DESCRIPTION command. This is also the way to access the description of a schematic, as 
opposed to the description of an individual sheet. 

Example
DESCRIPTION '<b>Quad NAND</b><p>\nFour NAND gates with 2 inputs each.';

This would result in 

Quad NAND

Four NAND gates with 2 inputs each. 

DIMENSION
Function 

Adds dimensioning to a drawing. 
Syntax 

DIMENSION [dtype]  ..� �  
Mouse keys 

Center selects the layer.
Right changes the dtype.
Shift+Right reverses the direction of changing the dtype.
Ctrl+Left when starting a dimension does not select an object.

See also WIRE, CHANGE, CIRCLE, HOLE 

The DIMENSION command adds dimensioning to a drawing. It can either be applied to an 
object, or it can draw arbitrary dimensions. 

If the first point selects an object, a suitable dimension object is generated as follows: 

straight wire linear dimension displaying the distance between the end points of the wire
curved wire radius dimension displaying the radius of the arc
circle diameter dimension displaying the diameter of the circle
hole diameter dimension displaying the diameter of the hole
If no object is selected, or a wire is selected at one of its end points, a dimension object is 
generated according to the current dimension type. If this dimension type is not the one that 
is needed, the right mouse button can be clicked to loop through the various types. 

To draw an arbitrary dimension even at close proximity to an object that would trigger a 



specific kind of dimension, press the Ctrl key with the first click. This may also be useful 
when using the DIMENSION command in a script (by adding the 'C' modifier to the first 
coordinate), to make sure the dimension appears exactly as intended. 

The way in which a dimension object is drawn (line, unit, precision) can be configured with 
"CHANGE DLINE/DUNIT" or with its properties dialog. Note that the "Unit" parameter in 
this dialog refers to the unit in which the actual numbers of the dimension object will be 
displayed. 

Dimension Type
Every dimension object has three coordinates that define its reference points and an 
alignment point. How these coordinates are actually interpreted to display a dimension 
object depends on the dtype property. 

Parallel 

A parallel dimension displays the distance between its first and second reference point. The 
dimension line is parallel to the line going through its reference points, and it runs through 
the given alignment point. The actual position of the alignment point doesn't matter, only its 
distance from the the line through its reference points is taken into account. When a parallel 
dimension object is newly created or modified, the alignment point is normalized, so that it 
lies in the middle of the dimension line. 

Horizontal 

Same as parallel, but the dimension line extends only in X direction, and it displays only the 
X distance between the reference points. 

Vertical 

Like horizontal, but for Y. 

Radius 

A radius dimension displays the distance between its first and second reference point. The 
first reference point is at the center of the arc this dimension is drawn for, while the second 
point is somewhere on the arc itself. If the alignment point is between the two reference 
points, the dimension line is drawn between the reference points, which is "inside" the arc. 
Otherwise the dimension line is drawn "outside" of the arc. If the measurement text is too 
long to fit on an inside radius dimension, the dimension line is drawn on the outside. A 
radius dimension automatically displays a cross at its first reference point (which is the 
center of the arc). When a radius dimension object is newly created or modified, the 
alignment point is normalized, so that it lies in the middle of the dimension line for an 
"inside" dimension, or just beyond the arrow for an "outside" dimension. 

Diameter 

A diameter dimension displays the distance between its first and second reference point. 
The two reference points are on opposite sides of the circle's circumference, so their 
distance measures the circle's diameter. If the alignment point is between the two reference 
points, the dimension line is drawn between the reference points, which is "inside" the 
circle. Otherwise the dimension line is drawn "outside" of the circle, much like a parallel 
dimension. If the measurement text is too long to fit on an inside diameter dimension, the 
dimension line is drawn on the outside. A diameter dimension automatically displays a cross 



in the middle between its two reference points (which is the center of the circle). When a 
diameter dimension object is newly created or modified, the alignment point is normalized, 
so that it lies at the same coordinates as its second reference point for an "inside" dimension, 
or in the middle of the dimension line for an "outside" dimension. 

Angle 

An angle dimension displays the angle between the second and third reference point, 
measured counterclockwise around the first reference point (which is the center of the arc). 
When an angle dimension object is newly created or modified, the second reference point is 
normalized, so that it has the same distance from the first point as the third one does. 

Leader 

A leader dimension can be used to point at something in a drawing. There is an arrow at the 
first point, and the second and third point define a (bent) line. The leader doesn't display any 
measurement. You can use the TEXT command to place any text you need. 

Selection
A dimension object can be selected at any of its three points. 

DISPLAY
Function 

Selects the visible layers. 
Syntax 

DISPLAY
DISPLAY [option] layer_number..
DISPLAY [option] layer_name.. 

See also LAYER, PRINT 

Valid options are: ALL, NONE, LAST, ? and ?? 

The DISPLAY command is used to choose the visible layers. As parameters, the layer 
number and the layer name are allowed (even mixed). If the parameter ALL is chosen, all 
layers become visible. If the parameter NONE is used, all layers are switched off. For 
example: 

DISPLAY NONE BOTTOM;

Following this command only the Bottom layer is displayed. 

If the parameter LAST is given, the previously visible layers will be displayed. 

Please note that only those signal layers (1 through 16) are available that have been entered 
into the layer setup in the Design Rules. 

If the layer name or the layer number includes a negative sign, it will be filtered out. For 
example: 

DISPLAY TOP -BOTTOM -3;

In this case the Top layer is displayed while the Bottom layer and the layer with the number 
3 are not shown on the screen. 



Avoid layer names ALL and NONE as well as names starting with a "-". 

Some commands (PAD, SMD, SIGNAL, ROUTE) automatically activate certain layers. 

If the DISPLAY command is invoked without parameters, a dialog is presented which 
allows you to adjust all layer settings. 

Undefined Layers
The options '?' and '??' can be used to control what happens if an undefined layer is given in 
a DISPLAY command. Any undefined layers following a '?' will cause a warning and the 
user can either accept it or cancel the entire DISPLAY command. Undefined layers 
following a '??' will be silently ignored. This is most useful for writing script files that shall 
be able to handle any drawing, even if a particular drawing doesn't contain some of the 
listed layers. 

DISPLAY TOP BOTTOM ? MYLAYER1 MYLAYER2 ?? OTHER WHATEVER

In the above example the two layers TOP and BOTTOM are required and will cause an error 
if either of them is missing. MYLAYER1 and MYLAYER2 will just be reported if missing, 
allowing the user to cancel the operation, and OTHER and WHATEVER will be displayed 
if they are there, otherwise they will be ignored. 

The '?' and '??' options may appear any number of times and in any sequence. 

Pads and Vias
If pads or vias have different shapes on different layers, the shapes of the currently visible 
(activated with DISPLAY) signal layers are displayed on top of each other. 

If the color selected for layer 17 (Pads) or 18 (Vias) is 0 (which represents the current 
background color), the pads and vias are displayed in the color and fill style of the 
respective signal layers. If no signal layer is visible, pads and vias are not displayed. 

If the color selected for layer 17 (Pads) or 18 (Vias) is not the background color and no 
signal layers are visible, pads and vias are displayed in the shape of the uppermost and 
undermost layer. 

This also applies to printouts made with PRINT. 

Selecting Objects
If you want to select certain objects or elements (e.g. with MOVE or DELETE) the 
corresponding layer must be visible. Elements can only be selected if the tOrigins (or 
bOrigins with mirrored elements) layer is visible! 

Parameter Aliases
Parameter aliases can be used to define certain parameter settings to the DISPLAY 
command, which can later be referenced by a given name. The aliases can also be accessed 
by clicking on the DISPLAY button and holding the mouse button pressed until the list pops 
up. A right click on the button also pops up the list. 

The syntax to handle these aliases is: 



DISPLAY = name parameters 
Defines the alias with the given name to expand to the given parameters. The name may 
consist of any number of letters, digits and underlines, and is treated case insensitive. It must 
begin with a letter or underline and may not be one of the option keywords. 

DISPLAY = name @ 
Defines the alias with the given name to expand to the current parameter settings of the 
command. 

DISPLAY = ? 
Asks the user to enter a name for defining an alias for the current parameter settings of the 
command. 

DISPLAY = name 
Opens the DISPLAY dialog and allows the user to select a set of layers that will be defined as 
an alias under the given name. 

DISPLAY = name; 
Deletes the alias with the given name. 

DISPLAY name 
Expands the alias with the given name and executes the DISPLAY command with the 
resulting set of parameters. The name may be abbreviated and there may be other parameters 
before and after the alias (even other aliases). Note that in case name is an abbreviation, 
aliases have precedence over other parameter names of the command. 

Example: 

DISPLAY = MyLayers None Top Bottom Pads Vias Unrouted 

Defines the alias "MyLayers" which, when used as in 

DISPLAY myl 

will display just the layers Top, Bottom, Pads, Vias and Unrouted (without the "None" 
parameter the given layers would be displayed in addition to the currently visible layers). 
Note the abbreviated use of the alias and the case insensitivity. 

DRC
Function 

Checks design rules. 
Syntax 

DRC
DRC   ;� �
DRC LOAD|SAVE filename;
DRC * 

See also Design Rules, CLASS, SET, ERC, ERRORS 

The command DRC checks a board against the current set of Design Rules. 

Please note that electrically irrelevant objects (wires in packages, rectangles, circles and 
texts) are not checked against each other for clearance errors. 

The errors found are displayed as error polygons in the respective layers, and can be 
browsed through with the ERRORS command. 

Without parameters the DRC command opens a Design Rules dialog in which the board's 
Design Rules can be defined, and from which the actual check can be started. 



If two coordinates are given in the DRC command (or if the Select button is clicked in the 
Design Rules dialog) all checks will be performed solely in the defined rectangle. Only 
errors that occur (at least partly) in this area will be reported. 

If you get DRC errors that don't go away, even if you modify the Design Rules, make sure 
you check the Net class of the reported object to see whether the error is caused by a 
specific parameter of that class. 

To delete all error polygons use the command 

ERRORS CLEAR

The LOAD and SAVE options can be used to load the Design Rules from or save them to the 
given file. If filename doesn't have the extension ".dru" it will be appended automatically. 

If the DRC command is given an asterisk character ('*') as the first parameter, the Design 
Rules dialog will be opened and allow editing the Design Rules, without triggering an actual 
check when the dialog is confirmed. 

Related SET commands
The SET command can be used to change the behavior of the DRC command: 

SET DRC_FILL  fill_name;

Defines the fill style used for the DRC error polygons. Default is LtSlash. 

EDIT
Function 

Loads an existing drawing to be edited or creates a new drawing. 
Syntax 

EDIT name
EDIT name.ext
EDIT .ext
EDIT .sX [ .sY ] 

See also OPEN, CLOSE, BOARD 

The EDIT command is used to load a drawing or if a library has been opened with the 
OPEN command, to load a package, symbol, or device for editing. 

EDIT 
name.brd 

loads a board

EDIT 
name.sch 

loads a schematic

EDIT 
name.pac 

loads a package

EDIT 
name.sym 

loads a symbol

EDIT 
name.dev 

loads a device

EDIT .s3 loads sheet 3 of a schematic
EDIT .s5 .s2 moves sheet 5 before sheet 2 and loads it (if sheet 5 doesn't exist, a new sheet 



is inserted before sheet 2)

EDIT .s2 .s5 moves sheet 2 before sheet 5 and loads it (if sheet 5 doesn't exist, sheet 2 
becomes the last sheet)

Wildcards in the name are allowed (e.g. *.brd). 

The EDIT command without parameters will cause a file dialog (in board or schematic 
mode) or a popup menu (in library mode) to appear from which you can select the file or 
object. 

To change from schematic to a board with the same name the command 

EDIT .brd

can be used. In the same way to change from board to schematic use the command 

EDIT .sch

To edit another sheet of a schematic the command 

EDIT .sX

(X is the sheet number) or the combo box in the action toolbar of the editor window can be 
used. If the given sheet number doesn't exist, a new sheet is created. 

You can also switch between sheets by clicking on an icon of the sheet thumbnail preview. 
Drag&drop in the thumbnail preview allows you to reorder sheets. 

Symbols, devices or packages may only be edited if a library is first opened with the OPEN 
command. 

Which Directory?
EDIT loads files from the project directory. 

ERC
Function 

Electrical Rule Check. 
Syntax 

ERC 

See also DRC, ERRORS, Consistency Check 

This command is used to test schematics for electrical errors. The result of the check is 
presented in the ERRORS dialog. 

Consistency Check
The ERC command also performs a Consistency Check between a schematic and its 
corresponding board, provided the board file has been loaded before starting the ERC. As a 
result of this check the automatic Forward&Back Annotation will be turned on or off, 
depending on whether the files have been found to be consistent or not. 

Please note that the ERC detects inconsistencies between the implicit power and supply pins 
in the schematic and the actual signal connections in the board. Such inconsistencies can 



occur if the supply pin configuration is modified after the board has been created with the 
BOARD command. Since the power pins are only connected "implicitly", these changes 
can't always be forward annotated.
If such errors are detected, Forward&Back Annotation will still be performed, but the 
supply pin configuration should be checked! 

ERRORS
Function 

Shows the errors found by the ERC or DRC command. 
Syntax 

ERRORS
ERRORS CLEAR 

See also ERC, DRC 

The command ERRORS is used to show the errors found by the Electrical Rule Check 
(ERC) or the Design Rule Check (DRC). If selected, a window is opened in which all errors 
are listed. If no ERC or DRC has been run for the loaded drawing, yet, the respective check 
will be started first. 

The list view in the ERRORS dialog has up to four sections that contain Consistency errors, 
Errors, Warnings and Approved messages, respectively. 

Selecting an entry with the mouse causes the error to be marked in the editor window with a 
rectangle and a line from the upper left corner of the screen. 

Double clicking an entry centers the drawing to the area where the error is located. 
Checking the "Centered" checkbox causes this to happen automatically. 

Marking a message as processed
The Processed button marks a message as processed. It is still contained in the list, but there 
is no error indicator in the editor window any more (except if the list entry is selected). This 
can be used to mark messages as "done" after fixing the related problem, without having to 
run the check again. After the next ERC/DRC the message will be either gone, or marked as 
unprocessed again if the problem still persists. 

Approving a message
If an error or warning can't be fixed, but apparently doesn't matter (which the user has to 
decide), it can be moved to the Approved section by pressing the Approve button. Messages 
in that section will not draw error indicators in the editor window (except if the list entry is 
selected) and are implicitly marked as "processed". If any of these messages no longer apply 
after the next ERC/DRC, they will be deleted. All approved messages are stored in the 
drawing file, so that it is documented which ones have been explicitly approved by the user. 
Note that consistency errors can not be approved - they always have to be fixed in order to 
activate Forward&Back Annotation. 



Clearing the list
The Clear all button deletes all entries form the list, except for the approved messages. This 
can be used to get rid of the error indicators in the editor window. The next ERC/DRC will 
regenerate the messages again, if they still apply. 

The list can also be cleared by entering the command 

ERRORS CLEAR

EXPORT
Function 

Generation of data files. 
Syntax 

EXPORT SCRIPT filename;
EXPORT NETLIST filename;
EXPORT NETSCRIPT filename;
EXPORT PARTLIST filename;
EXPORT PINLIST filename;
EXPORT DIRECTORY filename;
EXPORT IMAGE filename|CLIPBOARD [MONOCHROME|WINDOW] 
resolution; 

See also SCRIPT, RUN 

The EXPORT command is used to provide you with ASCII text files which can be used e.g. 
to transfer data from EAGLE to other programs, or to generate an image file from the 
current drawing. 

By default the output file is written into the Project directory. 

The command generates the following output files: 

SCRIPT
A library previously opened with the OPEN command will be output as a script file. When a 
library has been exported and is to be imported again with the SCRIPT command, a new 
library should be opened in order to avoid duplication - e.g. the same symbol is defined 
more than once. Reading script files can be accelerated if the command 

Set Undo_Log Off;

is given before. 

NETLIST
Generates a netlist for the loaded schematic or board. Only nets which are connected to 
elements are listed. 

NETSCRIPT
Generates a netlist for the loaded schematic in the form of a script file. This file can be used 



to read a new or changed netlist into a board where elements have already been placed or 
previously routed tracks have been deleted with DELETE SIGNALS. Note that while 
reading such a script into a board no schematic that is consistent with this board may be 
loaded. 

PARTLIST
Generates a component list for schematics or boards. Only elements with pins/pads are 
included. 

PINLIST
Generates a list with pads and pins, containing the pin directions and the names of the nets 
connected to the pins. 

DIRECTORY
Lists the directory of the currently opened library. 

IMAGE
Exporting an IMAGE generates an image file with a format corresponding to the given 
filename extension. The following image formats are available: 

.bmp Windows Bitmap Files

.png Portable Network Graphics 
Files

.pbm Portable Bitmap Files

.pgm Portable Grayscale Bitmap Files

.ppm Portable Pixelmap Files

.tif TIFF Files

.xbm X Bitmap Files

.xpm X Pixmap Files
The resolution parameter defines the image resolution (in 'dpi'). 

If filename is the special name CLIPBOARD (upper or lowercase doesn't matter) the image 
will be copied into the system's clipboard. 

The optional keyword MONOCHROME creates a black&white image. 

The optional keyword WINDOW creates an image of the currently visible area in the editor 
window. Without this keyword, the image will contain the entire drawing. 

Further formats
A lot of further formats like DXF or Hyperlynx can be exported by ULPs. They can be 
started from command line using the RUN command. Under 'File/Export' a number these 
format exports are also available. 

FRAME
Function 



Adds a frame to a drawing. 
Syntax 

FRAME [ columns [ rows ] ] [ borders ]  � � 
Mouse keys 

Center selects the layer. 

See also LABEL 

The FRAME command draws a frame with numbered columns and rows. The two points 
define two opposite corners of the frame. Pressing the center mouse button changes the 
layer to which the frame is to be added. 

The columns parameter defines the number of columns in the frame. There can be up to 
127 columns. By default the columns are numbered from left to right. If the columns 
value is negative, they are numbered from right to left. 

The rows parameter defines the number of rows in the frame. There can be up to 26 rows. 
Rows are marked from top to bottom with letters, beginning with 'A'. If the rows value is 
negative, they are marked from bottom to top. If rows is given, it must be preceeded by 
columns. 

The borders parameter, if given, defines which sides of the frame will have a border with 
numbers or letters displayed. Valid options for this parameter are Left, Top, Right and 
Bottom. By default all four sides of the frame will have a border. If any of these options is 
given, only the requested sides will have a border. The special options None and All can 
be used to have no borders at all, or all sides marked. 

Even though you can draw several frames in the same drawing, only the first one will be 
used for calculating the positions of parts and nets. These positions can be used, for 
instance, in a User Language Program to generate a list of parts with their locations in their 
respective frame. They are also used internally to automatically generate cross references 
for labels. 

Due to the special nature of the frame object, it doesn't have a rotation of its own, and it 
doesn't get rotated with the ROTATE command. 

A frame can be drawn directly into a board or schematic, but more typically you will want 
to create a special symbol or package drawing that perhaps also contains a title block, which 
you can then use in all your drawings. The "frames" library that comes with EAGLE 
contains several drawing frames. 

Example
FRAME 10 5 TOP LEFT  � �

draws a frame with 10 columns (numbered from left to right) and 5 rows (marked 'A' to 'E' 
from top to bottom) that has the column and row indicators drawn only at the top and left 
border. 

GATESWAP
Function 

Swaps equivalent gates on a schematic. 



Syntax 
GATESWAP  ..;� �
GATESWAP gate_name gate_name..; 

See also ADD 

Using this command two gates may be swapped within a schematic. Both gates must be 
identical with the same number of pins and must be allocated the same Swaplevel in the 
device definition. They do not, however, need to be in the same device. 

The name used in the GATESWAP command is the displayed name on the schematic (e.g. 
U1A for gate A in device U1). 

If a device is not used anymore after the GATESWAP command, it is deleted automatically 
from the drawing. 

GRID
Function 

Defines grid. 
Syntax 

GRID option..;
GRID; 

Keyboard 
F6: GRID; turns the grid on or off. 

See also SCRIPT 

The GRID command is used to specify the grid and the current unit. Given without an 
option, this command switches between GRID ON and GRID OFF. 

The following options exist: 

GRID ON; Displays the grid on the screen
GRID OFF; Turns off displayed grid
GRID DOTS; Displays the grid as dots
GRID LINES; Displays the grid as solid lines
GRID MIC; Sets the grid units to micron
GRID MM; Sets the grid units to mm
GRID MIL; Sets the grid units to mil
GRID INCH; Sets the grid units to inch

GRID FINEST; 
Sets the grid to the finest possible 
value

GRID grid_size; Defines the distance between
the grid points in the actual unit

GRID LAST; Sets grid to the most recently
used values

GRID DEFAULT; Sets grid to the standard values
GRID grid_size grid_multiple; 

grid_size = grid distance
grid_multiple = grid factor

GRID ALT ...; Defines the alternate grid



Examples
Grid mm;
Set Diameter_Menu 1.0 1.27 2.54 5.08;
Grid Last;

In this case you can change back to the last grid definition although you don't know what 
the definition looked like. 

GRID mm 1 10;

for instance specifies that the distance between the grid points is 1 mm and that every 10th 
grid line will be displayed. 

Note: The first number in the GRID command always represents the grid distance, the 
second - if existing - represents the grid multiple. 

The GRID command may contain multiple parameters: 

GRID inch 0.05 mm;

In this case the grid distance is first defined as 0.05 inch. Then the coordinates of the cursor 
are chosen to be displayed in mm. 

GRID DEFAULT;

Sets grid to the standard value for the current drawing type. 

GRID mil 50 2 lines on alt mm 1 mil;

Defines a 50 mil grid displayed as lines (with only every other line visible), and sets the 
alternate grid size to 1 mm, but displays it in mil. 

Pressing the Alt key switches to the alternate Grid. This can typically be a finer grid than 
the normal one, which allows you to quickly do some fine positioning in a dense area, for 
instance, where the normal grid might be too coarse. The alternate grid remains active as 
long as the Alt key is held pressed down. 

Parameter Aliases
Parameter aliases can be used to define certain parameter settings to the GRID command, 
which can later be referenced by a given name. The aliases can also be accessed by clicking 
on the GRID button and holding the mouse button pressed until the list pops up. A right 
click on the button also pops up the list. 

The syntax to handle these aliases is: 

GRID = name parameters 
Defines the alias with the given name to expand to the given parameters. The name may 
consist of any number of letters, digits and underlines, and is treated case insensitive. It must 
begin with a letter or underline and may not be one of the option keywords. 

GRID = name @ 
Defines the alias with the given name to expand to the current parameter settings of the 
command. 

GRID = ? 
Asks the user to enter a name for defining an alias for the current parameter settings of the 
command. 



GRID = name 
Opens the GRID dialog and allows the user to adjust the grid parameters and define an alias 
for them under the given name. 

GRID = name; 
Deletes the alias with the given name. 

GRID name 
Expands the alias with the given name and executes the GRID command with the resulting set 
of parameters. The name may be abbreviated and there may be other parameters before and 
after the alias (even other aliases). Note that in case name is an abbreviation, aliases have 
precedence over other parameter names of the command. 

Example: 

GRID = MyGrid inch 0.1 lines on 

Defines the alias "MyGrid" which, when used as in 

GRID myg 

will change the current grid to the given settings. Note the abbreviated use of the alias and 
the case insensitivity. 

GROUP
Function 

Defines a group. 
Syntax 

GROUP ..�
GROUP ALL
GROUP; 

Mouse keys 
Left&Drag defines a rectangular group.
Shift+Left adds the new group to an existing one.
Ctrl+Left toggles the group membership of the selected object.
Ctrl+Shift+Left toggles the group membership of the higher level object.
Right closes the group polygon. 

See also CHANGE, CUT, PASTE, MIRROR, DELETE 

The GROUP command is used to define a group of objects for a successive command. Also 
a whole drawing or an element can be defined as a group. Objects are selected - after 
activating the GROUP command - by click&dragging a rectangle or by drawing a polygon 
with the mouse. The easiest way to close the polygon is to use the right mouse button. Only 
objects from displayed layers can become part of the group. 

The keyword ALL can be used to define a group that includes the entire drawing area. 

The group includes: 

• all objects whose origin is inside the polygon 
• all wires with at least one end point inside the polygon 
• all circles whose center is inside the polygon 
• all rectangles with any corner inside the polygon 



Move Group
In order to move a group it is necessary to select the MOVE command with the right mouse 
button. When moving wires (tracks) with the GROUP command that have only one end 
point in the polygon, this point is moved while the other one remains at its previous 
position. 

For instance: In order to change several pad shapes, select CHANGE and SHAPE with the 
left mouse button and select the group with the right mouse button. 

The group definition remains until a new drawing is loaded or the command 

GROUP;

is executed. 

Extending the group
If you press the Shift key together with any mouse click when defining the group, the 
newly defined group will be added to the existing group (if any). 

Individual objects
You can toggle the group membership of an individual object by clicking on it with the 
Ctrl key pressed. If you also press the Shift key when doing so, the group membership 
of the next higher level object is toggled. For instance, when clicking on a net wire in a 
schematic with the GROUP command and Ctrl+Shift pressed, the group membership 
of the entire segment will be toggled. 

HELP
Function 

Help for the current command. 
Syntax 

HELP
HELP command 

Keyboard 
F1: HELP activates the context sensitive help. 

This command opens a context sensitive help window. 

A command name within the HELP command shows the help page of that command. 

Example
HELP GRID;

displays the help page for the GRID command. 

HOLE
Function 



Add drill hole to a board or package. 
Syntax 

HOLE drill ..�  

See also VIA, PAD, CHANGE 

This command is used to define e.g. mounting holes (has no electrical connection between 
the different layers) in a board or in a package. The parameter drill defines the diameter of 
the hole in the actual unit. It may be up to 0.51602 inch (13.1 mm). 

Example
HOLE 0.20 �

If the actual unit is "inch", the hole will have a diameter of 0.20 inch. 

The entered value for the diameter (also used for via-holes and pads) remains as a presetting 
for successive operations. It may be changed with the command: 

CHANGE DRILL value �

A hole can only be selected if the Holes layer is displayed. 

A hole generates a symbol in the Holes layer as well as a circle with the diameter of the hole 
in the Dimension layer. The relation between certain diameters and symbols is defined in the 
"Options/Set/Drill" dialog. The circle in the Dimension layer is used by the Autorouter. As it 
will keep a (user-defined) minimum distance between via-holes/wires and dimension lines, 
it will automatically keep this distance to the hole. 

In the layers tStop and bStop, holes generate the solder stop mask, whose diameter is 
determined by the Design Rules. 

INFO
Function 

Display and modify object properties. 
Syntax 

INFO ..�
INFO name .. 

See also CHANGE, SHOW 

The INFO command displays further details about an object's properties on screen, e.g. wire 
width, layer number, text size etc. It is also possible to modify properties in this dialog. 

Parts, pads, smds, pins and gates can also be selected by their name, which is especially 
useful if the object is outside the currently shown window area. Note that when selecting a 
multi-gate part in a schematic by name, you will need to enter the full instance name, 
consisting of part and gate name. 

Attributes of parts can be selected by entering the concatenation of part name and attribute 
name, as in R5>VALUE. 



INVOKE
Function 

Call a specific symbol from a device. 
Syntax 

INVOKE  orientation � �
INVOKE part_name gate_name orientation � 

Mouse keys 
Center mirrors the gate.
Right rotates the gate.
Shift+Right reverses the direction of rotating. 

See also COPY, ADD 

See the ADD command for an explanation of Addlevel und Orientation. 

The INVOKE command is used to select a particular gate from a device which is already in 
use and place it in the schematic (e.g. a power symbol with Addlevel = Request). 

Gates are activated in the following way: 

• Enter the part name (e.g. IC5) and select the gate from the popup dialog that appears. 
• Define device and gate name from the keyboard (e.g. INVOKE IC5 POWER). 
• Select an existing gate from the device with the mouse and then select the desired 

gate from the popup menu which appears. 

The final mouse click positions the new gate. 

If an already invoked gate is selected in the dialog, the default button changes to "Show", 
and a click on it zooms the editor window in on the selected gate, switching to a different 
sheet if necessary. 

Gates on Different Sheets
If a gate from a device on a different sheet is to be added to the current sheet, the name of 
the part has to be specified in the INVOKE command. In this case the right column of the 
popup menu shows the sheet numbers where the already used gates are placed. 

JUNCTION
Function 

Places a dot at intersecting nets. 
Syntax 

JUNCTION ..�  

See also NET 

This command is used to draw a connection dot at the intersection of nets which are to be 
connected to each other. Junction points may be placed only on a net. If placed on the 
intersection of different nets, the user is given the option to connect the nets. 

If a net wire is placed at a point where there are at least two other net wires and/or pins, a 
junction will automatically be placed. This function can be disabled with "SET 
AUTO_JUNCTION OFF;", or by unchecking "Options/Set/Misc/Auto set junction". 



On the screen junction points are displayed at least with a diameter of five pixels. 

LABEL
Function 

Attaches text labels to buses and nets. 
Syntax 

LABEL [XREF] [orientation]  ..� �  
Mouse keys 

Center selects the layer.
Right rotates the label.
Shift+Right reverses the direction of rotating. 

See also NAME, BUS, FRAME 

Bus or net names may be placed on a schematic in any location by using the label 
command. When the bus or net is clicked on with the mouse, the relevant label attaches to 
the mouse cursor and may be rotated, changed to another layer, or moved to a different 
location. The second mouse click defines the location of the label. 

The orientation of the label may be defined textually using the usual definitions as listed in 
the ADD command (R0, R90 etc.). 

Buses and nets may have any number of labels. 

Labels cannot be changed with "CHANGE TEXT". 

Labels are handled by the program as text, but their value corresponds to the name of the 
appropriate bus or net. If a bus or net is renamed with the NAME command, all associated 
labels are renamed automatically. 

If a bus, net, or label is selected with the SHOW command, all connected buses, nets and 
labels are highlighted. 

Cross-reference labels
If the optional keyword XREF is given, the label will be a "cross-reference" label. Cross-
reference labels can be used in multi-sheet schematics to indicate the next sheet a particular 
net appears on (note that this only works for nets, not for busses!). The XREF keyword is 
mainly for use in scripts. Normally the setting is taken from what has previously been set 
with CHANGE XREF, or by clicking on the Xref button in the parameter toolbar. 

The format in which a cross-reference label is displayed can be controlled through the "Xref 
label format" string, which is defined in the "Options/Set/Misc" dialog, or with the SET 
command. The following placeholders are defined, and can be used in any order: 

%F enables drawing a flag border around the 
label

%N the name of the net
%S the next sheet number
%C the column on the next sheet
%R the row on the next sheet
The default format string is "%F%N/%S.%C%R". Apart from the defined placeholders you 
can also use any other ASCII characters. 



The column and row values only work if there is a frame on the next sheet on which the net 
appears. If %C or %R is used and there is no frame on that sheet, they will display a question 
mark ('?'). 

When determining the column and row of a net on a sheet, first the column and then the row 
within that column is taken into account. Here XREF labels take precedence over normal 
labels, which again take precedence over net wires. For a higher sheet number, the frame 
coordinates of the left- and topmost field are taken, while for a lower sheet number those of 
the right- and bottommost field are used. 

The orientation of a cross-reference label defines whether it will point to a "higher" or a 
"lower" sheet number. Labels with an orientation of R0 or R270 point to the right or bottom 
border of the drawing, and will therefore refer to a higher sheet number. Accordingly, labels 
with an orientation of R90 or R180 will refer to a lower sheet number. If a label has an 
orientation of R0 or R270, but the net it is attached to is not present on any higher sheet, a 
reference to the next lower sheet is displayed instead (the same applies accordingly to R90 
and R180). If the net appears only on the current sheet, no cross-reference is shown at all, 
and only the net name is displayed (surrounded by the flag border, if the format string 
contains the %F placeholder). 

A cross-reference label that is placed on the end of a net wire will connect to the wire so that 
the wire is moved with the label, and vice versa. 

The cross-reference label format string is stored within the schematic drawing file. 

A cross-reference label can be changed to a normal label either through the CHANGE 
command or the label's Properties dialog. 

Selecting the layer
Unlike other commands (like WIRE, for instance), the LABEL command keeps track of its 
last used layer by itself. This has the advantage of making sure that labels are always drawn 
into the right layer, no matter what layers other commands draw into. The downside of this 
is that the usual way of setting the layer in a script, as in 

LAYER layer;
WIRE (1 2) (3 4);

doesn't work here. The layer needs to be selected while the LABEL command is already 
active, which can be done like this 

LABEL parameters
LAYER layer
more parameters;

Note that the LABEL line is not terminated with a ';', and that the LAYER command 
starts on a new line.
The commands 

LABEL
LAYER layer;

set the layer to use with subsequent LABEL commands. 



LAYER
Function 

Changes and defines layers. 
Syntax 

LAYER layer_number
LAYER layer_name
LAYER layer_number layer_name
LAYER [??] -layer_number 

See also DISPLAY 

Choose Drawing Layer
The LAYER command with one parameter is used to change the current layer, i.e. the layer 
onto which wires, circles etc. will be drawn. If LAYER is selected from the menu, a popup 
menu will appear in which you may change to the desired layer. If entered from the 
command line, 'layer_number' may be the number of any valid layer, and 'layer_name' may 
be the name of a layer as displayed in the popup menu. 

Certain layers are not available in all modes. 

Please note that only those signal layers (1 through 16) are available that have been entered 
into the layer setup in the Design Rules. 

Define Layers
The LAYER command with two parameters is used to define a new layer or to rename an 
existing one. If you type in at the command prompt e.g. 

LAYER 101 SAMPLE;

you define a new layer with layer number 101 and layer name SAMPLE. 

If a package contains layers not yet specified in the board, these layers are added to the 
board as soon as you place the package into the board (ADD or REPLACE). 

The predefined layers have a special function. You can change their names, but their 
functions (related with their number) remain the same. 

If you define your own layers, you should use only numbers greater than 100. Numbers 
below may be assigned for special purposes in later EAGLE versions. 

Delete Layers
The LAYER command with the minus sign and a layer_number deletes the layer with the 
specified number, e.g. 

LAYER -103;

deletes the layer number 103. Layers to be deleted must be empty. If this is not the case, the 
program generates the error message 

"layer is not empty: #" 



where "#" represents the layer number. If you want to avoid any error messages in a layer 
delete operation you can use the '??' option. This may be useful in scripts that try to delete 
certain layers, but don't consider it an error if any of these layers is not empty or not present 
at all. 

Predefined EAGLE Layers

Layout

1 Top Tracks, top side
2 Route2 Inner layer
3 Route3 Inner layer
4 Route4 Inner layer
5 Route5 Inner layer
6 Route6 Inner layer
7 Route7 Inner layer
8 Route8 Inner layer
9 Route9 Inner layer
10 Route10 Inner layer
11 Route11 Inner layer
12 Route12 Inner layer
13 Route13 Inner layer
14 Route14 Inner layer
15 Route15 Inner layer
16 Bottom Tracks, bottom side
17 Pads Pads (through-hole)
18 Vias Vias (through-hole)
19 Unrouted Airwires (rubberbands)
20 Dimension Board outlines (circles for holes)
21 tPlace Silk screen, top side
22 bPlace Silk screen, bottom side
23 tOrigins Origins, top side
24 bOrigins Origins, bottom side
25 tNames Service print, top side
26 bNames Service print, bottom side
27 tValues Component VALUE, top side
28 bValues Component VALUE, bottom side
29 tStop Solder stop mask, top side
30 bStop Solder stop mask, bottom side
31 tCream Solder cream, top side
32 bCream Solder cream, bottom side
33 tFinish Finish, top side
34 bFinish Finish, bottom side
35 tGlue Glue mask, top side
36 bGlue Glue mask, bottom side
37 tTest Test and adjustment inf., top side
38 bTest Test and adjustment inf. bottom side
39 tKeepout Nogo areas for components, top side

40 bKeepout 
Nogo areas for components, bottom 
side

41 tRestrict Nogo areas for tracks, top side



42 bRestrict Nogo areas for tracks, bottom side
43 vRestrict Nogo areas for via-holes
44 Drills Conducting through-holes
45 Holes Non-conducting holes
46 Milling Milling
47 Measures Measures
48 Document General documentation
49 Reference Reference marks
51 tDocu Part documentation, top side
52 bDocu Part documentation, bottom side

Schematic

91 Nets Nets
92 Busses Buses

93 Pins 
Connection points for component 
symbols
with additional information

94 Symbols Shapes of component symbols
95 Names Names of component symbols
96 Values Values/component types
97 Info General information
98 Guide Guide lines

LOCK
Function 

Locks the position and orientation of a part in the board. 
Syntax 

LOCK ..�
LOCK name .. 

Mouse keys 
Ctrl+Right applies the command to the group.
Shift+Left reverses the lock operation ("unlocks" the part).
Ctrl+Shift+Right "unlocks" all parts in the group. 

See also MIRROR, MOVE, ROTATE SMASH 

The LOCK command can be applied to parts in a board, and prevents them from being 
moved, rotated, or mirrored. This is useful for things like connectors, which need to be 
mounted at a particular location and must not be inadvertently moved. 

The origin of a locked part is displayed as an 'x' to have a visual indication that the part is 
locked. 

If a group is moved and it contains locked parts, these parts (together with any wires ending 
at their pads) will not move with the group. 

Detached texts of a locked part can still be moved individually, but they won't move with a 
group. 

Parts can also be selected by their name, which is especially useful if the object is outside 
the currently shown window area. 

A "locked" part can be made "unlocked" by clicking on it with the Shift key pressed (and 



of course the LOCK command activated). 

MARK
Function 

Defines a mark on the drawing area. 
Syntax 

MARK �
MARK; 

See also GRID 

The MARK command allows you to define a point on the drawing area and display the 
coordinates of the mouse cursor relative to that point at the upper left corner of the screen 
(with a leading 'R' character). This command is useful especially when board dimensions or 
cutouts are to be defined. Entering MARK; turns the mark on or off. 

Please choose a grid fine enough before using the MARK command. 

MEANDER
Function 

Balance lengths of differential pairs and increase the length of a signal segment. 
Syntax 

MEANDER [length]  ..�
Mouse keys 

Ctrl+Left measures the length of the selected signal segment.
Ctrl+Shift+Left measures the maximum length of the selected signal segments.
Right toggles between symmetrical and asymmetrical meanders. 

See also ROUTE 

The MEANDER command can be used to balance the lengths of signals forming a 
differential pair. To do this, just click on a wire of a differential pair and move the mouse 
cursor away from the selection point. If there is a difference in the length of the two signals, 
and the current mouse position is far enough away from the selection point, a "meander" 
shaped sequence of wires will be drawn that increases the length of the shorter signal 
segment. An indicator attached to the mouse cursor shows the target length (which is the 
length of the longer signal segment), as well as the deviation (in percent) of the two signals 
from the target length. 

The meander starts at the first click point and extends to the second point the mouse is 
moved to. The maximum (perpendicular) size of the meander is defined by the distance of 
the mouse to the meandered wire. 

If a single meander isn't enough to balance the lengths, you can add further meanders at 
different locations. 

Measuring signal lengths
If you click on a signal wire with the Ctrl key pressed, the length of that signal segment 
will be measured and displayed on the screen in a little indicator near the mouse position. 



You can use this to measure the length of a given signal segment and use that as the target 
length for meandering an other segment. 

If you do the measuring with Ctrl+Shift pressed, the maximum length of this or any 
previously selected segments will be taken. This can be used to easily determine the 
maximum length of several bus signals and then meandering each of them to that length. 

At any time you can enter a value in the command line to set the target length. 

When meandering a differential pair with a given target length, the meander first tries to 
balance the length of the two signal segments that form the differential pair, and then 
increases the total length of both segments. 

To reset the target length you can either restart the MEANDER command or enter a value of 
0 in the command line. 

Symmetrical and asymmetrical meanders
By default a meander is generated symmetrical, which means it extends to both sides along 
the selected wire. If this is not what you need (either because there is only space on one 
side, or because the longer one of the wires of a differential pair shall not be elongated) you 
can switch to asymmetric mode by clicking the right mouse button. The actual mouse 
position will decide which side of the wire the meander extends to. Move the mouse around 
to find the proper position. 

Length tolerance
The value defined in the Design Rules under "Misc/Max. length difference in differential 
pairs" is used to select the color when displaying the length deviations while drawing a 
meander. If the percentage is shown in green, the respective segment lies within the given 
tolerance. Otherwise the percentage is displayed in red. The default for this parameter is 
10mm. 

MENU
Function 

Customizes the textual command menu. 
Syntax 

MENU option ..;
MENU; 

See also ASSIGN, SCRIPT 

The MENU command can be used to create a user specific command menu. 

The complete syntax specification for the option parameters is 

option    := command | submenu | delimiter
command   := [ icon ] text1 [ ':' text2 ]
submenu   := [ icon ] text '{' option [ '|' option ] '}'
icon      := '[' filename ']'
delimiter := '---'

A menu option can be a simple command, as in 



MENU Display Grid;

which would set the menu to the commands Display and Grid. Display and Grid are 
interpreted both as menu text and as commands. 
It can be an aliased command, as in 

MENU 'MyDisp : Display None Top Bottom Pads Vias;' 'MyGrid : Grid mil 100 lines 
on;';

which would set the menu to show the command aliases MyDisp and MyGrid and actually 
execute the command sequence behind the ':' of each option (text2, see above) when 
the respective button is clicked.
It can also be a submenu button as in 

MENU 'Grid { Fine : Grid inch 0.001; | Coarse : Grid inch 0.1; }';

which would define a button labeled Grid that, when clicked opens a submenu with the 
two options Fine and Coarse.
Character '|' is only necessary as a separator in submenu entries (submenu, see above). 

The special option '---' can be used to insert a delimiter, which may be useful for 
grouping buttons. 

A command button can display an icon by preceding the button text with the file name of an 
icon, enclosed in square brackets, as in 

MENU '[/path/to/myicon.png] Set a fine grid : Grid inch 0.001;';

Here the button will display only the given icon, and "Set a fine grid" will be used as a "tool 
tip" that gets displayed when the mouse cursor is moved over the button. The filename 
needs not be enquoted additionally (like for masking spaces).
If an icon is used in a popup menu, like 

MENU 'Grid { [/path/to/myicon.png] Set a fine grid : Grid inch 0.001; }';

then both the icon and the text will be displayed, as with any other popup menu.
If the icon's file name doesn't include a directory path, it is searched for in the current 
working directory and in the EAGLE 'bin' directory. 

Note that any option that consists of more than a single word, or that might be interpreted as 
a command, must be enclosed in single quotes. If you want to use the MENU command in a 
script to define a complex menu, and would like to spread the menu definitions over several 
lines to make them more readable, you need to end the lines with a backslash character 
('\') as in 

MENU 'Grid {\
             Fine : Grid inch 0.001; |\
             Coarse : Grid inch 0.1;\
           }';

Examples
MENU Move Delete Rotate Route ';' Edit;

would create a command menu that contains the commands Move...Route, the semicolon, 



and the Edit command. 

The command 

MENU;

switches back to the default menu. Note that the ';' entry should always be added to the 
menu. It is used to terminate many commands. 

Complex example: 

MENU '[draw.png] Draw {\
                        Wire {\
                               Continous : CHANGE STYLE Continuous; WIRE |\
                               DashDot :  CHANGE STYLE DashDot; WIRE |\
                               Help : HELP WIRE;\
                             }|\
                        Rectangle {\
                                    RECT |\
                                    Help : HELP RECT; \
                                  }\
                       }\
      [export.png] Export {\
                            Script : EXPORT SCRIPT |\
                            Image : EXPORT IMAGE\
                          }\
      MyScript : SCRIPT MyScript.scr;';

This menu consists of the 3 entries Draw, Export and MyScript, whereat Draw and Export 
have submenus and are supplied with icons. Draw consists of the submenus Wire and 
Rectangle, whereat Wire consists of the entries Continous, DashDot and Help and Rectangle 
consists of the entries RECT (text and command RECT) and Help. 
The submenu of Export has the entries Script and Image. 

MIRROR
Function 

Mirrors objects and groups. 
Syntax 

MIRROR ..�
MIRROR name.. 

Mouse keys 
Ctrl+Right mirrors the group. 

See also ROTATE, LOCK, TEXT 

Using the MIRROR command, objects may be mirrored about the y axis. One application 
for this command is to mirror components to be placed on the reverse side of the board. 

Parts, pads, smds and pins can also be selected by their name, which is especially useful if 
the object is outside the currently shown window area. 

Attributes of parts can be selected by entering the concatenation of part name and attribute 
name, as in R5>VALUE. 

Components can be mirrored only if the appropriate tOrigins/bOrigins layer is visible. 

When packages are selected for use with the MIRROR command, connected wires on the 



outer layers are mirrored, too (beware of short circuits!). 

Note that any objects on inner layers (2...15) don't change their layer when they are 
mirrored. The same applies to vias. 

Parts cannot be mirrored if they are locked, or if any of their connected pads would extend 
outside the allowed area (in case you are using a limited edition of EAGLE). 

Mirror a Group
In order to mirror a group of elements, the group is first defined with the GROUP command 
and polygon in the usual manner. The MIRROR command is then selected and the right 
mouse button is used to execute the change. The group will be mirrored about the vertical 
axis through the next grid point. 

Wires, circles, pads and polygons may not be individually mirrored unless included in a 
group. 

Mirror Texts
Text on the solder side of a pc board (Bottom and bPlace layers) is mirrored automatically 
so that it is readable when you look at the solder side of the board. 

Mirrored text in a schematic will be printed on the other side of its origin point, but it will 
still remain normally readable. 

MITER
Function 

Miters wire joints. 
Syntax 

MITER [radius] ..�  
Mouse keys 

Left&Drag dynamically modifies the miter.
Right toggles between round and straight mitering. 

See also SPLIT, WIRE, ROUTE, POLYGON 

The MITER command can be used to take the edge off a point where two wires join. The 
two existing wires need to be on the the same layer and must have the same width and wire 
style. 

Mitering a point
If you select a point where exactly two straight wires join, an additional wire will be 
inserted between these two wires, according to the given radius. If you click&drag on such 
a point with the left mouse button, you can define the mitering wire dynamically. 

Mitering a wire
If you select a wire (which may also be an arc) somewhere in the middle between its end 
points, and that wire is connected to exactly two other straight wires (one at each end), the 



selected wire will be "re-mitered" according to the given radius. If you click&drag on such 
a wire with the left mouse button, you can define the mitering wire dynamically. 

Straight versus round mitering
If radius is positive, the inserted wire will be an arc with the given radius; if it is negative, a 
straight wire will be inserted (imagine the '-' sign as indicating "straight"). You can toggle 
between round and straight mitering by pressing the right mouse button. 

Miter radius and wire bend style
The radius you give in the MITER command will be used in all other commands that draw 
wires in case the wire bend style is one of the 90 or 45 degree styles. If you have set round 
mitering, it will apply to both the 90 and 45 degree bend styles; in case of straight mitering 
only the 90 degree bend styles are affected. 

MOVE
Function 

Moves objects. 
Syntax 

MOVE  ..� �
MOVE name ..�  

Mouse keys 
Ctrl+Left selects an object at its origin or modifies it (see note).
Ctrl+Right selects the group.
Left&Drag immediately moves the object.
Ctrl+Right&Drag immediately moves the group.
Center mirrors the selected object or the group.
Right rotates the selected object or the group.
Shift+Right reverses the direction of rotating. 

Keyboard 
F7: MOVE activates the MOVE command. 

See also GROUP, LOCK, RATSNEST 

The MOVE command is used to move objects. 

Parts, pads, smds, pins and gates can also be selected by their name, which is especially 
useful if the object is outside the currently shown window area. Note that when selecting a 
multi-gate part in a schematic by name, you will need to enter the full instance name, 
consisting of part and gate name. 

Attributes of parts can be selected by entering the concatenation of part name and attribute 
name, as in R5>VALUE. 

Elements can be moved only if the appropriate tOrigins/bOrigins layer is visible. 

The MOVE command has no effect on layers that are not visible (refer to DISPLAY). 

The ends of wires (tracks) that are connected to an element cannot be moved at this point. 

When moving elements, connected wires (tracks) that belong to a signal are moved too 
(beware of short circuits!). 



If an object is selected with the left mouse button and the button is not released, the object 
can be moved immediately ("click&drag"). The same applies to groups when using the right 
mouse button. In this mode, however, it is not possible to rotate or mirror the object while 
moving it. 

Parts cannot be moved if they are locked, or if any of their connected pads would extend 
outside the allowed area (in case you are using a limited edition of EAGLE). 

Move Wires
If, following a MOVE command, two wires from different signals are shorted together, they 
are maintained as separate signals and the error will be flagged by the DRC command. 

Move Groups
In order to move a group, the selected objects are defined in the normal way (GROUP 
command and polygon) before selecting the MOVE command and clicking the group with 
the right mouse button. The entire group can now be moved and rotated with the right 
mouse button. 

Hints for Schematics
If a supply pin (Direction Sup) is placed on a net, the pin name is allocated to this net. 

Pins placed on each other are connected together. 

If unconnected pins of an element are placed on nets or pins then they are connected with 
them. 

If nets are moved over pins they are not connected with them. 

Selecting objects at their origin
Normally a selected object remains within the grid it has been originally placed on. If you 
press Ctrl while selecting an object, the point where you have selected the object is pulled 
towards the cursor and snapped into the current grid. 

If you select a wire somewhere in the middle (not at one of its end points) with Ctrl 
pressed, the end points stay fixed and you can bend the wire, which changes it into an arc. 
The same way the curvature of an arc (which is basically a wire) can be modified. 

If you select a rectangle at one of its corners with Ctrl pressed, you can resize both the 
rectangle's width and height. Selecting an edge of the rectangle with Ctrl pressed lets you 
resize the rectangle's width or height, respectively. Selecting the rectangle at its center with 
Ctrl pressed pulls it towards the cursor and snaps it into the current grid. 

If you select a circle at its circumference with Ctrl pressed, the center stays fixed and you 
can resize the circle's diameter. Selecting the center point this way pulls it towards the 
cursor and snaps it into the current grid. 

Move part of a sheet to an other sheet
You can move part of a sheet to an other sheet of the same schematic without affecting the 



board (in case Forward&Back Annotation is active) by defining a GROUP that contains the 
objects you want to move, selecting that group with the MOVE command and then 
switching to the desired sheet, with the MOVE command still active and having the group 
attached to the cursor. In the new sheet the MOVE command will be active again and will 
have the previously defined group attached to the cursor. Now place the group as usual, and 
all the affected objects will be transferred from the original sheet to the current sheet. If the 
current sheet is the same as the original sheet, nothing happens. 

Note that only wires that have both ends in the group will be transferred, and any part that is 
transferred takes all its electrical connections with it, even if a net wire attached to one of its 
pins is not transferred because its other end is not in the group. In case a pin in the new sheet 
has an electrical connection, but no other pin, wire or junction attached to it to make this 
visible, a junction will be automatically generated at this point. 

This process can even be scripted. For instance 

edit .s1
group (1 1) (1 2) (2 2) (2 1) (1 1)
move (> 0 0)
edit .s2
(0 0)

would switch to the first sheet, define a group, select that group with MOVE, switch to the 
second sheet and place the group. Note the final (0 0), which are coordinates to the 
implicitly invoked MOVE command. 

See the EDIT command if you want to just reorder the sheets. 

NAME
Function 

Displays and changes names. 
Syntax 

NAME ..�
NAME new_name �
NAME old_name new_name 

See also SHOW, SMASH, VALUE 

The NAME command is used to display or edit the name of the selected object. 

Parts, elements, pads, smds, pins and gates can also be selected by their name, which is 
especially useful if the object is outside the currently shown window area. Other object 
types (e.g. nets, busses, signals) have to be clicked first. 

Library
When in library edit mode, the NAME command is used to display or edit the name of the 
selected pad, smd, pin or gate. 

Automatic Naming
EAGLE generates names automatically: E$.. for elements, S$.. for signals, P$.. for pads, 
pins and smds. In general, it is convenient to substitute commonly used names (e.g. 1...14 



for a 14-pin dual inline package) in place of these automatically generated names. 
Automatic naming of parts can be controlled with PREFIX. 

Schematic
If nets or buses are to be renamed, the program has to distinguish between three cases 
because they can consist of several segments placed on different sheets. Thus a menu will 
ask the user: 

This segment
Every segment on this sheet
All segments on all sheets 

These questions appear in a popup menu if necessary and can be answered either by 
selecting the appropriate item with the mouse or by pressing the appropriate hot key (T, E, 
A). 

Polygon
When renaming a signal polygon in a board, you can choose whether to rename only this 
polygon (and thus move it from one signal into another), or to give the entire signal a 
different name. 

NET
Function 

Draws nets on a schematic. 
Syntax 

NET [net_name]  [curve | @radius] ..� �  
Mouse keys 

Right changes the wire bend style (see SET Wire_Bend).
Shift+Right reverses the direction of switching bend styles.
Ctrl+Right toggles between corresponding bend styles. 

See also BUS, NAME, CLASS, SET 

The net command is used to draw individual connections (nets) onto the Net layer of a 
schematic drawing. The first mouse click marks the starting point for the net, the second 
marks the end point of a segment. Two mouse clicks on the same point end the net. 

If a net wire is placed at a point where there is already another net or bus wire or a pin, the 
current net wire will be ended at that point. This function can be disabled with "SET 
AUTO_END_NET OFF;", or by unchecking "Options/Set/Misc/Auto end net and bus". 

If a net wire is placed at a point where there are at least two other net wires and/or pins, a 
junction will automatically be placed. This function can be disabled with "SET 
AUTO_JUNCTION OFF;", or by unchecking "Options/Set/Misc/Auto set junction". 

If the curve or @radius parameter is given, an arc can be drawn as part of the net (see the 
detailed description in the WIRE command). 



Select Bus Signal
If a net is started on a bus, a popup menu opens from which one of the bus signals can be 
selected. The net then is named correspondingly and becomes part of the same signal. If the 
bus includes several part buses, a further popup menu opens from which the relevant part 
bus can be selected. 

Net Names
If the NET command is used with a net name then the net is named accordingly. 

If no net name is included in the command line and the net is not started on a bus, then a 
name in the form of N$1 is automatically allocated to the net. 

Nets or net segments that run over different sheets of a schematic and use the same net name 
are connected. 

Net names should not contain a comma (','), because this is the delimiting character in 
busses. 

Line Width
The width of the line drawn by the net command may be changed with the command: 

SET NET_WIRE_WIDTH width;

(Default: 6 mil). 

Inverted signals
The name of an inverted signal ("active low") can be displayed overlined if it is preceded 
with an exclamation mark ('!'), as in 

  !RESET

which would result in 

  _____
  RESET

You can find further details about this in the description of the TEXT command. 

OPEN
Function 

Opens a library for editing. 
Syntax 

OPEN library_name 

See also CLOSE, USE, EDIT, SCRIPT 

The OPEN command is used to open an existing library or create a new library. Once the 
library has been opened or created, an existing or new symbol, device, or package may be 
edited. 



This command is mainly used in script files. 

OPTIMIZE
Function 

Joins wire segments. 
Syntax 

OPTIMIZE;
OPTIMIZE signal_name ..
OPTIMIZE ..�  

Mouse keys 
Ctrl+Right optimizes the group. 

See also SET, SPLIT, MOVE, ROUTE 

The OPTIMIZE command (which is only applicable in a board drawing) joins wire 
segments which lie in one straight line. The individual segments must be on the same layer 
and have the same width. This command is useful to reduce the number of objects in a 
drawing and to facilitate moving a complete track instead of individual segments. 

If signal names are given, or a signal is selected, the command affects only the respective 
signals. 

Note that when selecting an object with the mouse (or selecting a group) only actual signal 
wires are optimized. To optimize all wires in a board drawing, do 

OPTIMZE;

Automatic Optimization
This wire optimization takes place automatically after MOVE, SPLIT, or ROUTE 
commands unless it is disabled with the command: 

SET OPTIMIZING OFF;

or you have clicked the same spot twice with the SPLIT command. 

The OPTIMIZE command works in any case, no matter if Optimizing is enabled or 
disabled. 

PACKAGE
Function 

Defines a package variant for a device. 
Syntax 

PACKAGE
PACKAGE pname vname
PACKAGE pname@lname vname
PACKAGE name
PACKAGE -old_name new_name
PACKAGE -name 

See also CONNECT, TECHNOLOGY, PREFIX 



This command is used in the device edit mode to define, delete or rename a package variant. 
In the schematic or board editor the PACKAGE command behaves exactly like "CHANGE 
PACKAGE". 

Without parameters a dialog is opened that allows you to select a package and define this 
variant's name. 

The parameters pname vname assign the package pname to the new variant vname. 

The notation pname@lname vname fetches the package pname from library lname and 
creates a new package variant. This can also be done through the library objects' context 
menu or via Drag&Drop from the Control Panel's tree view. 

The single parameter name switches to the given existing package variant. If no package 
variants have been defined yet, and a package of the given name exists, a new package 
variant named '' (an "empty" name) with the given package will be created (this is for 
compatibility with version 3.5). 

If -old_name new_name is given, the package variant old_name is renamed to 
new_name. 

The single parameter -name deletes the given package variant. 

The name of a package variant will be appended to the device set name to form the full 
device name. If the device set name contains the character '?', that character will be 
replaced by the package variant name. Note that the package variant is processed after the 
technology, so if the device set name contains neither a '*' nor a '?' character, the 
resulting device name will consist of device_set_name+technology+package_variant. 

Following the PACKAGE command, the CONNECT command is used to define the 
correspondence of pins in the schematic device to pads on the package. 

When the BOARD command is used in schematic editing mode to create a new board, each 
device is represented on a board layout with the appropriate package as already defined with 
the PACKAGE command. 

Devices without packages
Devices can also be created without assigning a package, for example for frames, supply 
devices, external or other devices that only make sense in a schematic. This can be done by 
creating a device set with adequate gates, technologies and attributes (if necessary) without 
using the PACKAGE command. If saved, a packageless variant is created (with empty 
string as variant name). As soon as a package is assigned, the packageless variant gets 
overwritten by this and no further packageless variants can be created. 
As soon as gates contain pins, packageless devices only make limited sense (see below). 

Supply devices

In order to use supply symbols in schematics, packageless supply devices are common. The 
device usually consists of exactly one symbol with a Sup pin (see PIN command). 

External devices

These are for documenting assemblies in schematic that are not relevant for the board 



because they are externally added e.g for simulation or test purposes.
Such devices must be marked with the attribute _EXTERNAL_ (see ATTRIBUTE 
command). The value is not relevant. In this case any gates with pins can be defined without 
a package. The atttribute must have been assigned in the library, not in schematic or board. 

Note that supply or external devices are no longer treated as such, as soon as packages are 
assigned. The pins have to be connected with pads then. 

PAD
Function 

Adds pads to a package. 
Syntax 

PAD [diameter] [shape] [orientation] [flags] ['name'] ..�  
Mouse keys 

Right rotates the pad.
Shift+Right reverses the direction of rotating. 

See also SMD, CHANGE, DISPLAY, SET, NAME, VIA, Design Rules 

The PAD command is used to add pads to a package. When the PAD command is active, a 
pad symbol is attached to the cursor and can be moved around the screen. Pressing the left 
mouse button places a pad at the current position. Entering a number changes the diameter 
of the pad (in the actual unit). Pad diameters can be up to 0.51602 inch (13.1 mm). 

The orientation (see description in ADD) may be any angle in the range R0...R359.9. 
The S and M flags can't be used here. 

Example
PAD 0.06 �

The pad will have a diameter of 0.06 inch, provided the actual unit is "inch". This diameter 
remains as a presetting for successive operations. 

Pad Shapes
A pad can have one of the following shapes: 

Square 
Round 
Octagon octagonal
Long elongated

Offset 
elongated with 
offset

These shapes only apply to the outer layers (Top and Bottom). In inner layers the shape is 
always "round". 

With elongated pads, the given diameter defines the smaller side of the pad. The ratio 
between the two sides of elongated pads is given by the parameter Shapes/Elongation in the 
Design Rules of the board (default is 100%, which results in a ratio of 2:1). 

The pad shape or diameter can be selected while the PAD command is active, or it can be 



changed with the CHANGE command, e.g.: 

CHANGE SHAPE OCTAGON �

The drill size may also be changed using the CHANGE command. The existing values then 
remain in use for successive pads. 

Because displaying different pad shapes and drill holes in their real size slows down the 
screen refresh, EAGLE lets you change between real and fast display mode by the use of the 
SET commands: 

SET DISPLAY_MODE REAL | NODRILL;

Note that the actual shape and diameter of a pad will be determined by the Design Rules of 
the board the part is used in. 

Arbitrary Pad Shapes
If the standard pad shapes are not sufficient for a particular package, you can create arbitrary 
pad shapes by drawing a polygon around a pad, or by drawing wires that have one end 
connected to the pad. 

The following conditions apply: 

• A polygon in a signal layer (1-16) is considered connected to a pad if the center of the 
pad lies within the area defined by the center lines of the polygon wires. 

• A wire in a signal layer is considered connected to a pad if one of its end points 
coincides with the center of the pad. Any wire connected to the other end of such a 
wire is also electrically connected to the pad. 

• Only one polygon per pad is taken into account on any given signal layer. If more 
than one polygon is connected to the same pad in the same layer, they will cause 
DRC errors. 

• Polygons connected to a pad will be ignored by the Autorouter when routing that 
signal. They will be considered obstacles when routing other signals. 

• Wires connected to a pad will be handled like any other signal wires by the 
Autorouter, with the exception that they cannot be split. 

• Solder stop masks are only generated for the pad itself. If any additional solder stop 
mask is required, it has to be drawn explicitly into the respective layer(s). 

• When generating thermals, the additional polygon shape is taken into account. 
• If a polygon or wire is connected to more than one pad within a package, only one of 

the pads will be considered electrically connected to the polygon or wire. The other 
pads will cause DRC errors, unless they are all connected to the same pin in a device. 

• If a polygon contains more than one pad, only one of them (the first one found in the 
data structure) will generate thermals. If all of these pads shall generate thermals, you 
need to draw separate polygons (one per pad) that overlap accordingly. 

• If several pads are connected to the same pin in a device, and these pads have 
overlapping wires or polygons in the package, DRC errors will occur unless the pin is 
actually connected to a net (i.e. the pads are connected to a signal). 



Pad Names
Pad names are generated by the program automatically and can be changed with the NAME 
command. The name can also be defined in the PAD command. Pad name display can be 
turned on or off by means of the commands: 

SET PAD_NAMES OFF | ON;

This change will be visible after the next screen refresh. 

Flags
The following flags can be used to control the appearance of a pad: 

NOSTOP don't generate solder stop mask
NOTHERMALS don't generate thermals

FIRST 
this is the "first" pad (which may be drawn with a special 
shape)

By default a pad automatically generates solder stop mask and thermals as necessary. 
However, in special cases it may be desirable to have particular pads not do this. The above 
NO... flags can be used to suppress these features.
If the Design Rules of a given board specify that the "first pad" of a package shall be drawn 
with a particular shape, the pad marked with the FIRST flag will be displayed that way.
A newly started PAD command resets all flags to their defaults. Once a flag is given in the 
command line, it applies to all following pads placed within this PAD command (except for 
FIRST, which applies only to the pad immediately following this option). 

Single Pads
Single pads in boards can be used only by defining a package with one pad. Via-holes can 
be placed in board but they don't have an element name and therefore don't show up in the 
netlist. 

Alter Package
It is not possible to add or delete pads in packages which are already used by a device, 
because this would change the pin/pad allocation defined with the CONNECT command. 

PASTE
Function 

Copies the contents of the clipboard or a drawing file to a drawing. 
Syntax 

PASTE [ orientation ] �
PASTE [ orientation ] [ offset ] filename � 

Mouse keys 
Center mirrors the contents of the clipboard.
Right rotates the contents of the clipboard.
Shift+Right reverses the direction of rotating. 

See also CUT, COPY, GROUP 



See the ADD command for an explanation of orientation. 

Using the commands GROUP, CUT, and PASTE, parts of a drawing/library can be copied to 
the same or different drawings/libraries. When using the PASTE command, the following 
points should be observed: 

• CUT/PASTE cannot be used in device editing mode. 
• Elements and signals on a board can only be copied to a board. 
• Parts, buses and nets on a schematic can only be copied to a schematic. 
• Pads and smds can only be copied from package to package. 
• Pins can only be copied from symbol to symbol. 
• When copying elements, signals, pads, smds and pins, a new name is allocated if the 

previous name is already used in the new drawing. 
• Buses retain the same names. 
• Nets retain the same name as long as one of the net segments has a label, or is 

connected to a supply pin. Otherwise a new name is generated if the previous name is 
already in use. 

If there are modified versions of devices or packages in the clipboard, an automatic library 
update will be started to replace the objects in the schematic or board with the ones from the 
clipboard. Note: You should always run a Design Rule Check (DRC) and an Electrical 
Rule Check (ERC) after a library update has been performed! 

Pasting from a file
If a file name is given in the command line, the complete content of that file is pasted into 
the current drawing. If the given file is one of a consistent board/schematic pair, both files 
will be pasted into the corresponding drawings of the currently edited project. 

Assume you have a consistent board/schematic pair that contains the design of an amplifier, 
where the schematic may consist of several sheets. Now if you want to place this amplifier 
several times into your project, you can simply do 

PASTE 100 amplifier.sch �
PASTE 200 amplifier.sch �

This example also shows the use of an offset, which adds the given value to all part and 
net names in the pasted files (unless they retain their name, see below). So the first amplifier 
channel will have all parts and nets named starting at 100, while the second one will have 
them start at 200. If no offset is given, new names are generated as necessary. 

Just like in a normal PASTE operation, when pasting from a file, nets that have a label or are 
connected to a supply pin, retain their name while all others will get newly generated names. 
It is enough for a net to retain its name if it is labeled or connected to a supply pin on one 
sheet, even if it appears on several sheets. 

Unless the PASTE operation is done in a script file, you will be offered a dialog that shows 
all the net names. By clicking on the names in the "New name" column you can edit 
individual net names. Icons indicate whether a net in the pasted drawing has a label or a 
supply pin, and whether the net will be connected to an existing net with the same name in 
the edited drawing. 

If you paste a schematic into a schematic drawing, all sheets of the pasted schematic will be 



added as separate new sheets to the edited drawing (this is not possible in the Light edition, 
which can handle only a single schematic sheet). The corresponding board (if any) will be 
placed below the existing content of the edited board drawing. If you want to have explicit 
control over where the board is placed, you can perform the PASTE operation in the board, 
in which case the schematic sheets will be added just the same, but the board will be 
attached to the mouse cursor and you will be able to place it exactly where you want it. 

You can also paste from a file using Drag&Drop, by pressing the Ctrl key when dropping 
the file. 

If the file name could be mistaken as an orientation or an offset value, you can enclose it in 
single quotes. 

PIN
Function 

Defines connection points for symbols. 
Syntax 

PIN 'name' options ..�  
Mouse keys 

Right rotates the pin.
Shift+Right reverses the direction of rotating. 

See also NAME, SHOW, CHANGE 

Options
There are six possible options: 

Direction
Function
Length
Orientation
Visible
Swaplevel 

Direction

The logical direction of signal flow. It is essential for the Electrical Rule Check (ERC) and 
for the automatic wiring of the power supply pins. The following possibilities may be used: 

NC not connected
In input
Out output (totem-pole)
IO in/output (bidirectional)
OC open collector or open drain
Hiz high impedance output (e.g. 3-state)
Pas passive (for resistors, capacitors etc.)
Pwr power input pin (Vcc, Gnd, Vss, Vdd, etc.)

Sup 
general supply pin (e.g. for ground 
symbol)

Default: IO 



If Pwr pins are used on a symbol and a corresponding Sup pin exists on the schematic, nets 
are connected automatically. The Sup pin is not used for components. 

Function

The graphic representation of the pin: 

None no special function
Dot inverter symbol
Clk clock symbol
DotClk inverted clock symbol
Default: None 

Length

Length of the pin symbol: 

Point 
pin with no connection or 
name

Short 0.1 inch long connection
Middle 0.2 inch long connection
Long 0.3 inch long connection
Default: Long 

Orientation

The orientation of the pin. When placing pins manually the right mouse button rotates the 
pin. The parameter "orientation" is mainly used in script files: 

R0 
connection point on the 
right

R90 connection point above
R180 connection point on the left
R270 connection point below
Default: R0 

Visible

This parameter defines if pin and/or pad name are visible in the schematic: 

Off pin and pad name not drawn

Pad 
pad name drawn, pin name not 
drawn

Pin 
pin name drawn, pad name not 
drawn

Both pin and pad name drawn
Default: Both 

Swaplevel

An integer number. Swaplevel = 0 indicates that a pin can not be swapped with another. The 
allocation of a number greater than 0 indicates that a pin may be swapped with any other in 
the same symbol with the same swaplevel number. For example: The inputs of a NAND 
gate could be allocated the same swaplevel number as they are all identical. 



Default: 0 

Using the PIN Command
The PIN command is used to define connection points on a symbol for nets. Pins are drawn 
onto the Symbols layer while additional information appears on the Pins layer. Individual 
pins may be assigned various options in the command line. The options can be listed in any 
order or omitted. In this case the default options are valid. 

If a name is used in the PIN command, it must be enclosed in apostrophes. Pin names can be 
changed in the symbol edit mode using the NAME command. 

Automatic Naming
Pins may be automatically numbered in the following way. In order to place the pins 
D0...D7 on a symbol, the first pin is placed with the following command: 

PIN 'D0' *

and the location for the other pins defined with a mouse click for each. 

Predefine options with CHANGE
All options may be predefined with CHANGE commands. The options remain in use until 
edited by a new PIN or CHANGE command. 

The SHOW command may be used to show pin options such as Direction and Swaplevel. 

Pins with the same Name
If it is required to define several pins in a component with the same name, the following 
procedure can be used: 

For example, suppose that three pins are required for GND. The pins are allocated the 
names GND@1, GND@2 and GND@3 during the symbol definition. Then only the 
characters before the "@" sign appear in the schematic. 

It is not possible to add or delete pins in symbols which are already used by a device 
because this would change the pin/pad allocation defined with the CONNECT command. 

Pin Lettering
The position of pin and pad names on a symbol relative to the pin connection point can not 
be changed, nor can the text size. When defining new symbols please ensure their size is 
consistent with existing symbols. 

Inverted pins
The name of an inverted pin ("active low") can be displayed overlined if it is preceded with 
an exclamation mark ('!'), as in 

  !RESET



which would result in 

  _____
  RESET

You can find further details about this in the description of the TEXT command. 

PINSWAP
Function 

Swap pins or pads. 
Syntax 

PINSWAP  ..� �  

See also PIN 

The PINSWAP command is used to swap pins within the same symbol which have been 
allocated the same swaplevel (> 0). Swaplevel, see PIN command. If a board is tied to a 
schematic via Back Annotation two pads can only be swapped if the related pins are 
swappable. 

On a board without a schematic this command permits two pads in the same package to be 
swapped. The Swaplevel is not checked in this case. 

Wires attached to the swapped pins are moved with the pins so that short circuits may 
appear. Please perform the DRC and correct possible errors. 

POLYGON
Function 

Draws polygon areas. 
Syntax 

POLYGON [signal_name] [width]  [curve | @radius]  ..� � �  
Mouse keys 

Center selects the layer.
Right changes the wire bend style (see SET Wire_Bend).
Shift+Right reverses the direction of switching bend styles.
Ctrl+Right toggles between corresponding bend styles.
Ctrl+Left when placing a wire end point defines arc radius.
Left twice at the same point closes the polygon. 

See also CHANGE, DELETE, RATSNEST, RIPUP, WIRE, MITER 

The POLYGON command is used to draw polygon areas. Polygons in the layers Top, 
Bottom, and Route2..15 are treated as signals. Polygons in the layers t/b/vRestrict are 
protected areas for the Autorouter. 

If the curve or @radius parameter is given, an arc can be drawn as part of the polygon 
definition (see the detailed description in the WIRE command). 

Note
You should avoid using very small values for the width of a polygon, because this can cause 



extremely large amounts of data when processing a drawing with the CAM Processor.
The polygon width should always be larger than the hardware resolution of the output 
device. For example when using a Gerber photoplotter with a typical resolution of 1 mil, the 
polygon width should not be smaller than, say, 6 mil. Typically you should keep the polygon 
width in the same range as your other wires. 

If you want to give the polygon a name that starts with a digit (as in 0V), you must enclose 
the name in single quotes to distinguish it from a width value. 

The parameters Isolate and Rank only have a meaning for polygons in layers 
Top...Bottom. 

Outlines or Real Mode
Polygons belonging to a signal can be displayed in two different modes: 

1. Outlines only the outlines as defined by the user are displayed.

2. Real mode 
all of the areas are visible as calculated by the 
program.

In "outlines" mode a polygon is drawn with dotted wires, so that it can be distinguished 
from other wires. The board file contains only the "outlines". 

The default display mode is "outlines" as the calculation is a time consuming operation. 

When a drawing is generated with the CAM Processor all polygons are calculated. 

The RATSNEST command starts the calculation of the polygons (this can be turned off with 
SET POLYGON_RATSNEST OFF;). Clicking the STOP button terminates the calculation 
of the polygons. Already calculated polygons are shown in "real mode", all others are shown 
in "outline mode". 

The RIPUP command changes the display mode of a polygon to "outline". 

CHANGE operations re-calculate a polygon if it was shown in "real mode" before. 

Other commands and Polygons
Polygons are selected at their edges (like wires). 

SPLIT: Inserts a new polygon edge. 

DELETE: Deletes a polygon corner (if only three corners are left the whole polygon is 
deleted). 

CHANGE LAYER: Changes the layer of the whole polygon. 

CHANGE WIDTH: Changes the parameter width of the whole polygon. 

MOVE: Moves a polygon edge or corner (like wire segments). 

COPY: Copies the whole polygon. 

NAME: If the polygon is located in a signal layer the name of the signal is changed. 



Parameters

Width

Line width of the polygon edges. Also used for filling. 

Layer

Polygons can be drawn into any layer. Polygons in signal layers belong to a signal and keep 
the distance defined in the design rules and net classes from other signals. Objects in the 
tRestrict layer are substracted from polygons in the Top layer (the same applies to 
bRestrict/Bottom). This allows you, for instance, to generate "negative" text on a ground 
area. 

Pour

Fill mode (Solid [default], Hatch or Cutout). 

Rank

Defines how polygons are subtracted from each other. Polygons with a lower 'rank' appear 
"first" and thus get subtracted from polygons with a higher 'rank'.
Valid ranks are 1..6. Polygons with the same rank are checked against each other by the 
Design Rule Check. The rank parameter only has a meaning for polygons in signal layers 
(1..16) drawn in a board and will be ignored for any other polygons. The default is 1. 

Thermals

Defines how pads and smds are connected (On = thermals are generated [default], Off = no 
thermals). 

Spacing

Distance between fill lines when Pour = Hatch (default: 50 Mil). 

Isolate

Distance between polygon areas and other signals or objects in the Dimension layer 
(default: 0). If a particular polygon is given an Isolate value that exceeds that from the 
design rules and net classes, the larger value will be taken. See also Design Rules under 
Distance and Supply, respectively. Note that if you give a polygon an Isolate value that 
exceeds that from the design rules and net classes, small gaps may result between the 
calculated polygon and objects belonging to the same signal as the polygon itself, which 
may lead to problems during manufacturing! It is therefore recommended to leave this 
parameter at 0, unless you know exactly what you are doing! 

Orphans

As a polygon automatically keeps a certain distance to other signals it can happen that the 
polygon is separated into a number of smaller polygons. If such a polygon has no electrical 



connection to any other (non-polygon) object of its signal, the user might want it to 
disappear. With the parameter Orphans = Off [default] these isolated zones will disappear. 
With Orphans = On they will remain. If a signal consists only of polygons and has no other 
electrically connected objects, all polygon parts will remain, independent of the setting of 
the Orphans parameter. 

Under certain circumstances, especially with Orphans = Off, a polygon can disappear 
completely. In that case the polygon's original outlines will be displayed on the screen, to 
make it possible to delete or otherwise modify it. When going to the printer or CAM 
Processor these outlines will not be drawn in order to avoid short circuits. A polygon is also 
displayed with its original outlines if there are other non-polygon objects in the signal, but 
none of them is connected to the polygon. 

Thermal dimensions
The width of the conducting path in the thermal symbol is calculated as follows: 

• Pads: half the drill diameter of the pad 
• Smds: half the smaller side of the smd 
• at least the width of the polygon 
• a maximum of twice the width of the polygon 

Outlines data
The special signal name _OUTLINES_ gives a polygon certain properties that are used to 
generate outlines data (for example for milling prototype boards). This name should not be 
used otherwise. 

Hatched polygons and airwires 
Depending on the value of the spacing parameter, pads, smds, vias and wires inside a 
hatched polygon that are connected to the same signal as the polygon may "fall through" the 
raster and thus have airwires generated to indicate their connection to the signal. 

When calculating whether such an object is actually solidly connected to the hatched 
polygon, it is reduced to several "control points". For a round pad, for instance, these would 
be the north, east, west and south point on the pad's circumference, while for a wire it's the 
two end points. A solid connection is considered to exist if there is at least one line in the 
calculated polygon (outline or hatch line) that runs through these points with its center line. 

Thermal and annulus rings inside a hatched polygon that do not have solid contact to any of 
the polygon lines are not generated. 

Polygon cutouts
The special pour style "Cutout" makes a polygon be subtracted from all other signal 
polygons within the same layer, independent of their Rank. 

Only polygons in signal layers can have the pour style "Cutout". 

The outlines of a cutout polygon are always drawn as dotted lines on the screen, even after 
the signal polygons have been calculated using RATSNEST. 



The wire width of a cutout polygon is taken into account when subtracting it from other 
signal polygons. It may be arbitrarily small (even zero) without causing large amounts of 
CAM data (as opposed to "solid" polygons, where the wire width should not be too small). 

PREFIX
Function 

Defines the prefix for a symbol name. 
Syntax 

PREFIX prefix_string; 

See also CONNECT, PACKAGE, VALUE 

This command is used in the device editor mode to determine the initial characters of 
automatically generated symbol names when a symbol is placed in a schematic using the 
ADD command. 

Example
PREFIX U;

If this command is used when editing, for example, a 7400 device, then gates which are later 
placed in a schematic using the ADD command will be allocated the names U1, U2, U3 in 
sequence. These names may be changed later with the NAME command. 

PRINT
Function 

Prints a drawing to the system printer. 
Syntax 

PRINT [factor] [-limit] [options] [;] 

See also CAM Processor, printing to the system printer 

The PRINT command prints the currently edited drawing to the system printer. 

Colors and fill styles are used as set in the editor window. This can be changed with the 
SOLID and BLACK options. The color palette used for the printout is always that for white 
background. 

If you want to print pads and vias "filled" (without the drill holes being visible), use the 
command 

SET DISPLAY_MODE NODRILL;

Please note that polygons in boards will not be automatically calculated when printing 
via the PRINT command! Only the outlines will be drawn. To print polygons in their 
calculated shape you have to use the RATSNEST command before printing. 

You can enter a factor to scale the output. 

The limit parameter is the maximum number of pages you want the output to use. The 
number has to be preceded with a '-' to distinguish it from the factor. In case the 



drawing does not fit on the given number of pages, the factor will be reduced until it fits. 
Set this parameter to -0 to allow any number of pages (and thus making sure the printout 
uses exactly the given scale factor). 

If the PRINT command is not terminated with a ';', a print dialog will allow you to set 
print options. Note that options entered via the command line will not be stored permanently 
in the print setup unless they have been confirmed in the print dialog (i.e. if the command 
has not been terminated with a ';'). 

The following options exist: 

MIRROR mirrors the output
ROTATE rotates the output by 90°

UPSIDEDOWN 
rotates the drawing by 180°. Together with ROTATE, the drawing is rotated by a 
total of 270°

BLACK ignores the color settings of the layers and prints everything in black
SOLID ignores the fill style settings of the layers and prints everything in solid
CAPTION prints a caption at the bottom of the page
FILE prints the output into a file; the file name must immediately follow this option
PRINTER prints to a specific printer; the printer name must immediately follow this option
PAPER prints on the given paper size; the paper size must immediately follow this option

SHEETS 
prints the given range of sheets; the range (from-to) must immediately follow this 
option

WINDOW prints the currently visible window selection of the drawing
PORTRAIT prints in portrait orientation
LANDSCAPE prints in landscape orientation
If any of the options MIRROR...CAPTION is preceeded with a '-', that option is turned 
off in case it is currently on (from a previous PRINT). A '-' by itself turns off all 
options. 

Printing to a file
The FILE option can be used to print the output into a file. If this option is present, it must 
be immediately followed by the name of the output file. 

If the output file name has an extension of ".pdf" (case insensitive), a PDF file will be 
created. A PDF file can also be created by selecting "Print to File (PDF)" from the "Printer" 
combo box in the print dialog. Texts in a PDF file can be searched in a PDF viewer, as long 
as they are not using the vector font. 

If the output file name has an extension of ".ps" (case insensitive), a Postscript file will be 
created. 

If the file name is only an "*" or "*.ext" (an asterisk followed by an extension, as in 
"*.pdf", for instance), a file dialog will be opened that allows the user to select or enter 
the actual file name. 

If the file name is only an extension, as in ".pdf", the output file name will be the same as 
the drawing file name, with the extension changed to the given string. 

The file name may contain one or more of the following placeholders, which will be 
replaced with the respective string: 

%E the loaded file's extension (without the '.')
%N the loaded file's name (without path and 



extension)
%P the loaded file's directory path (without file name)
%% the character '%'
For example, the file name 

%N.cmp.pdf 

would create boardname.cmp.pdf. 

If both the FILE and the PRINTER option are present, only the last one given will be taken 
into account 

Printing to a given paper size
The PAPER option defines the size of the paper to print on. It must be immediately followed 
by one of the paper size names listed in the Paper combo box of the PRINT dialog, like A4, 
Letter etc. If a custom paper size shall be set, it has to be given in the format 

Width x Height Unit

(without blanks), as in 

PRINT PAPER 200x300mm
PRINT PAPER 8.0x11.5inch

Width and Height can be floating point numbers, and the Unit may be either mm or inch 
(the latter may be abbreviated as in). Paper names must be given in full, and are case 
insensitive. If both the PRINTER and PAPER option are used, the PRINTER option must 
be given first. Custom paper sizes may not work with all printers. They are mainly for use 
with Postscript or PDF output. 

Printing a range of sheets
The SHEETS option can be used to print a range of sheets from a schematic. The range is 
given as two numbers, delimited by a '-', as in 2-15. Without this option, only the 
currently edited sheet is printed. To print all sheets, the range ALL can be used (which is 
case insensitive, but must be written in full). A range can also consist of just a single 
number, as in 42, which will print exactly that sheet. If no schematic is loaded, this option 
has no meaning. 

Examples
PRINT opens the print dialog in which you can set print options
PRINT; immediately prints the drawing with the default options
PRINT - MIRROR BLACK 
SOLID; 

prints the drawing mirrored, with everything in black and solid

PRINT 2.5 -1; 
prints the drawing enlarged by a factor of 2.5, but makes sure 
that it does not exceed one page

PRINT FILE .pdf; 
prints the drawing into a PDF file with the same name as the 
drawing file

PRINT SHEETS 2-15 
FILE .pdf; 

prints the sheets 2 through 15 into a PDF file with the same 
name as the drawing file



QUIT
Function 

Quits the program 
Syntax 

QUIT 

This command ends the editing session. If any changes have been made but the drawing has 
not yet been saved, a popup menu will ask you if you want to save the drawing/library first. 

You can also exit from EAGLE at any time by pressing Alt+X. 

RATSNEST
Function 

Calculates the shortest possible airwires and polygons. 
Syntax 

RATSNEST
RATSNEST signal_name ..
RATSNEST ! signal_name .. 

See also SIGNAL, MOVE, POLYGON, RIPUP 

The RATSNEST command assesses the airwire connections in order to achieve the shortest 
possible paths, for instance, after components have been moved. After reading a netlist via 
the SCRIPT command, it is also useful to use the RATSNEST command to optimize the 
length of airwires. 

The RATSNEST command also calculates all polygons belonging to a signal. This is 
necessary in order to avoid the calculation of airwires for pads already connected through 
polygons. All of the calculated polygon areas are then being displayed in the "real mode". 
You can switch back to the faster "outline mode" with the RIPUP command.
The automatic calculation of the polygons can be turned off with 

SET POLYGON_RATSNEST OFF;

Note that RATSNEST doesn't mark the board drawing as modified, since the calculated 
polygon data (if any) is not stored in the board, and the recalculated airwires don't really 
constitute a modification of the drawing. 

Zero length airwires
If two or more wires of the same signal on different routing layers end at the same point 
without being connected through a pad or a via, a zero length airwire is generated, which 
will be displayed as an X-shaped cross in the Unrouted layer. The same applies to smds that 
belong to the same signal and are placed on opposite sides of the board. 

Such zero length airwires can be picked up with the ROUTE command just like ordinary 
airwires. They may also be handled by placing a VIA at that point. 

Making sure everything has been routed
If there is nothing left to be routed, the RATSNEST command will respond with the 



message 

Ratsnest: Nothing to do!

Otherwise, if there are still airwires that have not been routed, the message 

Ratsnest: xx airwires.

will be displayed, where xx gives the number of unrouted airwires. 

Wildcards
If a signal_name parameter is given, the characters '*', '?' and '[]' are wildcards 
and have the following meaning: 

* matches any number of any characters
? matches exactly one character

[...] matches any of the characters between the 
brackets

If any of these characters shall be matched exactly as such, it has to be enclosed in brackets. 
For example, abc[*]ghi would match abc*ghi and not abcdefghi. 

A range of characters can be given as [a-z], which results in any character in the range 
'a'...'z'. 

Hiding selected airwires
Sometimes it may be useful to hide the airwires of selected signals, for instance if these will 
later be connected through a polygon. Typically this could be supply signals, which have a 
lot of airwires that will never be routed explicitly and just obscure the other signals' 
airwires. 

To hide airwires the RATSNEST command can be given the exclamation mark ('!'), 
followed by a list of signals, as in 

RATSNEST ! GND VCC

which would hide the airwires of the signals GND and VCC.
To have the airwires displayed again just enter the RATSNEST command without the '!' 
character, and the list of signals: 

RATSNEST GND VCC

This will activate the display of the airwires of the signals GND and VCC and also 
recalculates them. You can also recalculate the airwires (and polygons) of particular signals 
this way. 

The signal names may contain wildcards, and the two variants may be combined, as in 

RATSNEST D* ! ?GND VCC

which would recalculate and display the airwires of all signals with names beginning with 
'D', and hide the airwires of all the various GND signals (like AGND, DGND etc.) and the 
VCC signal. Note that the command is processed from left to right, so in case there is a 
DGND signal the example would first process it for display, but then hide its airwires. 



To make sure all airwires are displayed enter 

RATSNEST *

Note that the SIGNAL command will automatically make the airwires of a signal visible if a 
new airwire is created for that signal. The RIPUP command on the other hand will not 
change the state of hiding airwires if a wire of a signal is changed into an airwire. 

Differential Pairs
Airwires for Differential Pair signals prefer open wire ends. 

RECT
Function 

Adds rectangles to a drawing. 
Syntax 

RECT [orientation]  ..� �  
Mouse keys 

Center selects the layer. 

See also CIRCLE 

The RECT command is used to add rectangles to a drawing. The two points define two 
opposite corners of the rectangle. Pressing the center mouse button changes the layer to 
which the rectangle is to be added. 

The orientation (see description in ADD) may be any angle in the range R0...R359.9. 
The S and M flags can't be used here. Note that the coordinates are always defined at an 
orientation of R0. The possibility of entering an orientation in the RECT command is 
mainly for use in scripts, where the rectangle data may have been derived through a User 
Language Program from the UL_RECTANGLE object. When entering a non-zero 
orientation interactively, the corners of the rectangle may not appear at the actual cursor 
position. Use the ROTATE command to interactively rotate a rectangle. 

Not Part of Signals
Rectangles in the signal layers Top, Bottom, or Route2...15 don't belong to signals. 
Therefore the DRC reports errors if they overlap with wires, pads etc. 

Restricted Areas
If used in the layers tRestrict, bRestrict, or vRestrict, the RECT command defines restricted 
areas for the Autorouter. 

REDO
Function 

Executes a command that was reversed by UNDO. 
Syntax 

REDO; 



Keyboard 
F10: REDO execute the REDO command.
Shift+Alt+BS: REDO 

See also UNDO, Forward&Back Annotation 

In EAGLE it is possible to reverse previous actions with the UNDO command. These 
actions can be executed again by the REDO command. UNDO and REDO operate with a 
command memory which exists back to the last EDIT, OPEN or REMOVE command. 

UNDO/REDO is completely integrated within Forward&Back Annotation. 

REMOVE
Function 

Deletes files, devices, symbols, packages, and sheets. 
Syntax 

REMOVE name
REMOVE name.Sxx 

See also OPEN, RENAME 

Files
The REMOVE command is used to delete the file name if in board or schematic editing 
mode. 

Devices, Symbols, Packages
The REMOVE command is used to delete the device, symbol or package "name" from the 
presently opened library. The name may include an extension (for example REMOVE 
name.pac). If the name is given without extension, you have to be in the respective mode to 
remove an object (i.e. editing a package if you want to remove packages). 

Symbols and packages can be erased from a library only if not used by a device. 

REMOVE in a library clears the UNDO buffer. 

Sheets
The REMOVE command may also be used to delete a sheet from a schematic. The name of 
the presently loaded schematic can be omitted. The parameter xx represents the sheet 
number, for example: 

REMOVE .S3

deletes sheet number 3 from the presently loaded schematic. 

If you delete the currently loaded sheet, sheet number 1 will be loaded after the command 
has been executed. All sheets with a higher number than the one deleted will get a number 
reduced by one. 



RENAME
Function 

Renames symbols, devices or packages. 
Syntax 

RENAME old_name new_name; 

See also OPEN 

The RENAME command is used to change the name of a symbol, device or package. The 
appropriate library must have been opened by the OPEN command before. 

The names may include extensions (for example RENAME name1.pac name2[.pac] - note 
that the extension is optional in the second parameter). If the first parameter is given without 
extension, you have to be in the respective mode to rename an object (i.e. editing a package 
if you want to rename packages). 

RENAME clears the UNDO buffer. 

REPLACE
Function 

Replace a part. 
Syntax 

REPLACE ..�
REPLACE device_name[@library_name] ..�
REPLACE part_name device_name[@library_name] ..
REPLACE package_name ..�
REPLACE element_name package_name .. 

See also SET, UPDATE 

The REPLACE command can be used to replace a part with a different device (even from a 
different library). The old and new device must be compatible, which means that their used 
gates and connected pins/pads must match, either by their names or their coordinates. 

Without parameters the REPLACE command opens a dialog from which a device can be 
selected from all libraries that are currently in use. After such a device has been selected, 
subsequent mouse clicks on parts will replace those parts' devices with the selected one if 
possible. 

If a device_name is given, that device will be used for the replace operation. 

With both a part_name and a device_name, the device of the given part will be 
replaced (this is useful when working with scripts). 

If a library_name is given and it contains blanks, the whole 
device_name@library_name needs to be enclosed in single quotes. 

If only a board is being edited (without a schematic), or if elements in the board are being 
replaced that have no matching part in the schematic, the REPLACE command has two 
different modes that are chosen by the SET command. 

The first mode (default) is activated by the command: 

SET REPLACE_SAME NAMES;



In this mode the new package must have the same pad and smd names as the old one. It may 
be taken from a different library and it may contain additional pads and smds. The position 
of pads and smds is irrelevant. 

The second mode is activated by the command 

SET REPLACE_SAME COORDS;

In this mode, pads and smds of the new package must be placed at the same coordinates as 
in the old one (relative to the origin). Pad and smd names may be different. The new 
package may be taken from a different library and may contain additional pads and smds. 

Pads of the old package connected with signals must be present in the new package. If this 
condition is true the new package may have less pads than the old one. 

REPLACE functions only when the appropriate tOrigins/bOrigins layer is displayed. 

If there is already a package with the same name (from the same library) in the drawing, and 
the library has been modified after the original object was added, an automatic library 
update will be started and you will be asked whether objects in the drawing shall be 
replaced with their new versions. 

Note: A REPLACE operation automatically updates all involved library objects as 
necessary. This means that other parts (on other schematic sheets or in other locations 
on the board) may be changed, too. You should always run a Design Rule Check 
(DRC) and an Electrical Rule Check (ERC) after a REPLACE operation! 

RIPUP
Function 

Changes routed wires and vias into airwires.
Changes the display of polygons to "outlines". 

Syntax 
RIPUP;
RIPUP [ @ ] [ ! ] ..�
RIPUP [ @ ] [ ! ] signal_name.. 

Mouse keys 
Ctrl+Right rips up the group. 

See also DELETE, GROUP, POLYGON, RATSNEST 

The RIPUP command changes routed wires (tracks) into airwires. That can be done for: 

• all signals (RIPUP;) 
• all signals except certain ones (e.g. RIPUP ! GND VCC;) 
• one or more signals (e.g. RIPUP D0 D1 D2;) 
• certain segments (chosen with one or more mouse clicks) 
• all polygons (RIPUP @;) 
• all polygons of certain signals (e.g. RIPUP @ GND VCC;) 
• all polygons except those of certain signals (e.g. RIPUP @ ! GND VCC;) 

Selecting an airwire with RIPUP converts all adjacent routed wires and vias into airwires, 
up to the next pad, smd or airwire. 

RIPUP signal_name..



rips up the complete signal "signal_name" (several signals may be listed, e.g. RIPUP D0 
D1 D2;). 

RIPUP ..�

rips up segments selected by the mouse click up to the next pad/smd. 

RIPUP;

removes only signals which are connected to elements (e.g. board crop marks are not 
affected). The same applies if RIPUP is used on a group. 

Note: in all cases the RIPUP command only acts on objects that are in layers that are 
currently visible! 

Wildcards
If a signal_name parameter is given, the characters '*', '?' and '[]' are wildcards 
and have the following meaning: 

* matches any number of any characters
? matches exactly one character

[...] matches any of the characters between the 
brackets

If any of these characters shall be matched exactly as such, it has to be enclosed in brackets. 
For example, abc[*]ghi would match abc*ghi and not abcdefghi. 

A range of characters can be given as [a-z], which results in any character in the range 
'a'...'z'. 

Polygons
If the RIPUP command with a name is applied to a signal which contains a polygon the 
polygon will be displayed with its outlines (faster screen redraw!). Use the RATSNEST 
command to have polygons displayed in the "real mode" again. 

ROTATE
Function 

Rotates objects. 
Syntax 

ROTATE orientation  ..�
ROTATE orientation 'name' .. 

Mouse keys 
Ctrl+Right rotates the group.
Left&Drag rotates the object by any angle.
Ctrl+Right&Drag rotates the group by any angle. 

See also ADD, MIRROR, MOVE, LOCK, GROUP 

The ROTATE command is used to change the orientation of objects. 

If orientation (see description in ADD) is given, that value will be added to the 
orientation of the selected object instead. 



Prepending orientation with the character '=' causes the value not to be added, but 
instead to be set absolutely. 

Parts, pads, smds and pins can also be selected by their name, which is especially useful if 
the object is outside the currently shown window area. For example 

ROTATE =MR90 IC1

would set the orientation of element IC1 to MR90, regardless of its previous setting. 

Attributes of parts can be selected by entering the concatenation of part name and attribute 
name, as in R5>VALUE. 

The quotes around name are necessary to distinguish it from an orientation parameter as in 

ROTATE R45 'R1'

They can be left away if the context is clear. 

You can use Click&Drag to rotate an object by any angle. Just click on the object and move 
the mouse (with the mouse button held down) away from the object. After having moved the 
mouse a short distance, the object will start rotating. Move the mouse until the desired angle 
has been reached and then release the mouse button. If, at some point, you decide to rather 
not rotate the object, you can press the ESCape key while still holding the mouse button 
pressed. The same operation can be applied to a group by using the right mouse button. The 
group will be rotated around the point where the right mouse button has been pressed down. 

Parts cannot be rotated if they are locked, or if any of their connected pads would extend 
outside the allowed area (in case you are using a limited edition of EAGLE). 

Elements
When rotating an element, wires (tracks) connected to the element are moved at the 
connection points (beware of short circuits!). 

Elements can only be rotated if the appropriate tOrigins/bOrigins layer is visible. 

Text
Text is always displayed so that it can be read from the bottom or from the right - even when 
rotated. Therefore after every two rotations it appears the same way, but the origin has 
moved from the lower left to the upper right corner. Remember this if a text appears to be 
unselectable! 

If you want to have text that is printed "upside down", you can set the "Spin" flag for that 
text. 

ROUTE
Function 

Converts unrouted connections into routed wires (tracks). 
Syntax 

ROUTE [width]  [curve | @radius] ..� �
ROUTE name .. 

Mouse keys 



Ctrl+Left starts routing at any given point along a wire or via.
Shift+Left starts routing with the same width as an existing wire.
Center selects the layer.
Right changes the wire bend style (see SET Wire_Bend).
Shift+Right reverses the direction of switching bend styles.
Ctrl+Right toggles between corresponding bend styles.
Shift+Left places a via at the end point.
Ctrl+Left when placing a wire end point defines arc radius. 

See also AUTO, UNDO, WIRE, MITER, SIGNAL, SET, RATSNEST 

The ROUTE command activates the manual router which allows you to convert airwires 
(unrouted connections) into real wires. 

The first point selects an unrouted connection (a wire in the Unrouted layer) and replaces 
one end of it by a wire (track). The end which is closer to the mouse cursor will be taken. 
Now the wire can be moved around (see also WIRE). The right mouse button will change 
the wire bend and the center mouse button will change the layer. Please note that only those 
signal layers (1 through 16) are available that have been entered into the layer setup in the 
Design Rules. 

When the final position of the wire is reached, a further click of the left mouse button will 
place the wire and a new wire segment will be attached to the cursor. If the Shift key is 
held down in such a situation, a Via will be generated at that point if this is possible and the 
airwire hasn't already been completely routed. The generated Via will have either the 
appropriate length or, if such a length can't be determined, will go from layer 1 through 16. 

When the layer has been changed and a via-hole is thus necessary, it will be added 
automatically as the wire is placed. When the complete connection has been routed a 'beep' 
will be given and the next unrouted connection can be selected for routing. 

Only the minimum necessary vias will be set (according to the layer setup in the Design 
Rules). It may happen that an already existing via of the same signal is extended 
accordingly, or that existing vias are combined to form a longer via if that's necessary to 
allow the desired layer change. If a via is placed at the start or end point, and there is an 
SMD pad at that location, the via will be a micro via if the current routing layer is one layer 
away from the SMD's layer (this applies only if micro vias have been enabled in the Design 
Rules). 

While the ROUTE command is active the wire width can be entered from the keyboard. 

If the curve or @radius parameter is given, an arc can be drawn as part of the track (see the 
detailed description in the WIRE command). 

If the Ctrl key is pressed while selecting the starting point and there is no airwire at that 
point, a new airwire will be created automatically. The starting point of that airwire will be 
that point on the selected wire or via that is closest to the mouse cursor (possibly snapped to 
the nearest grid point). The far end of the airwire will dynamically point to a target segment 
that is different from the selected one. If the selected signal is already completely routed, the 
far end will point to the starting point instead. If the selected wire is an arc, the airwire will 
start at the closest end point of the wire. 

If a name is given, the airwire of that signal that is closest to the mouse cursor is selected. If 
name could be interpreted as a with, curve or @radius it has to be written in single quotes. 



Selecting the routing layer and wire width
When you select an airwire, the initial layer in which to route is determined by considering 
the objects at the starting point as follows: 

• if there is an object in the current layer, the current layer is kept 
• else one of the layers of the objects at that point will be taken 

When selecting an airwire, the wire width for routing will be that defined by the Design 
Rules and the net class of the selected signal if the flag "Options/Set/Misc/Auto set route 
width and drill" is set. You can select a different width wile the airwire is attached to the 
cursor, and the track will be rerouted with the new width. The same applies to the via data. 

When routing an airwire that starts at an already routed wire, the new wire's width is 
automatically adjusted to that of the existing wire if the Shift key is pressed when 
selecting the airwire. 

Snap Function
The end point of the dynamically calculated airwire is always used as an additional snap 
point, even if it is off grid. If the remaining airwire has a length that is shorter than 
SNAP_LENGTH, the routed wire automatically snaps to the airwire's end point, and stays 
there until the mouse pointer is moved at least SNAP_LENGTH away from that point. The 
minimum distance for this snap function can be defined with the command 

SET SNAP_LENGTH distance;

where "distance" is the snap radius in the current grid unit. 

Follow-me Router
With the special wire bend styles 8 and 9, the ROUTE command works as a "Follow-me" 
router. This means that the selected airwire will be routed fully automatically by the 
Autorouter. 

Wire bend style 8 routes only the shorter side of the selected airwire, while 9 routes both 
sides. Once the automatic routing process is complete (which may take a while, so be 
patient), the airwire will be replaced by the actual routed wires and vias. If the routing 
couldn't be completed (for instance due to Design Rules restrictions), the cursor changes 
into a "forbidden" sign. With bend style 9 it is possible that only one side of the airwire can 
be routed, while the other side can't. 

Whenever the mouse is moved, any previous result is discarded and a new calculation is 
started. Once the result is acceptable, just click the left mouse button to place it. 

The Follow-me router works by marking the grid point at the current mouse position as a 
starting point, and uses the Autorouter to find a path from that point to any point along the 
signal segment at which the selected airwire ends (which is not necessarily the exact end 
point of the airwire). The starting point also considers the currently selected layer, so don't 
be surprised if the router places a via at that point. By changing the current layer you can 
influence the routing result. 

The routing grid is taken from the actual grid setting at the time the airwire is selected. 



The routing parameters (like cost factors, preferred directions etc.) are those defined in the 
dialog of the AUTO command. 

The following particularities apply: 

• The Follow-me router doesn't calculate the polygons. If you want them to be 
calculated, run the RATSNEST command first. 

• Since the starting point has to be part of the routed track, the result may be a T-
shaped connection, with an unnecessary wire reaching to the starting point. Simply 
move the mouse cursor towards the actual connection to avoid this. 

• Both ends of the airwire are routed separately in bend style 9, which may lead to 
wires and/or vias overlapping each other. Move the mouse cursor until such 
unwanted effects go away. 

• Depending on the selected routing layer for the start point it may happen that 
unnecessary vias are created. Select a different routing layer to avoid this. 

• If the maximum number of allowed vias is set to 0 in the Follow-me router 
parameters, and you change the layer while an airwire is attached to the mouse 
cursor, the router may place a via at the starting point of the short end of the selected 
airwire (if this is at all possible according to the Design Rules, restricted areas etc.). 

• When in Follow-me mode, the right mouse button toggles between routing only the 
shorter end of the selected airwire, or both ends. To get back to manual routing you 
need to click on one of the bend style buttons, or enter the SET Wire_Bend command 
with a value smaller than 8. 

• The Follow-me router can only place round or octagonal shaped Vias, not square 
ones. 

• The Miter parameter has no meaning in Follow-me mode. 
• The parameters for the Follow-me router are stored together with the rest of the 

Autorouter parameters, but in a separate section. This is because basically the 
Follow-me parameters should behave like those of the "Route" section in the 
Autorouter parameters (in order to not obscure too much area), but also might have a 
tendency towards those of the optimize sections. 

• If a board file containing Autorouter parameters is saved with this version of EAGLE 
and loaded into an older version, the Autorouter parameters may be reported as 
invalid by the older version, and it will use default values. You can save the 
Autorouter parameters into a *.ctl file and explicitly load them into the older version 
if necessary. 

• The special mouse key functions Ctrl+Left (start routing at any given point along a 
wire or via), Shift+Left (place a via at the end point) and Ctrl+Left (define arc radius) 
don't work in Follow-me mode. 

Differential Pair routing
Differential Pairs are signals that need to be routed in parallel and with a specific distance 
between them. 

The following particularities apply: 

• A Differential Pair consists of two signals that have the same name, only one ending 
with _P (the "positive" signal) and the other one with _N (the "negative" signal), for 
instance CLOCK_P and CLOCK_N. The two signals must also belong to the same net 



class. 
• When selecting an airwire of a Differential Pair, both signals are routed in parallel. 

The distance between the two signals as well as the wire and via sizes are determined 
by the signals' net class. This is done independent of the setting of 
"Options/Set/Misc/Auto set route width and drill". 

• If you don't want to route both signals, you can press the ESCape key to drop the 
second airwire. 

• At the beginning of routing a Differential Pair (when the starting points of the 
airwires don't have the necessary distance, yet) signal wires are generated from the 
starting points to the current mouse cursor position, according to the current wire 
bend style. Note that there may be cases where these wires overlap, so please make 
sure you choose a proper point from where to start the actual parallel routing. 

• The coordinates given while routing a Differential Pair form a "center line" along 
which the actual signal wires are placed left and right with the proper distance. 

• Since the pads a Differential Pair is connected to typically don't have the same 
distance as used for the signal wires, you may have to route such signals from both 
ends. This means, you start at one part, route towards the other part, and then route 
the rest starting from the other part. This is necessary because only the first step in a 
routing sequence generates wires that start at positions that don't have a proper 
distance. 

• If you route towards the wire end points of a Differential Pair in a different layer, and 
the wires are fully aligned, the proper vias will be generated automatically. 

• The special mouse key functions Shift+Left (place a via at the end point) and 
Ctrl+Left (define arc radius) don't work in Differential Pair mode. 

• When you start routing at any point of a signal (with Ctrl+Left) you can only route 
the selected signal, and not the Differential Pair this signal might be part of. 

• Differential Pairs can only be routed fully manually. The Follow-me router and the 
Autorouter treat them like regular signals. 

You can use the MEANDER command to balance the lengths of the two signals that form a 
differential pair. 

RUN
Function 

Executes a User Language Program. 
Syntax 

RUN file_name [argument ...] 

See also SCRIPT 

The RUN command starts the User Language Program from the file file_name.
The optional argument list is available to the ULP through the Builtin Variables argc 
and argv. 

Started from a context menu the according object is assigned to a group. It can be identified 
with the builtin function ingroup() for further processing.. 



Running a ULP from a script file
If a ULP is executed from a script file and the program returns an integer value other than 0 
(either because it has been terminated through a call to the exit() function or because the 
STOP button was clicked), execution of the script file will be terminated. 

Editor commands resulting from running a ULP
A ULP can also use the exit() function with a string parameter to send a command 
string back to the editor window. 

SCRIPT
Function 

Executes a command file. 
Syntax 

SCRIPT file_name; 

See also SET, MENU, ASSIGN, EXPORT, RUN 

The SCRIPT command is used to execute sequences of commands that are stored in a script 
file. If SCRIPT is typed in at the keyboard and "file_name" has no extension, the program 
automatically uses ".scr". 

Examples
SCRIPT nofill executes nofill.scr

SCRIPT myscr. 
executes myscr (no 
Suffix)

SCRIPT myscr.old executes myscr.old
Please refer to the EXPORT command for different possibilities of script files. 

If the SCRIPT command is selected with the mouse, a popup menu will show all of the files 
which have the extension ".scr" so that they can be selected and executed. 

The SCRIPT command provides the ability to customize the program according to your own 
wishes. For instance: 

• change the command menu 
• assign keys 
• load pc board shapes 
• change colors 

SCRIPT files contain EAGLE commands according to the syntax rules. Lines beginning 
with '#' are comment. 

Continued Lines
SCRIPT files contain one or more commands in every line according to the syntax rules. 
The character '\' at the end of a command line ensures that the first word of the next line is 
not interpreted as a command. This feature allows you to avoid apostrophes in many cases. 



Set Default Parameters
The SCRIPT file eagle.scr - if it exists in the project directory or in the script path - is 
executed each time a new drawing is loaded into an editor window (or when the drawing 
type is changed in a library).

Script Labels
The default SCRIPT file eagle.scr makes use of labels of the form 

EDITOR:

where EDITOR is one of SCH, BRD, LBR, DEV, PAC and SYM. This ensures that only the 
appropriate section is executed in the editor. For example, when a new board is opened, only 
the section starting with BRD: is executed (until the next label if any). This also offers the 
possibility for editor specific menus using the MENU command. The label must be at the 
line beginning. 

Execute Script Files in the Library Editor
All of the layers are recognized only if the library editor has previously been loaded. 

SET
Function 

Alters system parameters 
Syntax 

SET
SET options; 

Parameters which affect the behavior of the program, the screen display, or the user 
interface can be specified with the SET command. The precise syntax is described below. 

A dialog in which all the parameters can be set appears if the SET command is entered 
without parameters. 

User Interface
Snap 
function 

SET SNAP_LENGTH number;

This sets the limiting value for the snap function in the ROUTE command (using the 
current unit).
Default: 20 mil
If tracks are being laid with the ROUTE command to pads that are not on the grid, the 
snap function will ensure that a route will be laid to the pad within the snap-length.
SET CATCH_FACTOR value;
Defines the distance from the cursor up to which objects are taken into account when 
clicking with the mouse. The value is entered relative to the height (or width, whichever 
is smaller) of the presently visible part of the drawing. It applies to a zoom level that 
displays at least a range of 4 inch and inrceases logarithmically when zooming further 
in. A value of 0 turns this limitation off. Values < 1 are interpreted as factor, values ≥ 1 
as percents. 



Default: 0.05 (5%).
SET SELECT_FACTOR value;
This setting controls the distance from the cursor within which nearby objects will be 
suggested for selection. The value is entered relative to the height (or width, whichever 
is smaller) of the presently visible part of the drawing. Values < 1 are interpreted as 
factor, values ≥ 1 as percents. 
Default: 0.02 (2%).

Menu 
contents 

SET USED_LAYERS name | number;

Specifies the layers which will be shown in the associated EAGLE menus. See the 
example file mylayers.scr.
The layers Pads, Vias, Unrouted, Dimension, Drills and Holes will in any case remain in 
the menu, as will the schematic layers. Any used signal layers also remain in the menus. 
SET Used_Layers All activates all layers.
SET WIDTH_MENU value..;
SET DIAMETER_MENU value..;
SET DRILL_MENU value..;
SET SMD_MENU value..;
SET SIZE_MENU value..;
SET ISOLATE_MENU value..;
SET SPACING_MENU value..;
SET MITER_MENU value..;
The content of the associated popup menus can be configured with the above command 
for the parameters width etc.. A maximum of 16 values is possible for each menu (16 
value-pairs in the SMD menu). Without any values (as in SET WIDTH_MENU;) the 
program default values will be restored.
Example:
Grid Inch;
Set Width_Menu 0.1 0.2 0.3;

Context 
menus 

SET CONTEXT objecttype text commands;

For selectable object types context menus (right mouse button) can be extended by 
arbitrary entries. objecttype is not case sensitive. text is the menu text, commands is the 
command sequence, that is executed after click on the menu entry. Empty spaces are 
possible if the expression is set into apostrophs. apostrophs inside have to be doubled 
(see TEXT). Example:
SET CONTEXT Element Export 'run myexport.ulp';
To the context menu for elements the entry Export is added, which starts an according 
ULP.
An existing userdefined entry can also be overwritten.
The settings are stored in the eaglerc file. The number of entries is unlimited.
Deletion of entries: 
SET CONTEXT objecttype; deletes all entries for this object type. With SET 
CONTEXT; all user defined menu entries are deleted.
All selectable object types are supported. These are attribute, circle, dimension, element, 
frame, gate, hole, instance, junction, label, pad, pin, rectangle, smd, text, via and wire.

Bend 
angle for 
wires 

SET WIRE_BEND bend_nr;

bend_nr can be one of:
0: Starting point - horizontal - vertical - end
1: Starting point - horizontal - 45° - end



2: Starting point - end (straight connection)
3: Starting point - 45° - horizontal - end
4: Starting point - vertical - horizontal - end
5: Starting point - arc - horizontal - end
6: Starting point - horizontal - arc - end
7: "Freehand" (arc that fits to wire at start, straight otherwise)
8: Route short end of airwire in Follow-me router
9: Route both ends of airwire in Follow-me router
Note that 0, 1, 3 and 4 may contain additional miter wires (see MITER).
SET WIRE_BEND @ bend_nr ...;
Defines the bend angles that shall be actually used when switching with the right mouse 
button.
SET WIRE_BEND @;
Switches back to using all bend angles.

Beep 
on/off 

SET BEEP OFF | ON;

Screen display
Color for grid lines SET COLOR_GRID color;
Layer color SET COLOR_LAYER layer color;
Fill pattern for 
layer 

SET FILL_LAYER layer fill;

Grid parameters SET MIN_GRID_SIZE pixels;
The grid is only displayed if the grid size is greater than the set number of 
pixels.

Min. text size 
shown 

SET MIN_TEXT_SIZE size;

Text less than size pixels high is shown as a rectangle on the screen. The 
setting 0 means that all text will be displayed readably.

Net wire display SET NET_WIRE_WIDTH width;
Pad display SET DISPLAY_MODE REAL | NODRILL;

REAL: Pads are displayed as they will be plotted.
NODRILL: Pads are shown without drill hole.
SET PAD_NAMES OFF | ON;
Pad names are displayed/not displayed.

Bus line display SET BUS_WIRE_WIDTH width;
DRC-Parameter SET DRC_FILL fill_name;
Polygon calculation SET POLYGON_RATSNEST OFF | ON;

See POLYGON command.
Vector font SET VECTOR_FONT OFF | ON;

See TEXT command.
Cross-reference 
labels 

SET XREF_LABEL_FORMAT string;

See LABEL command.
Part cross-
references 

SET XREF_PART_FORMAT string;

See TEXT command.

Mode parameters
Package check SET CHECK_CONNECTS OFF | ON;

The ADD command checks whether every pin has been connected to a pad (with 



CONNECT). This check can be switched off. Nevertheless, no board can be 
generated from a schematic if a device is found which does not have a package.

REPLACE 
mode 

SET REPLACE_SAME NAMES | COORDS;

UNDO buffer 
on/off 

SET UNDO_LOG OFF | ON;

Wire optimizing SET OPTIMIZING OFF | ON;
If set on, wires which lie in one line after a MOVE, ROUTE or SPLIT are 
subsumed into a single wire. See also OPTIMIZE.

Net wire 
termination 

SET AUTO_END_NET OFF | ON;

Automatic ending of nets or busses. See NET or BUS.
Automatic 
junctions 

SET AUTO_JUNCTION OFF | ON;

Automatic setting of junctions. See JUNCTION.
Automatic 
confirmation 

SET CONFIRM OFF | NO | YES;

Allows confirmation dialogs to be handled automatically (see below for details).

Colors
There are three palettes for black, white and colored background, respectively. Each palette 
has 64 color entries, which can be set to any ARGB value. The palette entry number 0 is 
used as the background color (in the "white" palette this entry cannot be modified, since this 
palette will also be used for printing, where the background is always white). 

The color palettes can be modified either through the dialog under "Options/Set.../Colors" or 
by using the command 

SET PALETTE index argb

where index is a number in the range 0..63 and argb is a hexadecimal value defining the 
Alpha, Red, Green and Blue components of the color, like 0xFFFFFF00 (which would result 
in a bright yellow). The alpha component defines how "opaque" the color is. A value of 
0x00 means it is completely transparent (i.e. invisible), while 0xFF means it is totally 
opaque. The alpha component of the background color is always 0xFF. Note that the ARGB 
value must begin with "0x", otherwise it would be taken as a decimal number. You can use 

SET PALETTE BLACK|WHITE|COLORED

to switch to the black, white or colored background palette, respectively. Note that there will 
be no automatic window refresh after this command, so you should do a WINDOW; 
command after this. 

By default only the palette entries 0..15 are used and they contain the colors listed below. 

The palette entries are grouped into "normal" and "highlight" colors. There are always 8 
"normal" colors, followed by the corresponding 8 "highlight" colors. So colors 0..7 are 
"normal" colors, 8..15 are their "highlight" values, 16..23 are another 8 "normal" colors with 
24..31 being their "highlight" values and so on. The "highlight" colors are used to visualize 
objects, for instance in the SHOW command. 

Color, listed according to color numbers, which can be used instead of the color names. 
Used to specify colors: 



0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 LGray
8 DGray
9 LBlue
10 LGreen
11 LCyan
12 LRed
13 LMagenta
14 Yellow
15 White
Fill specifies the style with which wires and rectangles in a particular layer are to be 
filled. This parameter can also be replaced with the number at the beginning of each line: 

0 Empty
1 Solid
2 Line
3 LtSlash
4 Slash
5 BkSlash
6 LtBkSlash
7 Hatch
8 XHatch
9 Interleave
10 WideDot
11 CloseDot
12 Stipple1
13 Stipple2
14 Stipple3
15 Stipple4

Automatic Confirmation
At times EAGLE prompts the user with informational or warning messages, or requires a 
decision on how to proceed. This may be unwanted in automated processes (like script 
files). The command 

SET CONFIRM YES

will automatically confirm every message dialog as if the user had clicked on the "positive" 
button ("OK" or "Yes"). The dialog itself isn't even presented to the user. Similarly, the 
command 

SET CONFIRM NO

acts as if the user had clicked on the "negative" button ("No"), if such a button is present. 
Otherwise it just confirms the dialog.
Finally, the command 



SET CONFIRM OFF

turns off automatic confirmation. If automatic confirmation is not turned off explicitly, it 
will automatically fall back to OFF the next time the editor window accepts some interactive 
input from the user. 

You should not put a SET CONFIRM YES at the beginning of a script and then execute 
lots of commands "silently". It is better to explicitly put this around individual commands, 
as in 

SET CONFIRM YES
REMOVE filename
SET CONFIRM OFF

Be extremely careful when using this command! Blindly confirming message dialogs 
may cause important messages to be overlooked. The result may then not be what the 
user expected. 

EagleRc Parameters
Sometimes a small detail of functionality needs to be made adjustable, for instance because 
some users absolutely need to have it work differently. These parameters are not available in 
any dialogs, but can only be changed through an entry in the eaglerc file. In order to make 
this easier, any parameter that is not found amoung the keywords listed above will be looked 
up in the eaglerc parameters and can thus be changed using the SET command. Note that the 
parameter names must be written in full and exactly as listed below (case sensitive). The 
parameter value is typically '0' or '1', to turn the functionality 'off' or 'on', respectively. After 
changing any of these parameters that influence the way the screen display is drawn, a 
window refresh may be necessary. 

Example 

SET Option.DrawUnprocessedPolygonEdgesContinuous 1;

The following eaglerc parameters are available: 

Cmd.Copy.ClassicEagleMode 
In older versions of EAGLE the COPY command was used solely to copy objects within a 
drawing, as opposed to the Windows behavior, where COPY places a copy of the selected 
objects (i.e. the GROUP) into the system's clipboard. As of version 6, EAGLE's COPY 
command primarily behaves the same way as in other Windows applications, by putting a 
copy of the current group into the clipboard. The original functionality of copying selected 
objects, or copying library objects between libraries, is still fully available, which is especially 
important to keep existing scripts and ULPs working. What has also often irritated Windows 
users is that in EAGLE the CUT command has only copied the current group to the clipboard, 
but did not actually delete the group from the drawing. Since a CUT command that deletes the 
group would not be of much use in a board/schematic pair that is connected via forward-
&backannotation, the CUT command has been removed from the main pulldown menu and 
the command button toolbar. It is still fully available from the command line or within scripts. 
Setting this parameter to '1' restores the old behavior of both the COPY and the CUT 
command. Note that this setting only takes effect the next time you open an editor window. 

Cmd.Delete.WireJointsWithoutCtrl 
If you insist on having the DELETE command delete wire joints without pressing the Ctrl 
key, you can set this parameter to '1'. 



Cmd.Name.RenameEntireNetByDefault 
If a net consists of more than one segment, the NAME command by default acts only upon 
the selected segment. By setting this parameter to '1' this can be changed to rename the entire 
net by default. This parameter also applies to busses. 

Cmd.Name.RenameEntireSignalByDefault 
If a signal contains a polygon, and the NAME command is applied to that polygon, by default 
only the polygon gets renamed. Setting this parameter to '1' makes the NAME command act 
upon the entire signal by default. 

Cmd.Wire.IgnoreCtrlForRadiusMode 
If you don't like the special mode in wire drawing commands that allows for the definition of 
an arc radius by pressing the Ctrl key when placing the wire, you can set this parameter to '1'. 
This will turn this feature off for all commands that draw wires. 

ControlPanel.View.AutoOpenProjectFolder 
The automatic opening of the project folder at program start (or when activating a project by 
clicking on its gray button) can be disabled by setting this parameter to '0'. 

Erc.AllowUserOverrideConsistencyCheck 
In order to handle board/schematic pairs that have only minor inconsistencies, the user can 
enable a dialog that allows him to force the editor to perform forward-/backannotation, even if 
the ERC detects that the files are inconsistent. This can be done by setting this parameter to 
'1'. PLEASE NOTE THAT YOU ARE DOING THIS AT YOUR OWN RISK - if the files 
get corrupted in the process, there may be nothing anybody can do to recover them. After all, 
the ERC did state that the files were inconsistent! 

Interface.MouseButtonReleaseTimeout 
The time (in milliseconds) within which a mouse button release that follows a mouse button 
press on a button (like, for instance, toolbar buttons) triggers the button's action, even if the 
mouse button release happened outside the button's area. Default is 500, set this to 0 to turn 
off this feature. If this parameter is 0 when the program is started, any change to it will only 
take effect the next time the program is started. 

Interface.PreferredUnit 
When displaying a numerical value in dialog input fields, the units are determined 
automatically, so that the representation with the least number of decimal digits is chosen. 
This can be controlled by setting this parameter to '0' for automatic unit determination 
(default), '1' for imperial units, and '2' for metric units. 

Interface.UseCtrlForPanning 
Panning is done by moving the mouse while holding the center mouse button (or mouse 
wheel) down. In older versions this was done by pressing the Ctrl key instead. If you want the 
old functionality back, you can set this parameter to '1'. Note, though, that the Ctrl key is now 
used for special functions in some commands, so when using these special functions (like 
selecting an object at its origin in MOVE) with this parameter enabled you may inadvertently 
pan your draw window. 

Option.AutoLoadMatchingDrawingFile 
If you have a board and schematic editor window open and load an other board (or schematic) 
in one of these windows, and if that other drawing has a matching schematic (or board), 
EAGLE asks whether that other drawing shall also be loaded. By setting this parameter to '1', 
this query can be suppressed, and EAGLE will always automatically load the other drawing. 

Option.DrawUnprocessedPolygonEdgesContinuous 
If you don't like the way unprocessed polygons display their edges (as dotted lines), you can 
set this parameter to '1'. The edges of unprocessed polygons will then be displayed as 
continuous lines, as was the case before version 5 (however, they will not be highlighted). 

Option.LayerSequence 
The internal layers are rendered in a sequence that mimics the actual layer stack, so that the 
result looks useful even on printers and PDF or Postscript files, where layers are not 



transparent. Sometimes user defined layers may need to be rendered before internal layers 
instead of after them. This parameter can be used to define the sequence in which layers are 
rendered. It consists of a string of layer numbers or layer ranges, followed by an optional 't' or 
'b'. 
123 renders layer 123

123t
renders layer 123 if the output is "viewed from top" (not 
mirrored)

123b
renders layer 123 if the output is "viewed from bottom" 
(mirrored)

123-140 renders layers 123 through 140 in the given sequence
140-123 renders layers 140 through 123 in the given sequence
* inserts the default sequence of the internal layers
123b * 123t makes layer 123 always be rendered first
Note that each layer is rendered only once, even if it is listed several times. The default 
sequence of the internal layers is
48t 49t 19t 47t 20t 46t 23 27 25 59 57 55 53 50 51 21 44t 45t 37 35 31 29 33 39 41 43t 18t 
17t 1-16 17b 18b 43b 42 40 34 30 32 36 38 45b 44b 22 52 54 56 58 60 26 28 24 46b 20b 47b 
19b 49b 48b 61-99.
When viewed from top, the layer sequence is rendered from right to left, while when viewed 
from bottom (mirrored) it is rendered from left to right. For instance, layer 48 (Document) is 
entered as 48t and 48b to always have it rendered as the last one. Layers 21 (tPlace) and 22 
(bPlace), on the other hand, are listed only once, to have them rendered at the proper place, 
depending on whether the output is mirrored or not.
Any layers that are not explicitly mentioned in the layer sequence are rendered after the given 
sequence in ascending order. 

Option.RatsnestLimit 
The RATSNEST command processes all points of a signal, even if that signal is very complex 
(in previous versions it dropped wire end points from processing if the total number of 
connection points exceeded 254). This requires more memory when calculating the ratsnest. 
In case this is a problem on your system, you can revert to the original method by setting this 
parameter to '254'. The value given here is the number of connection points up to which all 
wire end points will be taken into account and thus limits the amount of memory used 
(processing will use up to the square of this value in bytes, so a value of 1024 will limit the 
used memory to 1MB). A value of '0' means there is no limit. A value of '1' will result in 
airwires being connected only to pads, smds and vias. 

Option.RepositionMouseCursorAfterContextMenu 
Normally EAGLE doesn't automatically position the mouse cursor. However, some users 
want the cursor to be repositioned to the point where it has been before a context menu in the 
drawing editor was opened. Set this parameter to '1' to get this functionality. 

Option.ShowPartOrigins 
The origins of parts in a schematic are indicated by small crosses. Set this parameter to '0' to 
turn this off. 

Option.ShowTextOrigins 
The origins of texts are indicated by small crosses. Set this parameter to '0' to turn this off. 

Option.ToggleCtrlForGroupSelectionAndContextMenu 
Since the context menu function on the right mouse button interferes with the selection of 
groups as it was done before version 5, a group is now selected with Ctrl plus right mouse 
button. If you want to have the old method of selecting groups back, you can can set this 
parameter to '1'. This will allow selecting groups with the right mouse button only and require 
Ctrl plus right mouse button for context menus. 

Sch.Cmd.Add.AlwaysUseDeviceNameAsValue 
Some users always want to use the device name as part value, even if the part needs a user 



supplied value. Those who want this can set this parameter to '1'. 
Warning.PartHasNoUserDefinableValue 

If you don't want the warning message about a part not having a user definable value, you can 
turn it off by setting this parameter to '0'. 

Warning.SupplyPinAutoOverwriteGeneratedNetName 
Some users don't want the warning message about a supply pin overwriting a generated net 
name. Setting this option to '1' disables that warning. 

SHOW
Function 

Highlights objects. 
Syntax 

SHOW ..�
SHOW name..
SHOW @ name.. 

Mouse keys 
Ctrl+Left toggles the show state of the selected object. 

See also INFO 

The SHOW command is used to highlight objects. Details are listed in the status bar. 
Complete signals and nets can be highlighted with the SHOW command. If a bus is 
selected, all nets belonging to that bus will also be highlighted. 

Cross Probing
With active Forward&Back Annotation an object that is highlighted with the SHOW 
command in a board will also be highlighted in the schematic, and vice versa. 

Different Objects
If you select different objects with the SHOW command every single object is highlighted 
separately. You can select more than one object for highlighting by pressing the Ctrl key 
when clicking on the objects. When you click on an object that is already highlighted with 
the Ctrl key pressed, that object will be displayed non-highlighted again. 

If several names are entered in one line, all matching objects are highlighted at the same 
time. 

Small Objects
If the @ character is given in the command line, a pointer rectangle is drawn around the 
shown object. This is helpful in locating small objects that wouldn't show up too well just 
through highlighting. If more than one object is shown, the rectangle is drawn around all the 
objects. It may be necessary to zoom out (or do a WINDOW FIT command) in order to see 
the pointer. If an object with the literal name @ shall be shown, the name must be enclosed 
in single quotes. 



Wildcards
If a name parameter is given, the characters '*', '?' and '[]' are wildcards and have 
the following meaning: 

* matches any number of any characters
? matches exactly one character

[...] 
matches any of the characters between the 
brackets

If any of these characters shall be matched exactly as such, it has to be enclosed in brackets. 
For example, abc[*]ghi would match abc*ghi and not abcdefghi. 

A range of characters can be given as [a-z], which results in any character in the range 
'a'...'z'. 

The special pattern [number..number] forms a bus name range and is therefore not 
treated as a wildcard pattern in a schematic. 

Objects on different Sheets
If an object given by name is not found on the current schematic sheet, a dialog is presented 
containing a list of sheets on which the object is found. If the object is not found on any 
sheet, the sheet number is '-' in this list. Note that this dialog only appears if any of the 
objects given by name (or wildcards) is not found on the current sheet. If all given objects 
are found on the current sheet, no dialog appears (even if some of the objects are also 
present on other sheets). Once the dialog appears, it contains all objects found, even those 
on the current sheet. 

Examples
SHOW IC1

IC1 is highlighted and remains highlighted until the SHOW command is ended or a different 
name is entered. 

SHOW IC*

Highlights all objects with names starting with "IC". 

SIGNAL
Function 

Defines signals. 
Syntax 

SIGNAL  ..� �
SIGNAL signal_name  ..� �
SIGNAL signal_name element_name pad_name..; 

See also AUTO, ROUTE, NAME, CLASS, WIRE, RATSNEST, EXPORT 

The SIGNAL command is used to define signals (connections between the various 
packages). The user must define a minimum of two element_name/pad_name pairs, as 
otherwise no airwire can be generated. 



Mouse Input
To do that you select (with the mouse) the pads (or smds) of the elements to be connected, 
step by step. EAGLE displays the part signals as airwires in the Unrouted layer. 

If input with signal_name the signal will be allocated the specified name. 

Text Input
Signals may also be defined completely by text input (via keyboard or script file). The 
command 

SIGNAL GND IC1 7 IC2 7 IC3 7;

connects pad 7 of IC1...3. In order to enter a whole netlist, a script file may be generated, 
with the extension *.scr. This file should include all of the necessary SIGNAL commands in 
the format shown above. 

On-line Check
If the SIGNAL command is used to connect pads (or smds) that already belong to different 
signals, a popup menu will appear and ask the user if he wants to connect the signals 
together, and which name the signal should get. 

Outlines data
The special signal name _OUTLINES_ gives a signal certain properties that are used to 
generate outlines data. This name should not be used otherwise. 

SMASH
Function 

Separates text variables and attributes from parts or elements. 
Syntax 

SMASH ..�
SMASH name .. 

Mouse keys 
Ctrl+Right smashes the group.
Shift+Left reverses the text separation ("unsmashes" the part).
Ctrl+Shift+Right reverses the text separation for the group. 

See also NAME, VALUE, TEXT, ATTRIBUTE 

The SMASH command is used with parts or elements in order to separate the text 
parameters indicating name, value or attributes. The text may then be placed in a new and 
more convenient location with the MOVE command. 

Parts and elements can also be selected by their name, which is especially useful if the 
object is outside the currently shown window area. Note that when selecting a multi-gate 
part in a schematic by name, you will need to enter the full instance name, consisting of part 
and gate name. 

Use of the SMASH command allows the text to be treated like any other text, e.g. 



CHANGE SIZE, ROTATE, etc., but the actual text may not be changed. 

A "smashed" element can be made "unsmashed" by clicking on it with the Shift key 
pressed (and of course the SMASH command activated). 

SMD
Function 

Adds smd pads to a package. 
Syntax 

SMD [x_width y_width] [-roundness] [orientation] [flags] 
['name'] ..�  

Mouse keys 
Center selects the layer.
Right rotates the smd.
Shift+Right reverses the direction of rotating. 

See also PAD, CHANGE, NAME, ROUTE, Design Rules 

The SMD command is used to add pads for surface mount devices to a package. When the 
SMD command is active, an smd symbol is attached to the cursor. Pressing the left mouse 
button places an smd pad at the current position. Entering numbers changes the x- and y-
width of the smd pad, which can be up to 0.51602 inch (13.1 mm). These parameters remain 
as defaults for successive SMD commands and can be changed with the CHANGE 
command. Pressing the center mouse button changes the layer onto which the smd pad will 
be drawn. 

The orientation (see description in ADD) may be any angle in the range R0...R359.9. 
The S and M flags can't be used here. 

Roundness
The roundness has to be entered as an integer number between 0 and 100, with a 
negative sign to distinguish it from the width parameters. A value of 0 results in fully 
rectangular smds, while a value of 100 makes the corners of the smd fully round. The 
command 

SMD 50 50 -100 '1' �

for example would create a completely round smd named '1' at the given mouseclick 
position. This can be used to create BGA (Ball Grid Array) pads. 

Arbitrary Pad Shapes
If the standard smd pad shapes are not sufficient for a particular package, you can create 
arbitrary smd pad shapes by drawing a polygon around an smd pad, or by drawing wires 
that have one end connected to the smd pad. 

The following conditions apply: 

• A polygon is considered connected to an smd pad on the same layer if the center of 
the pad lies within the area defined by the center lines of the polygon wires. 

• A wire is considered connected to an smd pad on the same layer if one of its end 



points coincides with the center of the pad. Any wire connected to the other end of 
such a wire is also electrically connected to the pad. 

• The DRC will not check such wires and polygons for minimum width. 
• Only one polygon per pad is taken into account. If more than one polygon is 

connected to the same pad, they will cause DRC errors. 
• Polygons connected to a pad will be ignored by the Autorouter when routing that 

signal. They will be considered obstacles when routing other signals. 
• Wires connected to a pad will be handled like any other signal wires by the 

Autorouter, with the exception that they cannot be split. 
• Solder stop and cream masks are only generated for the pad itself. If any additional 

solder stop or cream mask is required, it has to be drawn explicitly into the respective 
layer(s). 

• When generating thermals, the additional polygon shape is taken into account. 
• If a polygon or wire is connected to more than one pad within a package, only one of 

the pads will be considered electrically connected to the polygon or wire. The other 
pads will cause DRC errors, unless they are all connected to the same pin in a device. 

• If a C-shaped polygon connected to a pad would cause a signal polygon in the board 
to have an "orphan" that lies within the C area, such an orphan will disappear 
regardless whether the signal polygon in question has its Orphans parameter set to on 
or off. 

Names
SMD names are generated automatically and may be modified with the NAME command. 
Names may be included in the SMD command if enclosed in single quotes. 

Flags
The following flags can be used to control the appearance of an smd: 

NOSTOP don't generate solder stop mask
NOTHERMALS don't generate thermals
NOCREAM don't generate cream mask
By default an smd automatically generates solder stop mask, cream mask and thermals as 
necessary. However, in special cases it may be desirable to have particular smds not do this. 
The above NO... flags can be used to suppress these features.
A newly started SMD command resets all flags to their defaults. Once a flag is given in the 
command line, it applies to all following smds placed within this SMD command. 

Single Smds
Single smd pads in boards can only be used by defining a package with one smd. 

Alter Package
It is not possible to add or delete smds in packages which are already used by a device, 
because this would change the pin/smd allocation defined with the CONNECT command. 



SPLIT
Function 

Splits wires and polygon edges into segments. 
Syntax 

SPLIT  [curve | @radius] ..� �  
Mouse keys 

Right changes the wire bend style (see SET Wire_Bend).
Shift+Right reverses the direction of switching bend styles.
Ctrl+Right toggles between corresponding bend styles.
Ctrl+Left when placing a wire end point defines arc radius. 

Keyboard 
F8: SPLIT activates the SPLIT command. 

See also MITER, MOVE, OPTIMIZE, SET 

The SPLIT command is used to split a wire (or segment) or a polygon edge into two 
segments in order, for example, to introduce a bend. This means you can split wires into 
parts that can be moved with the mouse during the SPLIT command. A mouseclick defines 
the point at which the wire is split. The shorter of the two new segments follows the current 
wire bend rules and may therefore itself become two segments (see SET Wire_Bend), the 
longer segment is a straight segment running to the next end point. 

If the curve or @radius parameter is given, an arc can be drawn as part of the wire segment 
(see the detailed description in the WIRE command). 

On completion of the SPLIT command, the segments are automatically rejoined if they are 
in line unless the command 

SET OPTIMIZING OFF;

has previously been given, or the wire has been clicked at the same spot twice. In this case 
the split points remain and can be used, for example, to reduce the width of a segment. 
This is achieved by selecting the SPLIT command, marking the part of the wire which is to 
be reduced with two mouse clicks, and using the command 

CHANGE WIDTH width

The segment is then clicked on to complete the change. 

TECHNOLOGY
Function 

Defines the possible technology parts of a device name. 
Syntax 

TECHNOLOGY name ..;
TECHNOLOGY -name ..;
TECHNOLOGY -* ..; 

See also PACKAGE, ATTRIBUTE 

This command is used in the device editor mode to define the possible technology parts of a 
device name. In the schematic or board editor the TECHNOLOGY command behaves 
exactly like "CHANGE TECHNOLOGY". 



Exactly one of the names given in the TECHNOLOGY command will be used to replace the 
'*' in the device set name when an actual device is added to a schematic. The term 
technology stems from the main usage of this feature in creating different variations of the 
same basic device, which all have the same schematic symbol(s), the same package and the 
same pin/pad connections. They only differ in a part of their name, which for the classic 
TTL devices is related to their different technologies, like "L", "LS" or "HCT". 

The TECHNOLOGY command can only be used if a package variant has been selected with 
the PACKAGE command. 

If no '*' character is present in the device set name, the technology will be appended to the 
device set name to form the full device name. Note that the technology is processed before 
the package variant, so if the device set name contains neither a '*' nor a '?' character, 
the resulting device name will consist of device_set_name+technology+package_variant. 

The names listed in the TECHNOLOGY command will be added to an already existing list 
of technologies for the current device. Starting a name with '-' will remove that name 
from the list of technologies. If a name shall begin with '-', it has to be enclosed in single 
quotes. Using -* removes all technologies. 

Only ASCII characters in the range 33..126 may be used in technologies (lowercase 
characters will be converted to uppercase). 

The special "empty" technology can be entered as two single quotes ('', an empty string). 

Note that the Technologies dialog contains all technologies from all devices in the loaded 
library, with the ones referenced by the current device checked. 

Example
In a device named "74*00" the command 

TECHNOLOGY -* '' L LS S HCT;

would first remove any existing technologies and then create the individual technology 
variants 

7400
74L00
74LS00
74S00
74HCT00

TEXT
Function 

Adds text to a drawing. 
Syntax 

TEXT any_text [orientation] ..�
TEXT 'any_text' [orientation] ..�  

Mouse keys 
Center selects the layer.
Right rotates the text.
Shift+Right reverses the direction of rotating. 



See also CHANGE, MOVE, MIRROR, PIN, ROTATE, ATTRIBUTE 

The TEXT command is used to add text to a library element or drawing. When entering 
several texts it is not necessary to invoke the command each time, as the text command 
remains active after placing text with the mouse. 

Orientation
The orientation of the text may be defined by the TEXT command (orientation) using the 
usual definitions as listed in the ADD command (R0, R90 etc.). The right mouse button will 
change the rotation of the text and the center mouse button will change the current layer. 

Text is always displayed so that it can be read from in front or from the right - even if 
rotated. Therefore after every two rotations it appears the same way, but the origin has 
moved from the lower left to the upper right corner. Remember this if a text appears to be 
unselectable. 

The reading direction for vertical texts can be changed from "up" to "down" in the user 
interface dialog. 

If you want to have text that is printed "upside down", you can set the "Spin" flag for that 
text. 

Special Characters
If the text contains several successive blanks or a semicolon, the whole string has to be 
enclosed in single quotes. If the text contains single quotes then each one itself has to be 
enclosed in single quotes. If apostrophes are required in the text, each must be enclosed in 
single quotes. 

Key Words
If the TEXT command is active and you want to type in a text that contains a string that can 
be mistaken for a command (e.g. "red" for "REDO") then this string has to be enclosed in 
single quotes. 

Text Height
The height and thickness of characters can be changed with the CHANGE commands: 

CHANGE SIZE text_size ..�
CHANGE RATIO ratio ..�
CHANGE LINEDISTANCE value ..�

Maximum text height: 2 inches
Maximum text thickness: 0.51602 inch (13.1 mm)
Ratio: 0...31 (% of text height)
Line distance: 0...250 (% of text height). 

Text Font
Texts can have three different fonts: 
Vector the program's internal vector font



Proportional a proportional pixel font (usually 
'Helvetica')

Fixed a monospaced pixel font (usually 'Courier')
The text font can be changed with the CHANGE command: 

CHANGE FONT VECTOR|PROPORTIONAL|FIXED ..�

The program makes great efforts to output texts with fonts other than Vector as good as 
possible. However, since the actual font is drawn by the system's graphics interface, 
Proportional and Fixed fonts may be output with different sizes and/or lengths. 

If you set the option "Always vector font" in the user interface dialog, all texts will always 
be displayed and printed using the builtin vector font, independent from the settings of the 
individual texts and for each drawing. This option is useful if the system doesn't display the 
other fonts correctly.
When creating a new board or schematic, the current setting of this option is stored in the 
drawing file. This makes sure that the drawing will be printed with the correct setting if it is 
transferred to somebody else who has a different setting of this option.
You can use the SET VECTOR_FONT OFF|ON command to change the setting in an 
existing board or schematic drawing. This means you can decide for the current drawing 
wether it shall always be displayed in vector font or not. 

When creating output files with the CAM Processor, texts will always be drawn with 
Vector font. Other fonts are not supported. 

If a text with a font other than Vector is subtracted from a signal polygon, only the 
surrounding rectangle is subtracted. Due to the above mentioned possible size/length 
problems, the actually printed font may exceed that rectangle. Therefore, if you need to 
subtract a text from a signal polygon it is recommended that you use the Vector font. 

The Ratio parameter has no meaning for texts with fonts other than Vector. 

Text Alignment
The text alignment defines where the origin shall be put within the text. There are nine 
different possible alignments, which consist of combinations of the keywords left, 
bottom, center, right and top. These keywords can be given in any sequence, but 
only the last one of left/right and top/bottom will be taken into account for the respective 
direction. The center keyword only applies to those directions where no other keyword has 
been given. The default is left and bottom. 

CHANGE ALIGN TOP CENTER; TEXT 
'ABC' � 

draws the text ABC with the origin at its 
top/center

Character Sets
Only the characters with ASCII codes below 128 are guaranteed to be printed correctly. Any 
characters above this may be system dependent and may yield different results with the 
various fonts. 

Text Variables
Special texts in a symbol or package drawing, marked with the '>' character, will be 



replaced with actual values in a board or schematic: 

>NAME Component name (ev.+gate name) 1)
>VALUE Comp. value/type 1)
>PART Component name 2)
>GATE Gate name 2)
>XREF Part cross-reference 2)
>CONTACT_XREF Contact cross-reference 2)
>ASSEMBLY_VARIANT Name of the current assembly variant
>DRAWING_NAME Drawing name
>LAST_DATE_TIME Time of the last modification
>PLOT_DATE_TIME Time of the plot creation
>SHEETNR Sheet number of a schematic 3)
>SHEETS Total number of sheets of a schematic 3)

>SHEET 
equivalent to ">SHEETNR/>SHEETS" 
3)

1) Only for package or symbol
2) Only for symbol
3) Only for symbol or schematic 

The format in which a part cross-reference is displayed can be controlled through the "Xref 
part format" string, which is defined in the "Options/Set/Misc" dialog, or with the SET 
command. The following placeholders are defined, and can be used in any order: 

%S the sheet number

%C the column on the 
sheet

%R the row on the sheet
The default format string is "/%S.%C%R". Apart from the defined placeholders you can 
also use any other ASCII characters. 

Attributes
If a symbol or package drawing shall display an attribute of the actual part or element, a text 
with the name of that attribute, marked with the '>' character, can be used. By default, 
only the actual value of the given attribute will be displayed. If the attribute name is 
followed by one of the special characters '=', '~' or '!', the actual display is as follows: 

>ABC 123
>ABC= ABC = 123
>ABC~ ABC
>ABC! nothing
Note that for each attribute name there should be only one such text in any given symbol or 
package! If there is more than one such text in a symbol or package that all reference the 
same attribute name, only one of them will be displayed when the part using this symbol or 
package is smashed. 

Overlined text
Text can be overlined, which is useful for instance for the names of inverted signals ("active 
low", see also NET, BUS and PIN). To do so, the text needs to be preceded with an 
exclamation mark ('!'), as in 



  !RESET

which would result in 

  _____
  RESET

This is not limited to signal names, but can be used in any text. It is also possible to overline 
only part of a text, as in 

  !RST!/NMI
  R/!W

which would result in 

  ___
  RST/NMI
    _
  R/W

Note that the second exclamation mark indicates the end of the overline. There can be any 
number of overlines in a text. If a text shall contain an exclamation mark that doesn't 
generate an overline, it needs to be escaped by a backslash. In order to keep the need for 
escaping exclamation marks at a minimum, an exclamation mark doesn't start an overline if 
it is the last character of a text, or if it is immediately followed by a blank, another 
exclamation mark, a double or single quote, or by a right parenthesis, bracket or brace. Any 
non-escaped exclamation mark or comma that appears after an exclamation mark that 
started an overline will end the overline (the comma as an overline terminator is necessary 
for busses). 

UNDO
Function 

Cancels previous commands. 
Syntax 

UNDO
UNDO LIST 

Keyboard 
F9: UNDO execute the UNDO command. Alt+BS: UNDO 

See also REDO, SET, Forward&Back Annotation 

The UNDO command allows you to cancel previously executed commands. This is 
especially useful if you have deleted things by accident. Multiple UNDO commands cancel 
the corresponding number of commands until the last EDIT, OPEN or REMOVE command 
is reached. 

The UNDO command uses up memory space. If you are short of this you can switch off this 
function with the SET command 

SET UNDO_LOG OFF;

UNDO/REDO is completely integrated within Forward&Back Annotation. 



UNDO buffer dialog
The option LIST in the UNDO command opens a dialog that contains the entire contents of 
the undo buffer. You can navigate through the list of undo/redo steps by click&dragging the 
list delimiter, or by directly clicking on any given step you wish to go back or forward to. If 
there are several steps between the current delimiter position and the clicked list item, all 
steps in between will be executed in the proper sequence. Going upward in the list means 
doing UNDO, going downward results in REDO.
The icon at each list item indicates in which drawing this particular command has been 
executed. 

If you confirm this dialog with "OK", the drawing will be left in the condition as selected in 
the list. If you cancel the dialog, it will be restored to the condition it had before the dialog 
was opened. 

CAUTION: this is a very powerful tool! By going all the way back in the UNDO list 
(which can be done with a single mouse click) and executing any new command, the undo 
buffer will be truncated at that point, and there is no way back! So use this with care! 

UPDATE
Function 

Updates library objects. 
Syntax 

UPDATE
UPDATE;
UPDATE library_name..;
UPDATE package_name@library_name..;
UPDATE +@ | -@ [library_name..];
UPDATE old_library_name = new_library_name; 

See also ADD, REPLACE 

The UPDATE command checks the parts in a board or schematic against their respective 
library objects and automatically updates them if they are different. If UPDATE is invoked 
from the library editor, the packages within the loaded library will be updated from the 
given libraries. 

If you activate the UPDATE command without a parameter, a file dialog will be presented 
to select the library from which to update. 

If one ore more libraries are given, only parts from those libraries will be checked. The 
library names can be either a plain library name (like "ttl" or "ttl.lbr") or a full file name 
(like "/home/mydir/myproject/ttl.lbr" or "../lbr/ttl"). 

If a library_name contains blanks, it needs to be enclosed in single quotes. 

Update in a board or schematic
If the command is terminated with a ';', but has no parameters, all parts will be checked. 

If the first parameter is '+@', the names of the given libraries (or all libraries, if none are 
given) will get a '@' character appended, followed by a number. This can be used to make 



sure the libraries contained in a drawing will not be modified when a part from a newer 
library with the same name is added to the drawing. Library names that already end with a 
'@' character followed by a number will not be changed. 

If the first parameter is '-@', the '@' character (followed by a number) of the given 
libraries (or all libraries, if none are given) will be stripped from the library name. This of 
course only works if there is no library with that new name already in the drawing. 

Please note that "UPDATE +@;" followed by "UPDATE -@;" (and vice versa) does not 
necessarily result in the original set of library names, because the sequence in which the 
names are processed depends on the sequence in which the libraries are stored in the 
drawing file. 

The libraries stored in a board or schematic drawing are identified only by their base name 
(e.g. "ttl"). When considering whether an update shall be performed, only the base name of 
the library file name will be taken into account. Libraries will be searched in the directories 
specified under "Libraries" in the directories dialog, from left to right. The first library of a 
given name that is found will be taken. Note that the library names stored in a drawing are 
handled case insensitive. It does not matter whether a specific library is currently "in use". If 
a library is not found, no update will be performed for that library and there will be no error 
message. 

Using the UPDATE command in a schematic or board that are connected via active 
Forward&Back Annotation will act on both the schematic and the board. 

At some point you may need to specify whether gates, pins or pads shall be mapped by their 
names or their coordinates. This is the case when the respective library objects have been 
renamed or moved. If too many modifications have been made (for example, if a pin has 
been both renamed and moved) the automatic update may not be possible. In that case you 
can either do the library modification in two steps (one for renaming, another for moving), 
or give the whole library object a different name. 

When used with old_library_name = new_library_name (note that there has to 
be at least one blank before and after the '=' character), the UPDATE command locates the 
library named old_library_name in the current board or schematic, and updates it with the 
contents of new_library_name. Note that old_library_name must be the pure library name, 
without any path, while new_library_name may be a full path name. If the update was 
performed successfully, the library in the current board/schematic file will also be renamed 
accordingly - therefore this whole operation is, of course, only possible if 
new_library_name has not yet been used in the current board or schematic. 

Note: You should always run a Design Rule Check (DRC) and an Electrical Rule 
Check (ERC) after a library update has been performed in a board or a schematic! 

Update in a library
The update in a library replaces all packages within that library with the versions from the 
given libraries. 

By specifying the package name (package_name@library_name) you can have only a 
specific package be replaced. 



USE
Function 

Marks a library for use. 
Syntax 

USE
USE -*;
USE library_name..; 

See also ADD, REPLACE 

The USE command marks a library for later use with the ADD or REPLACE command. 

If you activate the USE command without a parameter, a file dialog will appear that lets you 
select a library file. If a path for libraries has been defined in the "Options/Directories" 
dialog, the libraries from the first entry in this path are shown in the file dialog. 

The special parameter -* causes all previously marked libraries to be dropped. 

library_name can be the full name of a library or it can contain wildcards. If 
library_name is the name of a directory, all libraries from that directory will be marked. 

The suffix .lbr can be omitted. 

Note that when adding a device or package to a drawing, the complete library information 
for that object is copied into the drawing file, so that you don't need the library for changing 
the drawing later. 

Changes in a library have no effect on existing drawings. See the UPDATE command if you 
want to update parts from modified libraries. 

Using Libraries via the Control Panel
Libraries can be easily marked for use in the Control Panel by clicking on their activation 
icon (which changes its color to indicate that this library is being used), or by selecting 
"Use" from the library's context menu. Through the context menu of the "Libraries" entry in 
the Control Panel it is also possible to use all of the libraries or none of them. 

Used Libraries and Projects
The libraries that are currently in use will be stored in the project file (if a project is 
currently open). 

Examples
USE opens the file dialog to choose a library
USE -*; drops all previously marked libraries

USE demo trans*; 
marks the library demo.lbr and all libraries with names matching 
trans*.lbr

USE -* 
/eagle/lbr; 

first drops all previously marked libraries and then marks all libraries 
from the directory /eagle/lbr



VALUE
Function 

Displays and changes values. 
Syntax 

VALUE ..�
VALUE value ..�
VALUE name value ..
VALUE ON;
VALUE OFF; 

See also NAME, SMASH, VARIANT 

In Boards and Schematics
Elements can be assigned a value, e.g. '1k' for a resistor or '10uF' for a capacitor. This is 
done with the VALUE command. The command selects an element and opens a popup menu 
that allows you to enter or to change a value. 

If you type in a value before you select an element, then all of the subsequently selected 
elements receive this value. This is very useful if you want for instance a number of 
resistors to have the same value. 

If the parameters name and value are specified, the element name gets the specified value. 

The VALUE command can only be used in the default assembly variant. If you want to 
change the value of another assembly variant, you need to use the VARIANT command. 

Example
VALUE R1 10k R2 100k

In this case more than one element has been assigned a value. This possibility can be used in 
script files: 

VALUE R1   10k \
      R2  100k \
      R3  5.6k \
      C1  10uF \
      C2  22nF \
      ...

The '\' prevents the following line from being mistaken for an EAGLE key word. 

In Device Mode
If the VALUE command is used in the device edit mode, the parameters ON and OFF may 
be used: 

On: Permits the actual value to be changed in the schematic. 

Off: Automatically enters the actual device name into the schematic (e.g.74LS00N). The 
user can only modify this value after a confirmation. 



VARIANT
Function 

Manages assembly variants. 
Syntax 

VARIANT
VARIANT name part_name [NO]POPULATE [ value [ technology ] ];
VARIANT [ + | - ] name; 

See also VALUE, TECHNOLOGY 

By default all parts of the schematic are populated on the board (provided they have a 
package). However, sometimes different variants of a design my require that some parts are 
not populated, or that they have different values or technologies than the default. The 
VARIANT command allows you to define which parts are actually populated in a given 
assembly variant, and to give them particular values and technologies. 

name is the name of the variant. It is treated case-insensitive and must be enclosed in single 
quotes if it contains blanks or '+' or '-'. 

If part_name followed by the keyword POPULATE or NOPOPULATE is given, a variant of 
the given name is created for that part, in which it will be marked as either "populated" or 
"not populated". 

Parts that are not populated in the current assembly variant are indicated with an X drawn 
over their entire bounding rectangle in the schematic. In the board anything that is related to 
actually placing the part on the board (like placeplan, names, values etc.) is not drawn in 
such a case. 

The optional value and technology (which is only applicable in a schematic) can be used to 
further refine the variant. A value may only be given if the part's device set has its "user 
value" parameter enabled. If only the technology shall be specified without using a different 
value, an empty string ('') can be entered for the value. 

A new variant can be created by preceding name with a '+'. If a variant with that name 
already exists, nothing happens. 

If the variant name is preceded with a '-', the given variant will be deleted. If name is 
'*', all variants will be deleted. Unless this command is used in a script, a confirmation 
prompt will ask the user whether this action should really be taken. 

Giving only a variant name will switch the whole project to that variant. This means that all 
"populate" flags, values and technologies will appear as specified in that variant for each 
part. Using an empty string ('') here switches to the default assembly variant, which the 
same as if there were no variants at all. Note that when loading a drawing it is always in its 
default state, with no assembly variant selected. 

If used without any parameters, a dialog will open that allows you to manage all assembly 
variants. 

The name of the current assembly variant can be displayed by using the text variable 
>ASSEMBLY_VARIANT. 

The commands ADD, CHANGE PACKAGE | TECHNOLOGY, REPLACE, UPDATE and 
VALUE can only be used if no assembly variant is active. 



The COPY command doesn't copy assembly variants. 

VIA
Function 

Adds vias to a board. 
Syntax 

VIA ['signal_name'] [diameter] [shape] [layers] [flags] ..�  

See also SMD, CHANGE, DISPLAY, SET, PAD, Design Rules 

When the VIA command is active, a via symbol is attached to the cursor. Pressing the left 
mouse button places a via at the current position. The via is added to a signal if it is placed 
on an existing signal wire. If you try to connect different signals, EAGLE will ask you if 
you really want to connect them. 

Signal name
The signal_name parameter is intended mainly to be used in script files that read in 
generated data. If a signal_name is given, all subsequent vias will be added to that 
signal, and no automatic checks will be performed.
This feature should be used with great care because it could result in short circuits, if a 
via is placed in a way that it would connect wires belonging to different signals. Please 
run a Design Rule Check after using the VIA command with the signal_name 
parameter! 

Via diameter
Entering a number changes the diameter of the via (in the actual unit) and the value remains 
in use for further vias. Via diameters can be up to 0.51602 inch (13.1 mm). 

The drill diameter of the via is the same as the diameter set for pads. It can be changed with 

CHANGE DRILL diameter �

Shape
A via can have one of the following shapes: 

Square
Round
Octagon 

These shapes only apply to the outer layers (Top and Bottom). In inner layers the shape is 
always "round". 

Vias generate drill symbols in the Drills layer and the solder stop mask in the tStop/bStop 
layers. 

Like the diameter, the via shape can be entered while the VIA command is active, or it can 
be changed with the CHANGE command. The shape then remains valid for the next vias 
and pads. 



Note that the actual shape and diameter of a via will be determined by the Design Rules of 
the board the via is used in. 

Layers
The layers parameter defines the layers this via shall cover. The syntax is from-to, 
where 'from' and 'to' are the layer numbers that shall be covered. For instance 2-7 would 
create a via that goes from layer 2 to layer 7 (7-2 would have the same meaning). If that 
exact via is not available in the layer setup of the Design Rules, the next longer via will be 
used (or an error message will be issued in case no such via can be set). 

Flags
The following flags can be used to control the appearance of a via: 

STOP 
always generate solder stop 
mask

By default a via with a drill diameter that is less than or equal to the value of the Design 
Rules parameter "Masks/Limit" will not have a solder stop mask. The above STOP flag can 
be used to force a solder stop mask for a via. 

WINDOW
Function 

Zooms in and out of a drawing. 
Syntax 

WINDOW;
WINDOW ;�
WINDOW  ;� �
WINDOW   � � �
WINDOW scale_factor
WINDOW FIT
WINDOW LAST 

Mouse keys 
Left&Drag defines a rectangular window (shortcut for "  ;� � "). 

Keyboard 
Alt+F2: WINDOW FIT Fit drawing on the screen
F2: WINDOW; Redraw screen
F3: WINDOW 2 Zoom in by a factor of 2
F4: WINDOW 0.5 Zoom out by a factor of 2
F5: WINDOW (@); Cursor pos. is new center (if a command is active) 

The WINDOW command is used to zoom in and out of the drawing and to change the 
position of the drawing on the screen. The command can be used with up to three mouse 
clicks. If there are fewer, it must be terminated with a semicolon. 

Refresh screen
If you use the WINDOW command followed by a semicolon, EAGLE redraws the screen 
without changing the center or the scale. This is useful if error messages cover part of the 



drawing. 

New center
The WINDOW command with one point causes that point to become the center of a new 
screen display of the drawing. The scaling of the drawing remains the same. You can also 
use the sliders of the working area to move the visible area of the drawing. The function key 
F5 causes the current position of the cursor to be the new center. 

Corner points
The WINDOW command with two points defines a rectangle with the specified points at 
opposite corners. The rectangle expands to fill the screen providing a close-up view of the 
specified portion of the drawing. 

New center and zoom
You can use the WINDOW command with three points. The first point defines the new 
center of the drawing and the display becomes either larger or smaller, depending on the 
ratios of the spacing between the other points. In order to zoom in, the distance between 
point 1 and point 3 should be greater than the distance between point 1 and 2; to zoom out 
place point 3 between points 1 and 2. 

Zoom in and out
WINDOW 2;

Makes the elements appear twice as large. 

WINDOW 0.5;

Reduces the size of the elements by a factor of two. 

You can specify an integer or real number as the argument to the WINDOW command to 
scale the view of the drawing by the amount entered. The center of the window remains the 
same. 

The whole drawing
WINDOW FIT;

fits the entire drawing on the screen. 

Back to the previous window
WINDOW LAST;

switches back to the previous window selection. A window selection is stored by every 
WINDOW command, except for zoom-only WINDOW commands and modifications of the 
window selection with the mouse. 



Very large zoom factors
By default the maximum zoom factor is limited in such a way that an area of 1mm (about 
40mil) in diameter will be shown using the full editor window. If you need to zoom in 
further, you can uncheck "Options/User interface/Limit zoom factor" and will then be able 
to zoom in all the way until the finest editor grid can be seen. 

When zooming very far into a drawing, the following things may happen: 

• Texts that are not using the vector font may not be shown if they are larger than the 
editor window. 

• Circles and Arcs are approximated and therefore may not appear at their exact 
location (especially if they have a very small width). 

• Whether or not the finest grid will be visible when zooming all the way in depends 
on your screen resolution, the editor window size and the value of 
"Options/Set/Misc/Min. visible grid size". 

Parameter Aliases
Parameter aliases can be used to define certain parameter settings to the WINDOW 
command, which can later be referenced by a given name. The aliases can also be accessed 
by clicking on the "WINDOW Select" button and holding the mouse button pressed until the 
list pops up. A right click on the button also pops up the list. 

The syntax to handle these aliases is: 

WINDOW = name parameters 
Defines the alias with the given name to expand to the given parameters. The name may 
consist of any number of letters, digits and underlines, and is treated case insensitive. It must 
begin with a letter or underline and may not be one of the option keywords. 

WINDOW = name @ 
Defines the alias with the given name to expand to the current window selection. 

WINDOW = ? 
Asks the user to enter a name for defining an alias for the current window settings. 

WINDOW = name 
Allows the user to select a window that will be defined as an alias under the given name. 

WINDOW = name; 
Deletes the alias with the given name. 

WINDOW name 
Expands the alias with the given name and executes the WINDOW command with the 
resulting set of parameters. The name may be abbreviated and there may be other parameters 
before and after the alias (even other aliases). Note that in case name is an abbreviation, 
aliases have precedence over other parameter names of the command. 

Example: 

WINDOW = MyWindow (0 0) (4 3); 

Defines the alias "MyWindow" which, when used as in 

WINDOW myw 

will zoom to the given window area. Note the abbreviated use of the alias and the case 
insensitivity. 



WIRE
Function 

Adds wires (tracks) to a drawing. 
Syntax 

WIRE ['signal_name'] [width]  ..� �
WIRE ['signal_name'] [width] [ROUND | FLAT]  [curve | @radius]�  
..�  

Mouse keys 
Center selects the layer.
Right changes the wire bend style (see SET Wire_Bend).
Shift+Right reverses the direction of switching bend styles.
Ctrl+Left when starting a wire snaps it to the next existing wire end point.
Ctrl+Right toggles between corresponding bend styles.
Ctrl+Left when placing a wire end point defines arc radius. 

See also MITER, SIGNAL, ROUTE, CHANGE, NET, BUS, DELETE, RIPUP, ARC 

The WIRE command is used to add wires (tracks) to a drawing. The wire begins at the first 
point specified and runs to the second. Additional points draw additional wire segments. 
Two mouse clicks at the same position finish the wire and a new one can be started at the 
position of the next mouse click. 

Depending on the currently active wire bend, one or two wire segments will be drawn 
between every two points. The wire bend defines the angle between the segments and can 
be changed with the right mouse button (holding the Shift key down while clicking the right 
mouse button reverses the direction in which the bend styles are gone through, and the Ctrl 
key makes it toggle between corresponding bend styles). 

Pressing the center mouse button brings up a popup menu from which you may select the 
layer into which the wire will be drawn. 

The special keywords ROUND and FLAT, as well as the curve parameter, can be used to 
draw an arc (see below). 

Starting a WIRE with the Ctrl key pressed snaps the starting point of the new wire to the 
coordinates of the closest existing wire. This is especially useful if the existing wire is off 
grid. It also adjusts the current width, layer and style to those of the existing wire. If the 
current bend style is 7 ("Freehand"), the new wire will form a smooth continuation of the 
existing wire. 

Signal name
The signal_name parameter is intended mainly to be used in script files that read in 
generated data. If a signal_name is given, all subsequent wires will be added to that 
signal and no automatic checks will be performed.
This feature should be used with great care because it could result in short circuits, if a 
wire is placed in a way that it would connect different signals. Please run a Design Rule 
Check after using the WIRE command with the signal_name parameter! 

Wire Width
Entering a number after activating the WIRE command changes the width of the wire (in the 



present unit) which can be up to 0.51602 inch (13.1 mm). 

The wire width can be changed with the command 

CHANGE WIDTH width �

at any time. 

Wire Style
Wires can have one of the following styles: 

• Continuous 
• LongDash 
• ShortDash 
• DashDot 

The wire style can be changed with the CHANGE command. 

Note that the DRC and Autorouter will always treat wires as "Continuous", even if their 
style is different. Wire styles are mainly for electrical and mechanical drawings and should 
not be used on signal layers. It is an explicit DRC error to use a non-continuous wire as part 
of a signal that is connected to any pad. 

Signals in Top, Bottom, and Route Layers
Wires (tracks) in the layers Top, Bottom, and ROUTE2...15 are treated as signals. If you 
draw a wire in either of these layers starting from an existing signal, then all of the segments 
of this wire belong to that signal (only if the center of the wire is placed exactly onto the 
center of the existing wire or pad). If you finish this drawing operation with a wire segment 
connected to a different signal, then EAGLE will ask you if you want to connect the two 
signals. 

Note that EAGLE treats each wire segment as a single object (e.g. when deleting a wire). 

When the WIRE command is active the center mouse button can be used to change the layer 
on which the wire is drawn. 

Do not use the WIRE command for nets, buses, and airwires. See NET, BUS and SIGNAL. 

Drawing Arcs
Wires and arcs are basically the same objects, so you can draw an arc either by using the 
ARC command, or by adding the necessary parameters to the WIRE command. To make a 
wire an arc it needs either the curve parameter, which defines the "curvature" of the arc, or 
the @radius parameter, which defines the radius of the arc (note the '@', which is 
necessary to be able to tell apart curve and radius). 

The valid range for curve is ]-360..+360[ (without the limits +-360), and its value means 
what part of a full circle the arc consists of. A value of 90, for instance, would result in a 
90° arc, while 180 would give you a semicircle. Full circles cannot be created this way 
(for this use the CIRCLE command). Positive values for curve mean that the arc is drawn in 
a mathematically positive sense (i.e. counterclockwise). If curve is 0, the arc is a straight 
line ("no curvature"), which is actually a wire. Note that in order to distinguish the curve 



parameter from the width parameter, it always has to be given with a sign ('+' or '-'), 
even if it is a positive value.

As an example, the command 

WIRE (0 0) +180 (0 10);

would draw a semicircle from the point (0 0) to (0 10), in counterclockwise direction. 

If a radius is given, the arc will have that radius. Just like the curve parameter, radius also 
must have a sign in order to determine the arcs orientation. For example, the command 

WIRE (0 0) @+100 (0 200);

would draw a semicircle from the point (0 0) to (0 200) (with a radius of 100), in 
counterclockwise direction. Note that if the end point is more than twice the radius away 
from the start point, a straight line will be drawn. 

The arc radius can also be defined by placing the wire end point with the Ctrl key pressed 
(typically at the center of the circle on which the arc shall lie). In that case the point is not 
taken as an actual end point, but is rather used to set the radius of an arc. You can then move 
the cursor around and place an arc with the given radius (the right mouse button together 
with Ctrl will toggle the arc's orientation). If you move the cursor more than twice the 
radius away from the start point, a straight line will be drawn. 

In order to be able to draw any arc with the WIRE command (which is especially important 
for generated script files), the keywords ROUND and FLAT are also allowed in the WIRE 
command. Note, though, that these apply only to actual arcs (straight wires always have 
round endings). By default, arcs created with the WIRE command have round endings. 

WRITE
Function 

Saves the current drawing or library. 
Syntax 

WRITE;
WRITE name
WRITE @name 

The WRITE command is used to save a drawing or library. If 'name' is entered, EAGLE will 
save the file under the new name. 

The file name may also be entered with a pathname if it is to be saved in another directory. 
If no pathname is given, the file is saved in the project directory. 

If the new name is preceded with a @, the name of the loaded drawing will also be changed 
accordingly. The corresponding board/schematic will then also be saved automatically under 
this name and the UNDO buffer will be cleared. 

If WRITE is selected from the menu, a popup window will appear asking for the name to 
use (current drawing name is default). This name may be edited and accepted by clicking 
the OK button. Pressing the ESCAPE key or clicking the CANCEL button cancels the 
WRITE command. 

To assure consistency for Forward&Back Annotation between board and schematic 



drawings, the WRITE command has the following additional functionality: 

• when a board/schematic is saved under the same name, the corresponding 
schematic/board is also saved if it has been modified 

• when a board/schematic is saved under a different name, the user will be asked 
whether he also wants to save the schematic/board under that different name 

• saving a drawing under a different name does not clear the "modified" flag 

Generating Output
• Printing   
• CAM Processor   
• Outlines data   

Printing
The parameters for printing to the system printer can be modified through the following 
three dialogs: 

• Printing a Drawing   
• Printing a Text   
• Printer Page Setup   

See also PRINT 

Printing a Drawing
If you enter the PRINT command without a terminating ';', or select Print from the 
context menu of a drawing's icon in the Control Panel, you will be presented a dialog with 
the following options: 

Paper
Selects which paper format to print on. 

Orientation
Selects the paper orientation. 

Preview
Turns the print preview on or off. 

Mirror
Mirrors the output. 

Rotate
Rotates the output by 90°. 



Upside down
Rotates the drawing by 180°. Together with Rotate the drawing is rotated by a total of 270°. 

Black
Ignores the color settings of the layers and prints everything in black. 

Solid
Ignores the fill style settings of the layers and prints everything in solid. 

Scale factor
Scales the drawing by the given value. 

Page limit
Defines the maximum number of pages you want the output to use. In case the drawing does 
not fit on the given number of pages, the actual scale factor will be reduced until it fits. The 
default value of 0 means no limit. 

All
All sheets of the schematic will be printed (this is the default when selecting Print from the 
context menu of a schematic drawing's icon). 

From...to
Only the given range of sheets will be printed. 

This
Only the sheet that is currently being edited will be printed (this is the default when using 
the PRINT command from a schematic editor window). 

Printer...
Invokes the system printer dialog, which enables you to choose which printer to use and to 
set printer specific parameters. 

PDF...
Creates a PDF (Portable Document Format) file with the given print settings. 

The remaining options are used for the page setup. 

Printing a Text
If you select Print from the context menu of a text file's icon in the Control Panel, or from 



the File menu of the Text Editor, you will be presented a dialog with the following options: 

Wrap long lines
Enables wrapping lines that are too long to fit on the page width. 

Printer...
Invokes the system printer dialog, which enables you to choose which printer to use and to 
set printer specific parameters. 

PDF...
Creates a PDF (Portable Document Format) file with the given print settings. 

The remaining options are used for the page setup. 

Printer Page Setup
The Print dialog provides several options that are used to define how a drawing or text shall 
be placed on the paper. 

Border
Defines the left, top, right and bottom borders. The values are either in millimeters or 
inches, depending on which unit results in fewer decimals. 

The default border values are taken from the printer driver, and define the maximum 
drawing area your particular printer can handle. You can enter smaller values here, but your 
printer hardware may or may not be able to print arbitrarily close to the paper edges. 

After changing the printer new hardware minimums may apply and your border values may 
be automatically enlarged as necessary to comply with the new printer. Note that the values 
will not be decreased automatically if a new printer would allow smaller values. To get the 
smallest possible border values you can enter 0 in each field, which will then be limited to 
the hardware minimum. 

Calibrate
If you want to use your printer to produce production layout drawings, you may have to 
calibrate your printer to achieve an exact 1:1 reproduction of your layout. 

The value in the X field is the calibration factor to use in the print head direction, while the 
value in the Y field is used to calibrate the paper feed direction. 

IMPORTANT NOTE: When producing production layout drawings with your printer, 
always check the final print result for correct measurements! 

The default values of 1 assume that the printer produces exact measurements in both 
directions. 



Aligment
Defines the vertical and horizontal alignment of the drawing on the paper. 

Caption
Activates the printing of a caption line, containing the time and date of the print as well as 
the file name. 

If the drawing is mirrored, the word "mirrored" will appear in the caption, and if the scale 
factor is not 1.0 it will be added as f=... (the scale factor is given with 4 decimal digits, so 
even if f=1.0000 appears in the caption the scale factor will not be exactly 1.0). 

CAM Processor
The CAM Processor allows you to output any combination of layers to a device or file. 

The following help topics lead you through the necessary steps from selecting a data file to 
configuring the output device: 

• Select the data file   
• Select the output device type   
• Select the output file   
• Select the plot layers   
• Adjust the device parameters   
• Adjust the flag options   

The CAM Processor allows you to combine several sets of parameter settings to form a 
CAM Processor Job, which can be used to produce a complete set of output files with a 
single click of a button. 

See also printing to the system printer 

Main CAM Menu
The Main CAM Menu is where you select which file to process, edit drill rack and aperture 
wheel files, and load or save job files. 

File
Open Board... open a board file for processing

Drill rack... open a drill rack file for editing
Wheel... open an aperture wheel file for editing
Job... switch to an other job (or create a new 
one)

Save job... save the current job
Close close the CAM Processor window
Exit exit from the program

Layer
Deselect all deselect all layers



Show selected 
show only the selected 
layers

Show all show all layers

Window
Control Panel switch to the Control Panel

1 Schematic - ... 
switch to window number 
1

2 Board - ... 
switch to window number 
2

Help
General help opens a general help page
Contents opens the help table of contents
CAM Processor displays help for the CAM Processor

Job help 
displays help about the Job 
mechanism

Device help displays help about output devices

CAM Processor Job
A CAM Processor Job consists of several Sections, each of which defines a complete set of 
CAM Processor parameters and layer selections. 

A typical CAM Processor job could for example have two sections, one that produces 
photoplotter data for the Top layer, and another that produces the data for the bottom layer. 

Section
The Section selector shows the currently active job section. By pressing the button you can 
select any of the sections you have defined previously with the Add button. 

Prompt
If you enter a text in this field, the CAM Processor will prompt you with this message 
before processing that particular job section. For example you might want to change the 
paper in your pen plotter for each plot, so the message could be "Please change paper!". 
Each job section can have its own prompt message, and if there is no message the section 
will be processed immediately. 

Add
Click on the Add button to add a new section to the job. You will be asked for the name of 
that new job section. The new job section will be created with all parameters set to the 
values currently shown in the menu.
Please note that if you want to create a new job section, you should first add that new 
section and then modify the parameters. Otherwise, if you first modify the parameters of 
the current section and then add a new section, you will be prompted to confirm whether the 
modifications to the current section shall be saved or not. 



Del
Use the Del button to delete the current job section. You will be prompted to confirm 
whether you really want to delete that section. 

Process Section
The Process Section button processes the current job section, as indicated in the Section 
selector. 

Process Job
The Process Job button processes the entire job by processing each section in turn, starting 
with the first section. What happens is the same as if you would select every single section 
with the Section selector and press the Process Section button for each section - just a lot 
more convenient! 

Output Device
The Output Device defines the kind of output the CAM Processor is to produce. You can 
select from various device types, like photo plotters, drill stations etc. 

Device
Clicking on the button of the Device selector opens a list of all available output devices. 

Scale
On devices that can scale the output you can enter a scaling factor in this field. Values larger 
than 1 will produce an enlarged output, values smaller than 1 will shrink the output. 

You can limit the size of the output to a given number of pages by entering a negative 
number in the Scale field. In that case the default scale factor will be 1.0 and will be 
decreased until the drawing just fits on the given number of pages. For example, entering "-
2" into this field will produce a drawing that does not exceed two pages. Please note that for 
this mechanism to work you will have to make sure that the page width and height is set 
according to your output device. This setting can be adjusted in the Width and Height fields 
or by editing the file eagle.def. 

File
You can either enter the name of the output file directly into this field, or click on the File 
button to open a dialog for the definition of the output file.
If you want to derive the output filename from the input data file, you can enter a partial 
filename (at least an extension, e.g. .gbr), in which case the rest of the filename will be 
taken from the input data filename. 

Wheel
You can either enter the name of the aperture wheel file directly into this field, or click on 



the Wheel button to open a file dialog to select from.
If you want to derive the output filename from the input data file, you can enter a partial 
filename (at least an extension, e.g. .whl), in which case the rest of the filename will be 
taken from the input data filename. 

Rack
You can either enter the name of the drill rack file directly into this field, or click on the 
Rack button to open a file dialog to select from.
If you want to derive the output filename from the input data file, you can enter a partial 
filename (at least an extension, e.g. .drl), in which case the rest of the filename will be 
taken from the input data filename. Some drill devices (like EXCELLON, for instance) can 
automatically generate the necessary drill definitions, in which case this field is not present. 

Device Parameters
Depending on the type of output device you have selected, there are several device specific 
parameters that allow you to adjust the output to your needs: 

• Aperture Wheel File   
• Aperture Emulation   
• Aperture Tolerances   
• Drill Rack File   
• Drill Tolerances   
• Offset   
• Page Size   
• Pen Data   

Aperture Wheel File
A photoplotter usually needs to know which apertures are assigned to the codes used in the 
output file. These assignments are defined in an Aperture Wheel File. 

Examples
D010    round     0.004
D040    square    0.004
D100    rectangle 0.060 x 0.075
D104    oval      0.030 x 0.090
D110    draw      0.004

Note that the file may contain several apertures that share the same D-code, as long as all of 
these have a type from draw or round, and have the same size. This can be used to map 
apertures that effectively result in the same drawing to a common D-code. 

Aperture Emulation
If the item "Apertures" is selected, apertures not available are emulated with smaller 
apertures. If this item is not selected, no aperture emulation will be done at all. 



Please note that aperture emulation can cause very long plot times (costs!). 

Aperture Tolerances
If you enter tolerances for draw and/or flash apertures the CAM Processor uses apertures 
within the tolerances, provided the aperture with the exact value is not available. 

Tolerances are entered in percent. 

Please be aware that your design rules might not be kept when allowing tolerances! 

Drill Rack File
If a drill station driver can't automatically generate the necessary drill definitions, it needs to 
know which drill diameters are assigned to the codes used in the output file. These 
assignments are defined in a Drill Rack File. 

This file can be generated with the help of a User Language Program called drillcfg.ulp, that 
is stored in your EAGLE's ULP directory. Use the RUN command to start it. 

Example
T01   0.010
T02   0.016
T03   0.032
T04   0.040
T05   0.050
T06   0.070

Drill Tolerances
If you enter tolerances for drills the CAM Processor uses drill diameters within the 
tolerances, provided the drill with the exact value is not available. 

Tolerances are entered in percent. 

Offset
Offset in x and y direction (inch, decimal number). 

Can be used to position the origin of plotters at the lower left corner. 

Printable Area

Height
Printable area in Y direction (inch). 

Width
Printable area in X direction (inch). 



Please note that the CAM Processor divides a drawing into several parts if the rectangle 
which includes all objects of the file (even the ones not printed) doesn't fit into the printable 
area. 

Pen Data

Diameter
Pen diameter in mm. Is used for the calculation of lines when areas have to be filled. 

Velocity
Pen velocity in cm/s for pen plotters which can be adjusted to different speeds. 

The plotter default speed is selected with the value 0. 

Defining Your Own Device Driver
The drivers for output devices are defined in the text file eagle.def. There you find details on 
how to define your own driver. It is advisable to copy the whole section of an existing driver 
of the same device category and to edit the parameters which are different. 

Please use a text editor which doesn't place control characters into the file. 

Output File
The Output File contains the data produced by the CAM Processor. 

The following file names are commonly used: 

-------------------------------------------------------
File   Layers               Meaning
-------------------------------------------------------
*.cmp  Top, Via, Pad        Component side
*.ly2  Route2, Via, Pad     Inner signal layer
*.ly3  Route3, Via, Pad     Inner signal layer
...                         ...
*.sol  Bot, Via, Pad        Solder side
*.plc  tPl, Dim, tName,     Silkscreen comp. side
*.pls  bPl, Dim, bName,     Silkscreen solder side
*.stc  tStop                Solder stop mask comp. side
*.sts  bStop                Solder stop mask sold. side
*.drd  Drills, Holes        Drill data for NC drill st.
-------------------------------------------------------

Placeholders
The output file name can either be entered directly, or can be dynamically composed using 
placeholders. A placeholder consists of a percentage character ('%') followed by a letter. 
The following placeholders are defined: 

%D{xxx} a string that is inserted only into the data file 
name



%E the loaded file's extension (without the '.')
%H the user's home directory
%I{xxx} a string that is inserted only into the info file name
%L the layer range for blind&buried vias (see below)

%N 
the loaded file's name (without path and 
extension)

%P the loaded file's directory path (without file name)
%% the character '%'
For example, the output file definition 

%N.cmp%I{.info} 

would create boardname.cmp for the data file and boardname.cmp.info for the 
info file (in case the selected output device generates an info file). 

Drill data with blind&buried vias
If the board contains blind or buried vias, the CAM Processor generates a separate drill file 
for each via length that is actually used in the board. The file names are built by adding the 
number of the start and end layer to the base file name, as in 

boardname.drl.0104

which would be the drill file for the layer stack 1-4. If you want to have the layer numbers at 
a different position, you can use the placeholder %L, as in 

%N.%L.drl

which would result in 

boardname.0104.drl

The drill info file name is always generated without layer numbers, and any '.' before the %L 
will be dropped. Any previously existing files that would match the given drill file name 
pattern, but would not result from the current job, will be deleted before generating any new 
files. There will be one drill info file per job, which contains (amoung other information) a 
list of all generated drill data files. 

Flag Options

Mirror
Mirror output. This option normally causes negative coordinates, therefore it should be used 
only if "pos. Coord." is selected, too. 

Rotate
Rotate drawing by 90 degrees. This option normally causes negative coordinates, therefore 
it should be used only if "pos. Coord." is selected, too. 



Upside down
Rotate the drawing by 180 degrees. Together with Rotate, the drawing is rotated by a total of 
270 degrees. This option normally causes negative coordinates, therefore it should be used 
only if "pos. Coord." is selected, too. 

pos. Coord
Offsets the output so that negative coordinates are eliminated and the drawing is referenced 
to the origin of the output device. This is advisable for devices which generate error 
messages if negative coordinates are detected. 

Quickplot
Draft output which shows only the outlines of objects (subject to availability on the selected 
output device). 

Optimize
Activates the optimization of the drawing sequence for plotters. 

Fill pads
Pads will be filled. This function can be properly executed only with generic devices, like 
PostScript.
If this option is not selected, the drill holes of pads will be visible on the output. 

Layers and Colors
Select the layer combination by clicking the check boxes in the Layer list. 

If you have selected an output device that supports colors, you can enter the color number in 
the Color field of each layer. 

The following layers and output file names are commonly used to create the output: 

-------------------------------------------------------
File   Layers               Meaning
-------------------------------------------------------
*.cmp  Top, Via, Pad        Component side
*.ly2  Route2, Via, Pad     Inner signal layer
*.ly3  Route3, Via, Pad     Inner signal layer
...                         ...
*.sol  Bot, Via, Pad        Solder side
*.plc  tPl, Dim, tName,     Silkscreen comp. side
*.pls  bPl, Dim, bName,     Silkscreen solder side
*.stc  tStop                Solder stop mask comp. side
*.sts  bStop                Solder stop mask sold. side
*.drd  Drills, Holes        Drill data for NC drill st.
-------------------------------------------------------



Outlines data
EAGLE can produce outlines data which can be used for milling prototype boards. 

The User Language Program outlines.ulp implements the entire process necessary to do this. 
The following is a detailed description of what exactly has to be done to produce outlines 
data with EAGLE. 

Preparing the board
Outlines data is produced by defining a POLYGON in the layer for which the outlines shall 
be calculated. This polygon must have the following properties: 

• its name must be _OUTLINES_ 
• it must be the only object in the signal named _OUTLINES_ 
• its Rank must be '6' 
• its Width must be the same as the diameter of the milling tool 
• it must be large enough to cover the entire board area 

If a polygon with these properties is present in your board, the RATSNEST command will 
calculate it in such a way that its contours correspond to the lines that have to be drawn by 
the milling tool to isolate the various signals from each other. The fillings of the calculated 
polygon define what has to be milled out if you want to completely remove all superfluous 
copper areas. 

Extracting the data
The outlines data can be extracted from the board through a User Language Program. The 
outlines.ulp program that comes with EAGLE implements this entire process. If you want to 
write your own ULP you can use outlines.ulp as a starting point. See the help page for 
UL_POLYGON for details about how to retrieve the outlines data from a polygon object. 

Milling tool diameter
The diameter of the milling tool (and thus the Width of the polygon) must be small enough 
to fit between any two different signals in order to be able to isolate them from each other.
Make sure you run a Design Rule Check (DRC) with all Clearance values for different 
signals set to at least the diameter of your milling tool! 

Non-zero values for the Isolate parameter can be used when working sequentially with 
different milling tool diameters in order to avoid areas that have already been milled. 

Cleaning up
Make sure that you always delete the _OUTLINES_ polygon after generating the outlines 
data. Leaving this polygon in your drawing will cause short circuits since this special 
polygon does not adhere to the Design Rules! 

Autorouter
The integrated Autorouter can be started from a board window with the AUTO command. 



The Autorouter is also used as "Follow-me" router in the ROUTE command. 

Please check your license to see whether you have access to the Autorouter module. 

Design Checks
There are two integrated commands that allow you to check your design: 

• Electrical Rule Check (ERC) 
• Design Rule Check (DRC) 

The ERC is performed in a schematic window, and checks the design for electrical 
consistency. 

The DRC is performed in a board window, and checks the design for overlaps, distance 
violations etc. 

Design Rules
Design Rules define all the parameters that the board layout has to follow. 

The Design Rule Check checks the board against these rules and reports any violations. 

The Design Rules of a board can be modified through the Design Rules dialog, which 
appears if the DRC command is selected without a terminating ';'. 

Newly created boards take their design rules from the file 'default.dru', which is searched for 
in the first directory listed in the "Options/Directories/Design rules" path. If no such file is 
present, the program's builtin default values apply. 

Note regarding the values for Clearance and Distance: since the internal resolution of the 
coordinates is 1/10000mm, the DRC can only reliably report errors that are larger than 
1/10000mm. 

File
The File tab shows a description of the current set of Design Rules and allows you to 
change that description (this is strongly recommended if you define your own Design 
Rules). There are also buttons to load a different set of Design Rules from a disk file and to 
save the current Design Rules to disk.
Note that the Design Rules are stored within the board file, so they will be in effect if the 
board file is sent to a board house for production. The "Load..." and "Save as..." buttons are 
merely for copying a board's Design Rules to and from disk. 

If the Design Rules have been modified, the name in the dialog's title will have trailing 
asterisk ('*') to mark the Design Rules as modified. This mark will be removed once the 
Design Rules are explicitly written to disk, or a new set of Design Rules is loaded. 

Layers
The Layers tab defines which signal layers the board actually uses, how thick the copper 
and isolation layers are, and what kinds of vias can be placed (note that this applies only to 
actual vias; so even if no via from layer 1 to 16 has been defined in the layer setup, pads 



will always be allowed). 

The layer setup is defined by the string in the "Setup" field. This string consists of a 
sequence of layer numbers, separated by one of the characters '*' or '+', where '*' 
stands for core material (also known as FR4 or something similar) and '+' stands for 
prepreg (or any other kind of isolation material). The actual core and prepreg sequence has 
no meaning to EAGLE other than varying the color in the layer display at the top left corner 
of this tab (the actual multilayer setup always needs to be worked out with the board 
manufacturer). The vias are defined by enclosing a sequence of layers with (...). So the 
setup string 

(1*16)

would mean a two layer board, using layers 1 and 16 and vias going through the entire 
board (this is also the default value).
When building a multilayer board the setup could be something like 

((1*2)+(15*16))

which is a four layer board with layer pairs 1/2 and 15/16 built on core material and vias 
drilled through them, and finally the two layer pairs pressed together with prepreg between 
them, and vias drilled all the way through the entire board.
Besides vias that go trough an entire layer stack (which are commonly referred to as buried 
vias in case they have no connection to the Top and Bottom layer) there can also be vias that 
are not drilled all the way through a layer stack, but rather end at a layer inside that stack. 
Such vias are known as blind vias and are defined in the "Setup" string by enclosing a 
sequence of layers with [t:...:b], where t and b are the layers up to which that via will 
go from the top or bottom side, respectively. A possible setup with blind vias could be 

[2:1+((2*3)+(14*15))+16:15]

which is basically the previous example, with two additional outer layers that are connected 
to the next inner layers by blind vias. It is also possible to have only one of the t or b 
parameters, so for instance 

[2:1+((2*3)+(15*16))]

would also be a valid setup. Finally, blind vias are not limited to starting at the Top or 
Bottom layer, but may also be used in inner layer stacks, as in 

[2:1+[3:2+(3*4)+5:4]+16:5]

A blind via from layer a to layer b also implements all possible blind vias from layer a to all 
layers between layers a and b, so 

[3:1+2+(3*16)]

would allow blind vias from layer 1 to 2 as well as from 1 to 3. 

Clearance
The Clearance tab defines the various minimum clearance values between objects in signal 
layers. These are usually absolute minimum values that are defined by the production 
process used and should be obtained from your board manufacturer.



The actual minimum clearance between objects that belong to different signals will also be 
influenced by the net classes the two signals belong to. 

Note that a polygon in the special signal named _OUTLINES_ will be used to generate 
outlines data and as such will not adhere to these clearance values. 

Distance
The Distance tab defines the minimum distance between objects in signal layers and the 
board dimensions, as well as that between any two drill holes. Note that only signals that are 
actually connected to at least one pad or smd are checked against the board dimensions. 
This allows edge markers to be drawn in the signal layer without generating DRC errors. 

For compatibility with version 3.5x the following applies: If the minimum distance between 
copper and dimension is set to 0 objects in the Dimension layer will not be taken into 
account when calculating polygons (except for Holes, which are always taken into account). 
This also disables the distance check between copper and dimension objects. 

Sizes
The Sizes tab defines the minimum width of any objects in signal layers and the minimum 
drill diameter. These are usually absolute minimum values that are defined by the 
production process used and should be obtained from your board manufacturer.
The actual minimum width of signal wires and drill diameter of vias will also be influenced 
by the Net Class the signal belongs to. 

Restring
The Restring tab defines the width of the copper ring that has to remain after the pad or via 
has been drilled. Values are defined in percent of the drill diameter and there can be an 
absolute minimum and maximum limit. Restrings for pads can be different for the top, 
bottom and inner layers, while for vias they can be different for the outer and inner layers.
If the actual diameter of a pad (as defined in the library) or a via would result in a larger 
restring, that value will be used in the outer layers. Pads in library packages can have their 
diameter set to 0, so that the restring will be derived entirely from the drill diameter. 

Shapes
The Shapes tab defines the actual shapes for smds and pads.
Smds are normally defined as rectangles in the library (with a "roundness" of 0), but if your 
design requires rounded smds you can specify the roundness factor here.
Pads are normally defined as octagons in the library (long octagons where this makes 
sense), and you can use the combo boxes to specify whether you want to have pads with the 
same shapes as defined in the library, or always square, round or octagonal. This can be set 
independently for the top and bottom layer.
If the "first" pad of a package has been marked as such in the library it will get the shape as 
defined in the third combo box (either round, square or octagonal, or no special shape).
The Elongation parameters define the appearance of pads with shape Long or Offset. 



Supply
The Supply tab defines the Thermal isolation between pads and signal polygons. 

Masks
The Masks tab defines the dimensions of solder stop and cream masks. They are given in 
percent of the smaller dimension of smds, pads and vias and can have an absolute minimum 
and maximum value.
Solder stop masks are generated for smds, pads and those vias that have a drill diameter that 
exceeds the given Limit parameter.
Cream masks are generated for smds only. 

Misc
The Misc tab allows you to turn on a grid and angle check. 

Cross-references
There are various methods that can be used to create cross-references in EAGLE schematic 
drawings. The following sections describe each of them. 

• Cross-reference labels   
• Part cross-references   
• Contact cross-references   

Cross-reference labels
A plain label can be used to make the name of a net visible in a schematic. If a label has the 
xref property activated, its behavior is changed so that it becomes a cross-reference label. 

Cross-reference labels are typically placed at the right or left border of a schematic sheet, 
and indicate the next (or previous) sheet a particular net is used on. See the LABEL 
command for a detailed description of how this works. 

Part cross-references
Electrical schematics often use electro-mechanical relays, consisting of a coil and one or 
more contact symbols. If the coil and contacts are distributed over various schematic sheets, 
it is useful to have each contact indicate which sheet its coil is on. This can be achieved by 
giving the coil gate in the device set an add level of Must (see the ADD command) and 
placing the text variable '>XREF' somewhere in the contacts' symbols (see the TEXT 
command). 

When actually displayed, the '>XREF' text variable will be replaced with the sheet 
number, frame column and row (according to the part cross-reference format) of the Must 
gate of this device. 

See Contact cross-references on how to display the contact locations on the coil's sheet. 



Contact cross-references
On a multi-sheet electrical schematic with electro-mechanical relays that have their coils 
and contacts distributed over various sheets, it is useful to be able to see which sheets the 
individual contacts of a relay are on. EAGLE can automatically display this contact cross-
reference for each relay coil if the following conditions are met. 

The contact symbols need to contain the '>XREF' text variable in order to generate part 
cross-references. 

The gate symbols shall be drawn in a way that the pins extend up and down, and that the 
origin is at the center of the symbol. 

The first contact gate in the device set drawing shall be placed at an x-coordinate of 0, and 
its y-coordinate shall be high enough to make sure its lower pin is in the positive area, 
typically at 100mil. The rest of the contact gates shall be placed to the right of the first one, 
with their origins at the same y-coordinate as the first one. The coil gate can be placed at an 
arbitrary location. 

In the schematic drawing the contact cross-reference will be shown at the same x-coordinate 
as the coil instance, and right below the y-coordinate defined by the text variable 
'>CONTACT_XREF'. This text variable can be defined either in a drawing frame symbol 
or directly on the sheet. If it is present in both, the one in the sheet is taken. The actual text 
will not be visible in the schematic sheet. 

The graphical representation of the contact cross-reference consists of all the gates that have 
an '>XREF' text variable (except for the first Must gate, which is the coil and typically 
doesn't have this variable). The gates are rotated by 90 degrees and are shown from top to 
bottom at the same offsets as they have been drawn from left to right in the device set. Their 
sheet numbers and frame locations are displayed to the right of each gate that is actually 
used. Any other texts that have been defined in the symbol drawings will not be displayed 
when using these symbols for generating the contact cross-reference. 

Note that the contact cross-reference can't be selected with the mouse. If you want to move 
it, move the coil instance and the contact cross-reference will automatically follow it. The 
contact cross-reference may get out of sync in case contact gates are invoked, moved, 
deleted or swapped, or if the '>CONTACT_XREF' text variable is modified. This will 
automatically be updated at the next window refresh. 

User Language
The EAGLE User Language can be used to access the EAGLE data structures and to create 
a wide variety of output files. 

To use this feature you have to write a User Language Program (ULP), and then execute it. 

The following sections describe the EAGLE User Language in detail: 

Syntax lists the rules a ULP file has to follow
Data Types defines the basic data types
Object Types defines the EAGLE objects
Definitions shows how to write a definition
Operators lists the valid operators
Expressions shows how to write expressions



Statements defines the valid statements
Builtins lists the builtin constants, functions etc.

Dialogs 
shows how to implement a graphical frontent to a 
ULP

Writing a ULP
A User Language Program is a plain text file which is written in a C-like syntax. User 
Language Programs use the extension .ulp. You can create a ULP file with any text editor 
(provided it does not insert any additional control characters into the file) or you can use the 
builtin text editor. 

A User Language Program consists of two major items, definitions and statements. 

Definitions are used to define constants, variables and functions to be used by statements. 

A simple ULP could look like this: 

#usage "Add the characters in the word 'Hello'\n"
       "Usage: RUN sample.ulp"
// Definitions:
string hello = "Hello";
int count(string s)
{
  int c = 0;
  for (int i = 0; s[i]; ++i)
      c += s[i];
  return c;
}
// Statements:
output("sample") {
  printf("Count is: %d\n", count(hello));
  }

If the #usage directive is present, its value will be used in the Control Panel to display a 
description of the program. 

If the result of the ULP shall be a specific command that shall be executed in the editor 
window, the exit() function can be used to send that command to the editor window. 

Executing a ULP
User Language Programs are executed by the RUN command from an editor window's 
command line. 

A ULP can return information on whether it has run successfully or not. You can use the 
exit() function to terminate the program and set the return value. 

A return value of 0 means the ULP has ended "normally" (i.e. successfully), while any other 
value is considered as an abnormal program termination. 

The default return value of any ULP is 0. 

When the RUN command is executed as part of a script file, the script is terminated if the 
ULP has exited with a return value other than 0. 

A special variant of the exit() function can be used to send a command to the editor 
window as a result of the ULP. 



Syntax
The basic building blocks of a User Language Program are 

• Whitespace   
• Comments   
• Directives   
• Keywords   
• Identifiers   
• Constants   
• Punctuators   

All of these have to follow certain syntactical rules, which are described in their respective 
sections. 

Whitespace
Before a User Language Program can be executed, it has to be read in from a file. During 
this read in process, the file contents is parsed into tokens and whitespace. 

Any spaces (blanks), tabs, newline characters and comments are considered whitespace and 
are discarded. 

The only place where ASCII characters representing whitespace are not discarded is within 
literal strings, like in 

string s = "Hello World";

where the blank character between 'o' and 'W' remains part of the string. 

If the final newline character of a line is preceded by a backslash (\), the backslash and 
newline character are both discarded, and the two lines are treated as one line: 

"Hello \
World"

is parsed as "Hello World" 

Comments
When writing a User Language Program it is good practice to add some descriptive text, 
giving the reader an idea about what this particular ULP does. You might also want to add 
your name (and, if available, your email address) to the ULP file, so that other people who 
use your program could contact you in case they have a problem or would like to suggest an 
improvement. 

There are two ways to define a comment. The first one uses the syntax 

/* some comment text */

which marks any characters between (and including) the opening /* and the closing */ as 
comment. Such comments may expand over more than one lines, as in 

/* This is a
   multi line comment



*/

but they do not nest. The first */ that follows any /* will end the comment. 

The second way to define a comment uses the syntax 

int i; // some comment text

which marks any characters after (and including) the // and up to (but not including) the 
newline character at the end of the line as comment. 

Directives
The following directives are available: 

#include
#require
#usage

#include
A User Language Program can reuse code in other ULP files through the #include 
directive. The syntax is 

#include "filename"

The file filename is first looked for in the same directory as the current source file (that 
is the file that contains the #include directive). If it is not found there, it is searched for 
in the directories contained in the ULP directory path. 

The maximum include depth is 10. 

Each #include directive is processed only once. This makes sure that there are no 
multiple definitions of the same variables or functions, which would cause errors. 

Portability note
If filename contains a directory path, it is best to always use the forward slash as directory 
separator (even under Windows!). Windows drive letters should be avoided. This way a 
User Language Program will run on all platforms. 

#require
Over time it may happen that newer versions of EAGLE implement new or modified User 
Language features, which can cause error messages when such a ULP is run from an older 
version of EAGLE. In order to give the user a dedicated message that this ULP requires at 
least a certain version of EAGLE, a ULP can contain the #require directive. The syntax 
is 

#require version

The version must be given as a real constant of the form 

V.RRrr



where V is the version number, RR is the release number and rr is the (optional) revision 
number (both padded with leading zeros if they are less than 10). For example, if a ULP 
requires at least EAGLE version 4.11r06 (which is the beta version that first implemented 
the #require directive), it could use 

#require 4.1106

The proper directive for version 5.1.2 would be 

#require 5.0102

#usage
Every User Language Program should contain information about its function, how to use it 
and maybe who wrote it.
The directive 

#usage text [, text...]

implements a standard way to make this information available. 

If the #usage directive is present, its text (which has to be a string constant) will be used 
in the Control Panel to display a description of the program. 

In case the ULP needs to use this information in, for example, a dlgMessageBox(), the 
text is available to the program through the builtin constant usage. 

Only the #usage directive of the main program file (that is the one started with the RUN 
command) will take effect. Therefore pure include files can (and should!) also have 
#usage directives of their own. 

It is best to have the #usage directive at the beginning of the file, so that the Control Panel 
doesn't have to parse all the rest of the text when looking for the information to display. 

If the usage information shall be made available in several langauges, the texts of the 
individual languages have to be separated by commas. Each of these texts has to start with 
the two letter code of the respective language (as delivered by the language() function), 
followed by a colon and any number of blanks. If no suitable text is found for the language 
used on the actual system, the first given text will be used (this one should generally be 
English in order to make the program accessible to the largest number of users). 

Example
#usage "en: A sample ULP\n"
           "Implements an example that shows how to use the EAGLE User 
Language\n"
           "Usage: RUN sample.ulp\n"
           "Author: john@home.org",
       "de: Beispiel eines ULPs\n"
           "Implementiert ein Beispiel das zeigt, wie man die EAGLE User 
Language benutzt\n"
           "Aufruf: RUN sample.ulp\n"
           "Author: john@home.org"



Keywords
The following keywords are reserved for special purposes and must not be used as normal 
identifier names: 

break
case
char
continue
default
do
else
enum
for
if
int
numeric
real
return
string
switch
void
while

In addition, the names of builtins and object types are also reserved and must not be used as 
identifier names. 

Identifiers
An identifier is a name that is used to introduce a user defined constant, variable or function. 

Identifiers consist of a sequence of letters (a b c..., A B C...), digits (1 2 3...) and 
underscores (_). The first character of an identifier must be a letter or an underscore. 

Identifiers are case-sensitive, which means that 

int Number, number;

would define two different integer variables. 

The maximum length of an identifier is 100 characters, and all of these are significant. 

Constants
Constants are literal data items written into a User Language Program. According to the 
different data types, there are also different types of constants. 

• Character constants   
• Integer constants   
• Real constants   
• String constants   

Character Constants
A character constant consists of a single character or an escape sequence enclosed in single 



quotes, like 

'a'
'='
'\n'

The type of a character constant is char. 

Integer Constants
Depending on the first (and possibly the second) character, an integer constant is assumed 
to be expressed in different base values: 

first second constant interpreted as
0 1-7 octal (base 8)
0 x,X hexadecimal (base 16)
1-9 decimal (base 10)
The type of an integer constant is int. 

Examples
16 decimal
020 octal
0x10 hexadecimal

Real Constants
A real constant follows the general pattern 

[-]int.frac[e|E[±]exp]

which stands for 

• optional sign 
• decimal integer 
• decimal point 
• decimal fraction 
• e or E and a signed integer exponent 

You can omit either the decimal integer or the decimal fraction (but not both). You can omit 
either the decimal point or the letter e or E and the signed integer exponent (but not both). 

The type of an real constant is real. 

Examples
Constant Value
23.45e6 23.45 x 10^6
.0 0.0
0. 0.0
1. 1.0
-1.23 -1.23
2e-5 2.0 x 10^-5
3E+10 3.0 x 10^10



.09E34 0.09 x 10^34

String Constants
A string constant consists of a sequence of characters or escape sequences enclosed in 
double quotes, like 

"Hello world\n"

The type of a string constant is string. 

String constants can be of any length (provided there is enough free memory available). 

String constants can be concatenated by simply writing them next to each other to form 
larger strings: 

string s = "Hello" " world\n";

It is also possible to extend a string constant over more than one line by escaping the 
newline character with a backslash (\): 

string s = "Hello \
world\n";

Escape Sequences
An escape sequence consists of a backslash (\), followed by one or more special characters: 

Sequence Value
\a audible bell
\b backspace
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\' single quote
\" double quote

\O 
O = up to 3 octal 
digits

\xH H = up to 2 hex digits
Any character following the initial backslash that is not mentioned in this list will be treated 
as that character (without the backslash). 

Escape sequences can be used in character constants and string constants. 

Examples
'\n'
"A tab\tinside a text\n"
"Ring the bell\a\n"



Punctuators
The punctuators used in a User Language Program are 

[] Brackets
() Parentheses
{} Braces
, Comma
; Semicolon
: Colon
= Equal sign
Other special characters are used as operators in a ULP. 

Brackets
Brackets are used in array definitions 

int ai[];

in array subscripts 

n = ai[2];

and in string subscripts to access the individual characters of a string 

string s = "Hello world";
char c = s[2];

Parentheses
Parentheses group expressions (possibly altering normal operator precedence), isolate 
conditional expressions, and indicate function calls and function parameters: 

d = c * (a + b);
if (d == z) ++x;
func();
void func2(int n) { ... }

Braces
Braces indicate the start and end of a compound statement: 

if (d == z) {
   ++x;
   func();
   }

and are also used to group the values of an array initializer: 

int ai[] = { 1, 2, 3 };

Comma
The comma separates the elements of a function argument list or the parameters of a 



function call: 

int func(int n, real r, string s) { ... }
int i = func(1, 3.14, "abc");

It also delimits the values of an array initializer: 

int ai[] = { 1, 2, 3 };

and it separates the elements of a variable definition: 

int i, j, k;

Semicolon
The semicolon terminates a statement, as in 

i = a + b;

and it also delimits the init, test and increment expressions of a for statement: 

for (int n = 0; n < 3; ++n) {
    func(n);
    }

Colon
The colon indicates the end of a label in a switch statement: 

switch (c) {
  case 'a': printf("It was an 'a'\n"); break;
  case 'b': printf("It was a  'b'\n"); break;
  default:  printf("none of them\n");
  }

Equal Sign
The equal sign separates variable definitions from initialization lists: 

int i = 10;
char c[] = { 'a', 'b', 'c' };

It is also used as an assignment operator. 

Data Types
A User Language Program can define variables of different types, representing the different 
kinds of information available in the EAGLE data structures. 

The four basic data types are 

char for single characters
int for integral values

real 
for floating point 
values



string for textual information
Besides these basic data types there are also high level Object Types, which represent the 
data structures stored in the EAGLE data files. 

The special data type void is used only as a return type of a function, indicating that this 
function does not return any value. 

char
The data type char is used to store single characters, like the letters of the alphabet, or 
small unsigned numbers. 

A variable of type char has a size of 8 bit (one byte), and can store any value in the range 
0..255. 

See also Operators, Character Constants 

int
The data type int is used to store signed integral values, like the coordinates of an object. 

A variable of type int has a size of 32 bit (four byte), and can store any value in the range 
-2147483648..2147483647. 

See also Integer Constants 

real
The data type real is used to store signed floating point values, like the grid distance. 

A variable of type real has a size of 64 bit (eight byte), and can store any value in the 
range ±2.2e-308..±1.7e+308 with a precision of 15 digits. 

See also Real Constants 

string
The data type string is used to store textual information, like the name of a part or net. 

A variable of type string is not limited in it's size (provided there is enough memory 
available). 

Variables of type string are defined without an explicit size. They grow automatically as 
necessary during program execution. 

The elements of a string variable are of type int and can be accessed individually by 
using [index]. The first character of a string has the index 0: 

string s = "Layout";
printf("Third char is: %c\n", s[2]);

This would print the character 'y'. Note that s[2] returns the third character of s! 

A lossless conversion to char is possible for standard ASCII strings: 

string s = "Layout";



char c = s[2];

See also Operators, Builtin Functions, String Constants 

Implementation details
The data type string is actually implemented like native C-type zero terminated strings. 
Looking at the following variable definition 

string s = "abcde";

s[4] is the character 'e', and s[5] is the character '\0', or the integer value 0x00. 
This fact may be used to determine the end of a string without using the strlen() 
function, as in 

for (int i = 0; s[i]; ++i) {
    // do something with s[i]
    }

It is also perfectly ok to "cut off" part of a string by "punching" a zero character into it: 

string s = "abcde";
s[3] = 0;

This will result in s having the value "abc". Note that everything following the zero 
character will actually be gone, and it won't come back by restoring the original character. 
The same applies to any other operation that sets a character to 0, for instance --s[3]. 

Type Conversions
The result type of an arithmetic expression, such as a + b, where a and b are different 
arithmetic types, is equal to the "larger" of the two operand types. 

Arithmetic types are char, int and real (in that order). So if, e.g. a is of type int and b 
is of type real, the result of the expression a + b would be real. 

See also Typecast 

Typecast
The result type of an arithmetic expression can be explicitly converted to a different 
arithmetic type by applying a typecast to it. 

The general syntax of a typecast is 

type(expression)

where type is one of char, int or real, and expression is any arithmetic 
expression. 

When typecasting a real expression to int, the fractional part of the value is truncated! 

See also Type Conversions 



Object Types
The EAGLE data structures are stored in three binary file types: 

• Library (*.lbr) 
• Schematic (*.sch) 
• Board (*.brd) 

These data files contain a hierarchy of objects. In a User Language Program you can access 
these hierarchies through their respective builtin access statements: 

library(L) { ... }
schematic(S) { ... }
board(B) { ... }

These access statements set up a context within which you can access all of the objects 
contained in the library, schematic or board. 

The properties of these objects can be accessed through members. 

There are two kinds of members: 

• Data members 
• Loop members 

Data members immediately return the requested data from an object. For example, in 

board(B) {
  printf("%s\n", B.name);
  }

the data member name of the board object B returns the board's name.
Data members can also return other objects, as in 

board(B) {
  printf("%f\n", B.grid.size);
  }

where the board's grid data member returns a grid object, of which the size data member 
then returns the grid's size. 

Loop members are used to access multiple objects of the same kind, which are contained in 
a higher level object: 

board(B) {
  B.elements(E) {
    printf("%-8s %-8s\n", E.name, E.value);
    }
  }

This example uses the board's elements() loop member function to set up a loop through all 
of the board's elements. The block following the B.elements(E) statement is executed 
in turn for each element, and the current element can be referenced inside the block through 
the name E. 

Loop members process objects in alpha-numerical order, provided they have a name. 

A loop member function creates a variable of the type necessary to hold the requested 
objects. You are free to use any valid name for such a variable, so the above example might 



also be written as 

board(MyBoard) {
  MyBoard.elements(TheCurrentElement) {
    printf("%-8s %-8s\n", TheCurrentElement.name, TheCurrentElement.value);
    }
  }

and would do the exact same thing. The scope of the variable created by a loop member 
function is limited to the statement (or block) immediately following the loop function call. 

Object hierarchy of a Library:
LIBRARY
  GRID
  LAYER
  DEVICESET
    DEVICE
    GATE
  PACKAGE
    CONTACT
      PAD
      SMD
    CIRCLE
    HOLE
    RECTANGLE
    FRAME
    DIMENSION
    TEXT
    WIRE
    POLYGON
      WIRE
  SYMBOL
    PIN
    CIRCLE
    RECTANGLE
    FRAME
    DIMENSION
    TEXT
    WIRE
    POLYGON
      WIRE

Object hierarchy of a Schematic:
SCHEMATIC
  GRID
  LAYER
  LIBRARY
  ATTRIBUTE
  VARIANTDEF
  PART
    ATTRIBUTE
    VARIANT
  SHEET
    CIRCLE
    RECTANGLE
    FRAME
    DIMENSION



    TEXT
    WIRE
    POLYGON
      WIRE
    INSTANCE
      ATTRIBUTE
    BUS
      SEGMENT
        LABEL
          TEXT
          WIRE
        WIRE
    NET
      SEGMENT
        JUNCTION
        PINREF
        TEXT
        WIRE

Change note from version 5 to version 6, compatibility

• Since version 6 the instance is in the hierarchy no longer below the part but below the 
sheet. 

• The part is no longer below the sheet, but below the schematic. 

For compatibility reasons the access by the according member functions is further 
supported, but the behaviour of the Object Functions reflects the new hierarchy. 

Object hierarchy of a Board:
BOARD
  GRID
  LAYER
  LIBRARY
  ATTRIBUTE
  VARIANTDEF
  CIRCLE
  HOLE
  RECTANGLE
  FRAME
  DIMENSION
  TEXT
  WIRE
  POLYGON
    WIRE
  ELEMENT
    ATTRIBUTE
    VARIANT
  SIGNAL
    CONTACTREF
    POLYGON
      WIRE
    VIA
    WIRE



UL_ARC
Data members 

angle1 
real (start angle, 
0.0...359.9)

angle2 real (end angle, 0.0...719.9)
cap int (CAP_...)
layer int
radius int
width int
x1, y1 int (starting point)
x2, y2 int (end point)
xc, yc int (center point)

See also UL_WIRE 

Constants
CAP_FLAT flat arc ends
CAP_ROUND round arc ends

Note
Start and end angles are defined mathematically positive (i.e. counterclockwise), with 
angle1 < angle2. In order to assure this condition, the start and end point of an 
UL_ARC may be exchanged with respect to the UL_WIRE the arc has been derived from. 

Example
board(B) {
  B.wires(W) {
    if (W.arc)
       printf("Arc: (%d %d), (%d %d), (%d %d)\n",
              W.arc.x1, W.arc.y1, W.arc.x2, W.arc.y2, W.arc.xc, W.arc.yc);
    }
  }

UL_AREA
Data members 

x1, y1 int (lower left corner)

x2, y2 
int (upper right 
corner)

See also UL_BOARD, UL_DEVICE, UL_PACKAGE, UL_SHEET, UL_SYMBOL 

A UL_AREA is an abstract object which gives information about the area covered by an 
object. For a UL_PACKAGE or UL_SYMBOL in a UL_ELEMENT or UL_INSTANCE 
context, respectively, the area is given in absolute drawing coordinates, including the offset 
of the element or instance. 

Example
board(B) {



  printf("Area: (%d %d), (%d %d)\n",
          B.area.x1, B.area.y1, B.area.x2, B.area.y2);
  }

UL_ATTRIBUTE
Data members 

constant 
int (0=variable, i.e. allows overwriting, 1=constant - see 
note)

defaultvalue string (see note)
display int (ATTRIBUTE_DISPLAY_FLAG_...)
name string
text UL_TEXT (see note)
value string

See also UL_DEVICE, UL_PART, UL_INSTANCE, UL_ELEMENT 

Constants

ATTRIBUTE_DISPLAY_FLAG_OFF 
nothing is 
displayed

ATTRIBUTE_DISPLAY_FLAG_VALUE value is displayed
ATTRIBUTE_DISPLAY_FLAG_NAME name is displayed
A UL_ATTRIBUTE can be used to access the attributes that have been defined in the 
library for a device, or assigned to a part in the schematic or board. 

Note
display contains a bitwise or'ed value consisting of 
ATTRIBUTE_DISPLAY_FLAG_... and defines which parts of the attribute are actually 
drawn. This value is only valid if display is used in a UL_INSTANCE or 
UL_ELEMENT context. 

In a UL_ELEMENT context constant only returns an actual value if f/b annotation is 
active, otherwise it returns 0. 

The defaultvalue member returns the value as defined in the library (if different from 
the actual value, otherwise the same as value). In a UL_ELEMENT context 
defaultvalue only returns an actual value if f/b annotation is active, otherwise an 
empty string is returned. 

The text member is only available in a UL_INSTANCE or UL_ELEMENT context and 
returns a UL_TEXT object that contains all the text parameters. The value of this text object 
is the string as it will be displayed according to the UL_ATTRIBUTE's 'display' parameter. 
If called from a different context, the data of the returned UL_TEXT object is undefined. 

For global attributes only name and value are defined. 

Example
schematic(SCH) {
  SCH.parts(P) {
    P.attributes(A) {
      printf("%s = %s\n", A.name, A.value);



      }
    }
  }
schematic(SCH) {
  SCH.attributes(A) { // global attributes
    printf("%s = %s\n", A.name, A.value);
    }
  }

UL_BOARD
Data members 

alwaysvectorfont int (ALWAYS_VECTOR_FONT_..., see note)
area UL_AREA
description string
grid UL_GRID
headline string
name string (see note)
verticaltext int (VERTICAL_TEXT_...)

Loop members 

attributes() 
UL_ATTRIBUTE (see 
note)

circles() UL_CIRCLE
classes() UL_CLASS
dimensions() UL_DIMENSION
elements() UL_ELEMENT
frames() UL_FRAME
holes() UL_HOLE
layers() UL_LAYER
libraries() UL_LIBRARY
polygons() UL_POLYGON
rectangles() UL_RECTANGLE
signals() UL_SIGNAL
texts() UL_TEXT
variantdefs() UL_VARIANTDEF
wires() UL_WIRE

See also UL_LIBRARY, UL_SCHEMATIC 

Constants

ALWAYS_VECTOR_FONT_GUI alwaysvectorfont is set in the user interface 
dialog

ALWAYS_VECTOR_FONT_PERSISTENT alwaysvectorfont is set persistent in this board
VERTICAL_TEXT_UP reading direction for vertical texts: up

VERTICAL_TEXT_DOWN reading direction for vertical texts: 
down

Note
The value returned by alwaysvectorfont can be used in boolean context or can be 
masked with the ALWAYS_VECTOR_FONT_... constants to determine the source of this 
setting, as in 



if (B.alwaysvectorfont) {
   // alwaysvectorfont is set in general
   }
if (B.alwaysvectorfont & ALWAYS_VECTOR_FONT_GUI) {
   // alwaysvectorfont is set in the user interface
   }

The name member returns the full file name, including the directory. 

The attributes() loop member loops through the global attributes. 

Example
board(B) {
  B.elements(E) printf("Element: %s\n", E.name);
  B.signals(S)  printf("Signal: %s\n", S.name);
  }

UL_BUS
Data members 

name string (BUS_NAME_LENGTH)
Loop members 

segments() UL_SEGMENT
See also UL_SHEET 

Constants
BUS_NAME_LENGT
H 

max. length of a bus name (obsolete - as from version 4 bus names can 
have any length)

Example
schematic(SCH) {
  SCH.sheets(SH) {
    SH.busses(B) printf("Bus: %s\n", B.name);
    }
  }

UL_CIRCLE
Data members 

layer int
radius int
width int

x, y 
int (center 
point)

See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SYMBOL 

Example
board(B) {
  B.circles(C) {



    printf("Circle: (%d %d), r=%d, w=%d\n",
           C.x, C.y, C.radius, C.width);
    }
  }

UL_CLASS
Data members 

clearance[number] int (see note)
drill int

name 
string (see 
note)

number int
width int

See also Design Rules, UL_NET, UL_SIGNAL, UL_SCHEMATIC, UL_BOARD 

Note
The clearance member returns the clearance value between this net class and the net 
class with the given number. If the number (and the square brackets) is ommitted, the net 
class's own clearance value is returned. If a number is given, it must be between 0 and the 
number of this net class. 

If the name member returns an empty string, the net class is not defined and therefore not in 
use by any signal or net. 

Example
board(B) {
  B.signals(S) {
    printf("%-10s %d %s\n", S.name, S.class.number, S.class.name);
    }
  }

UL_CONTACT
Data members 

name string (CONTACT_NAME_LENGTH)
pad UL_PAD
signal string
smd UL_SMD
x, y int (center point, see note)

Loop members 

polygons() 
UL_POLYGON (of arbitrary pad 
shapes)

wires() UL_WIRE (of arbitrary pad shapes)
See also UL_PACKAGE, UL_PAD, UL_SMD, UL_CONTACTREF, UL_PINREF 

Constants
CONTACT_NAME_LENGT max. recommended length of a contact name (used in formatted 



H output only)

Note
The signal data member returns the signal this contact is connected to (only available in a 
board context). 

The coordinates (x, y) of the contact depend on the context in which it is called: 

• if the contact is derived from a UL_LIBRARY context, the coordinates of the contact 
will be the same as defined in the package drawing 

• in all other cases, they will have the actual values from the board 

Example
library(L) {
  L.packages(PAC) {
    PAC.contacts(C) {
      printf("Contact: '%s', (%d %d)\n",
             C.name, C.x, C.y);
      }
    }
  }

UL_CONTACTREF
Data members 

contact UL_CONTACT
element UL_ELEMENT
route int (CONTACT_ROUTE_...)
routetag string (see note)

See also UL_SIGNAL, UL_PINREF 

Constants

CONTACT_ROUTE_ALL 
must explicitly route to all 
contacts

CONTACT_ROUTE_ANY may route to any contact

Note
If route has the value CONTACT_ROUTE_ANY, the routetag data member returns an 
additional tag which describes a group of contactrefs belonging to the same pin. 

Example
board(B) {
  B.signals(S) {
    printf("Signal '%s'\n", S.name);
    S.contactrefs(C) {
      printf("\t%s, %s\n", C.element.name, C.contact.name);
      }
    }
  }



UL_DEVICE
Data members 

activetechnology string (see note)
area UL_AREA
description string
headline string
library string
name string (DEVICE_NAME_LENGTH)
package UL_PACKAGE (see note)
prefix string (DEVICE_PREFIX_LENGTH)
technologies string (see note)
value string ("On" or "Off")

Loop members 

attributes() 
UL_ATTRIBUTE (see 
note)

gates() UL_GATE
See also UL_DEVICESET, UL_LIBRARY, UL_PART 

Constants

DEVICE_NAME_LENGTH 
max. recommended length of a device name (used in formatted 
output only)

DEVICE_PREFIX_LENGT
H 

max. recommended length of a device prefix (used in formatted 
output only)

All members of UL_DEVICE, except for name and technologies, return the same 
values as the respective members of the UL_DEVICESET in which the UL_DEVICE has 
been defined. The name member returns the name of the package variant this device has 
been created for using the PACKAGE command. When using the description text keep 
in mind that it may contain newline characters ('\n'). 

Note
The value returned by the activetechnology member depends on the context in which 
it is called: 

• if the device is derived from the deviceset that is currently edited in the library editor 
window, the active technology, set by the TECHNOLOGY command, will be 
returned 

• if the device is derived from a UL_PART, the actual technology used by the part will 
be returned 

• otherwise an empty string will be returned. 

The package data member returns the package that has been assigned to the device 
through a PACKAGE command. It can be used as a boolean function to check whether a 
package has been assigned to a device (see example below). 

The value returned by the technologies member depends on the context in which it is 
called: 

• if the device is derived from a UL_DEVICESET, technologies will return a 
string containing all of the device's technologies, separated by blanks 



• if the device is derived from a UL_PART, only the actual technology used by the part 
will be returned. 

The attributes() loop member takes an additional parameter that specifies for which 
technology the attributes shall be delivered (see the second example below). 

Examples
library(L) {
  L.devicesets(S) {
    S.devices(D) {
      if (D.package)
         printf("Device: %s, Package: %s\n", D.name, D.package.name);
      D.gates(G) {
        printf("\t%s\n", G.name);
        }
      }
    }
  }

library(L) {
  L.devicesets(DS) {
    DS.devices(D) {
      string t[];
      int n = strsplit(t, D.technologies, ' ');
      for (int i = 0; i < n; i++) {
          D.attributes(A, t[i]) {
            printf("%s = %s\n", A.name, A.value);
            }
          }
      }
    }
  }

UL_DEVICESET
Data members 

activedevice UL_DEVICE (see note)
area UL_AREA
description string
headline string (see note)
library string
name string (DEVICE_NAME_LENGTH)
prefix string (DEVICE_PREFIX_LENGTH)
value string ("On" or "Off")

Loop members 
devices() UL_DEVICE
gates() UL_GATE

See also UL_DEVICE, UL_LIBRARY, UL_PART 

Constants

DEVICE_NAME_LENGTH 
max. recommended length of a device name (used in formatted 
output only)

DEVICE_PREFIX_LENGT max. recommended length of a device prefix (used in formatted 



H output only)

Note
If a deviceset is currently edited in a library editor window, the activedevice member 
returns the active device, selected by a PACKAGE command. It can be used as a boolean 
function to check the availability of such an activedevice (see example below). 

The description member returns the complete descriptive text as defined with the 
DESCRIPTION command, while the headline member returns only the first line of the 
description, without any HTML tags. When using the description text keep in mind 
that it may contain newline characters ('\n'). 

Example
library(L) {
  L.devicesets(D) {
    printf("Device set: %s, Description: %s\n", D.name, D.description);
    D.gates(G) {
      printf("\t%s\n", G.name);
      }
    }
  }

if (deviceset)
   deviceset(DS) {
     if (DS.activedevice)
        printf("Active Device: %s\n", DS.activedevice.name);
     }

UL_DIMENSION
Data members 

dtype int (DIMENSION_...)
layer int
extlength int
extoffset int
extwidth int
precision int
ratio int
size int
unit int (GRID_UNIT_...)
visible int (unit, 0=off, 1=on)
width int
x1, y1 int (first reference point)
x2, y2 int (second reference point)

x3, y3 
int (alignment reference 
point)

Loop members 
texts() UL_TEXT
wires() UL_WIRE

See also UL_BOARD, UL_GRID, UL_PACKAGE, UL_SHEET, UL_SYMBOL 



Constants
DIMENSION_PARALLEL linear dimension with parallel measurement line

DIMENSION_HORIZONTAL 
linear dimension with horizontal measurement 
line

DIMENSION_VERTICAL linear dimension with vertical measurement line
DIMENSION_RADIUS radial dimension
DIMENSION_DIAMETER diameter dimension
DIMENSION_ANGLE angle dimension
DIMENSION_LEADER an arbitrary pointer

Note
The texts() and wires() loop members loop through all the texts and wires the 
dimension consists of. 

Example
board(B) {
  B.dimensions(D) {
    printf("Dimension: (%d %d), (%d %d), (%d %d)\n",
           D.x1, D.y1, D.x2, D.y2, D.x3, D.y3);
    }
  }

UL_ELEMENT
Data members 

angle real (0.0...359.9)
attribute[] string (see note)
column string (see note)
locked int
mirror int
name string (ELEMENT_NAME_LENGTH)
package UL_PACKAGE
populate int (0=do not populate, 1=populate)
row string (see note)
smashed int (see note)
spin int
value string (ELEMENT_VALUE_LENGTH)
x, y int (origin point)

Loop members 
attributes() UL_ATTRIBUTE

texts() 
UL_TEXT (see 
note)

variants() UL_VARIANT
See also UL_BOARD, UL_CONTACTREF 

Constants

ELEMENT_NAME_LENGTH max. recommended length of an element name (used in formatted 
output only)



ELEMENT_VALUE_LENGT
H 

max. recommended length of an element value (used in formatted 
output only)

Note
The attribute[] member can be used to query a UL_ELEMENT for the value of a 
given attribute (see the second example below). The returned string is empty if there is no 
attribute by the given name, or if this attribute is explicitly empty. 

The texts() member only loops through those texts of the element that have been 
detached using SMASH, and through the visible texts of any attributes assigned to this 
element. To process all texts of an element (e.g. when drawing it), you have to loop through 
the element's own texts() member as well as the texts() member of the element's 
package. 

angle defines how many degrees the element is rotated counterclockwise around its 
origin. 

The column and row members return the column and row location within the frame in the 
board drawing. If there is no frame in the drawing, or the element is placed outside the 
frame, a '?' (question mark) is returned. 

The smashed member tells whether the element is smashed. This function can also be used 
to find out whether there is a detached text parameter by giving the name of that parameter 
in square brackets, as in smashed["VALUE"]. This is useful in case you want to select 
such a text with the MOVE command by doing MOVE R5>VALUE. Valid parameter names 
are "NAME" and "VALUE", as well as the names of any user defined attributes. They are 
treated case insensitive, and they may be preceded by a '>' character. 

Examples
board(B) {
  B.elements(E) {
    printf("Element: %s, (%d %d), Package=%s\n",
           E.name, E.x, E.y, E.package.name);
    }
  }

board(B) {
  B.elements(E) {
    if (E.attribute["REMARK"])
       printf("%s: %s\n", E.name, E.attribute["REMARK"]);
    }
  }

UL_FRAME
Data members 

columns int (-127...127)
rows int (-26...26)
border int (FRAME_BORDER_...)
layer int
x1, y1 int (lower left corner)
x2, y2 int (upper right corner)



Loop members 
texts() UL_TEXT
wires() UL_WIRE

See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SYMBOL 

Constants

FRAME_BORDER_BOTTOM 
bottom border is 
drawn

FRAME_BORDER_RIGHT right border is drawn
FRAME_BORDER_TOP top border is drawn
FRAME_BORDER_LEFT left border is drawn

Note
border contains a bitwise or'ed value consisting of FRAME_BORDER_... and defines 
which of the four borders are actually drawn. 

The texts() and wires() loop members loop through all the texts and wires the frame 
consists of. 

Example
board(B) {
  B.frames(F) {
    printf("Frame: (%d %d), (%d %d)\n",
           F.x1, F.y1, F.x2, F.y2);
    }
  }

UL_GATE
Data members 

addlevel int (GATE_ADDLEVEL_...)
name string (GATE_NAME_LENGTH)
swaplevel int
symbol UL_SYMBOL
x, y int (origin point, see note)

See also UL_DEVICE 

Constants
GATE_ADDLEVEL_MUST must
GATE_ADDLEVEL_CAN can
GATE_ADDLEVEL_NEXT next
GATE_ADDLEVEL_REQUEST request
GATE_ADDLEVEL_ALWAYS always

GATE_NAME_LENGTH 
max. recommended length of a gate name (used in formatted output 
only)



Note
The coordinates of the origin point (x, y) are always those of the gate's position within the 
device, even if the UL_GATE has been derived from a UL_INSTANCE. 

Example
library(L) {
  L.devices(D) {
    printf("Device: %s, Package: %s\n", D.name, D.package.name);
    D.gates(G) {
      printf("\t%s, swaplevel=%d, symbol=%s\n",
             G.name, G.swaplevel, G.symbol.name);
      }
    }
  }

UL_GRID
Data members 

distance real
dots int (0=lines, 1=dots)
multiple int
on int (0=off, 1=on)
unit int (GRID_UNIT_...)
unitdist int (GRID_UNIT_...)

See also UL_BOARD, UL_LIBRARY, UL_SCHEMATIC, Unit Conversions 

Constants
GRID_UNIT_MIC microns
GRID_UNIT_MM millimeter
GRID_UNIT_MIL mil
GRID_UNIT_INCH inch

Note
unitdist returns the grid unit that was set to define the actual grid size (returned by 
distance), while unit returns the grid unit that is used to display values or interpret user 
input. 

Example
board(B) {
  printf("Gridsize=%f\n", B.grid.distance);
  }

UL_HOLE
Data members 

diameter[layer] int (see note)
drill int



drillsymbol int

x, y 
int (center 
point)

See also UL_BOARD, UL_PACKAGE 

Note
diameter[] is only defined vor layers LAYER_TSTOP and LAYER_BSTOP and returns 
the diameter of the solder stop mask in the given layer. 

drillsymbol returns the number of the drill symbol that has been assigned to this drill 
diameter (see the manual for a list of defined drill symbols). A value of 0 means that no 
symbol has been assigned to this drill diameter. 

Example
board(B) {
  B.holes(H) {
    printf("Hole: (%d %d), drill=%d\n",
           H.x, H.y, H.drill);
    }
  }

UL_INSTANCE
Data members 

angle real (0, 90, 180 and 270)
column string (see note)
gate UL_GATE
mirror int
name string (INSTANCE_NAME_LENGTH)
part UL_PART
row string (see note)
sheet int (0=unused, >0=sheet number)
smashed int (see note)
value string (PART_VALUE_LENGTH)
x, y int (origin point)

Loop members 

attributes() 
UL_ATTRIBUTE (see 
note)

texts() UL_TEXT (see note)
xrefs() UL_GATE (see note)

See also UL_PINREF 

Constants
INSTANCE_NAME_LENG
TH 

max. recommended length of an instance name (used in formatted 
output only)

PART_VALUE_LENGTH 
max. recommended length of a part value (instances do not have a 
value of their own!)



Note
The attributes() member only loops through those attributes that have been explicitly 
assigned to this instance (including smashed attributes). 

The texts() member only loops through those texts of the instance that have been 
detached using SMASH, and through the visible texts of any attributes assigned to this 
instance. To process all texts of an instance, you have to loop through the instance's own 
texts() member as well as the texts() member of the instance's gate's symbol. If 
attributes have been assigned to an instance, texts() delivers their texts in the form as 
they are currently visible. 

The column and row members return the column and row location within the frame on the 
sheet on which this instance is invoked. If there is no frame on that sheet, or the instance is 
placed outside the frame, a '?' (question mark) is returned. These members can only be 
used in a sheet context. 

The smashed member tells whether the instance is smashed. This function can also be 
used to find out whether there is a detached text parameter by giving the name of that 
parameter in square brackets, as in smashed["VALUE"]. This is useful in case you want 
to select such a text with the MOVE command by doing MOVE R5>VALUE. Valid 
parameter names are "NAME", "VALUE", "PART" and "GATE", as well as the names of 
any user defined attributes. They are treated case insensitive, and they may be preceded by a 
'>' character. 

The xrefs() member loops through the contact cross-reference gates of this instance. 
These are only of importance if the ULP is going to create a drawing of some sort (for 
instance a DXF file). 

Example
schematic(S) {
  S.parts(P) {
    printf("Part: %s\n", P.name);
    P.instances(I) {
      if (I.sheet != 0)
         printf("\t%s used on sheet %d\n", I.name, I.sheet);
      }
    }
  }

UL_JUNCTION
Data members 

diameter int

x, y 
int (center 
point)

See also UL_SEGMENT 

Example
schematic(SCH) {
  SCH.sheets(SH) {



    SH.nets(N) {
      N.segments(SEG) {
        SEG.junctions(J) {
          printf("Junction: (%d %d)\n", J.x, J.y);
          }
        }
      }
    }
  }

UL_LABEL
Data members 

angle real (0.0...359.9)
layer int
mirror int
spin int
text UL_TEXT
x, y int (origin point)

xref 
int (0=plain, 1=cross-
reference)

Loop members 

wires() 
UL_WIRE (see 
note)

See also UL_SEGMENT 

Note
If xref returns a non-zero value, the wires() loop member loops through the wires that 
form the flag of a cross-reference label. Otherwise it is an empty loop. 

The angle, layer, mirror and spin members always return the same values as those 
of the UL_TEXT object returned by the text member. The x and y members of the text 
return slightly offset values for cross-reference labels (non-zero xref), otherwise they also 
return the same values as the UL_LABEL. 

xref is only meaningful for net labels. For bus labels it always returns 0. 

Example
sheet(SH) {
  SH.nets(N) {
    N.segments(S) {
      S.labels(L) {
        printf("Label: %d %d '%s'\n", L.x, L.y, L.text.value);
        }
      }
    }
  }

UL_LAYER
Data members 



color int
fill int
name string (LAYER_NAME_LENGTH)
number int
used int (0=unused, 1=used)
visible int (0=off, 1=on)

See also UL_BOARD, UL_LIBRARY, UL_SCHEMATIC 

Constants

LAYER_NAME_LENGTH max. recommended length of a layer name (used in formatted output 
only)

LAYER_TOP layer numbers
LAYER_BOTTOM 
LAYER_PADS 
LAYER_VIAS 
LAYER_UNROUTED 
LAYER_DIMENSION 
LAYER_TPLACE 
LAYER_BPLACE 
LAYER_TORIGINS 
LAYER_BORIGINS 
LAYER_TNAMES 
LAYER_BNAMES 
LAYER_TVALUES 
LAYER_BVALUES 
LAYER_TSTOP 
LAYER_BSTOP 
LAYER_TCREAM 
LAYER_BCREAM 
LAYER_TFINISH 
LAYER_BFINISH 
LAYER_TGLUE 
LAYER_BGLUE 
LAYER_TTEST 
LAYER_BTEST 
LAYER_TKEEPOUT 
LAYER_BKEEPOUT 
LAYER_TRESTRICT 
LAYER_BRESTRICT 
LAYER_VRESTRICT 
LAYER_DRILLS 
LAYER_HOLES 
LAYER_MILLING 
LAYER_MEASURES 
LAYER_DOCUMENT 
LAYER_REFERENCE 
LAYER_TDOCU 
LAYER_BDOCU 
LAYER_NETS 
LAYER_BUSSES 



LAYER_PINS 
LAYER_SYMBOLS 
LAYER_NAMES 
LAYER_VALUES 
LAYER_INFO 
LAYER_GUIDE 
LAYER_USER lowest number for user defined layers (100)

Example
board(B) {
  B.layers(L) printf("Layer %3d %s\n", L.number, L.name);
  }

UL_LIBRARY
Data members 

description string (see note)
grid UL_GRID
headline string
name string (LIBRARY_NAME_LENGTH, see note)

Loop members 
devices() UL_DEVICE
devicesets() UL_DEVICESET
layers() UL_LAYER
packages() UL_PACKAGE
symbols() UL_SYMBOL

See also UL_BOARD, UL_SCHEMATIC 

Constants
LIBRARY_NAME_LENGT
H 

max. recommended length of a library name (used in formatted 
output only)

The devices() member loops through all the package variants and technologies of all 
UL_DEVICESETs in the library, thus resulting in all the actual device variations available. 
The devicesets() member only loops through the UL_DEVICESETs, which in turn 
can be queried for their UL_DEVICE members. 

Note
The description member returns the complete descriptive text as defined with the 
DESCRIPTION command, while the headline member returns only the first line of the 
description, without any HTML tags. When using the description text keep in mind 
that it may contain newline characters ('\n'). The description and headline 
information is only available within a library drawing, not if the library is derived form a 
UL_BOARD or UL_SCHEMATIC context. 

If the library is derived form a UL_BOARD or UL_SCHEMATIC context, name returns 
the pure library name (without path or extension). Otherwise it returns the full library file 
name. 



Example
library(L) {
  L.devices(D)     printf("Dev: %s\n", D.name);
  L.devicesets(D)  printf("Dev: %s\n", D.name);
  L.packages(P)    printf("Pac: %s\n", P.name);
  L.symbols(S)     printf("Sym: %s\n", S.name);
  }
schematic(S) {
  S.libraries(L) printf("Library: %s\n", L.name);
  }

UL_NET
Data members 

class UL_CLASS
column string (see note)
name string (NET_NAME_LENGTH)
row string (see note)

Loop members 
pinrefs() UL_PINREF (see note)

segments() 
UL_SEGMENT (see 
note)

See also UL_SHEET, UL_SCHEMATIC 

Constants

NET_NAME_LENGTH 
max. recommended length of a net name (used in formatted output 
only)

Note
The pinrefs() loop member can only be used if the net is in a schematic context.
The segments() loop member can only be used if the net is in a sheet context. 

The column and row members return the column and row locations within the frame on 
the sheet on which this net is drawn. Since a net can extend over a certain area, each of these 
functions returns two values, separated by a blank. In case of column these are the left- 
and rightmost columns touched by the net, and in case of row it's the top- and bottommost 
row. 

When determining the column and row of a net on a sheet, first the column and then the row 
within that column is taken into account. Here XREF labels take precedence over normal 
labels, which again take precedence over net wires. 

If there is no frame on that sheet, "? ?" (two question marks) is returned. If any part of the 
net is placed outside the frame, either of the values may be '?' (question mark). These 
members can only be used in a sheet context. 

Example
schematic(S) {
  S.nets(N) {
    printf("Net: %s\n", N.name);



    // N.segments(SEG) will NOT work here!
    }
  }
schematic(S) {
  S.sheets(SH) {
    SH.nets(N) {
      printf("Net: %s\n", N.name);
      N.segments(SEG) {
        SEG.wires(W) {
          printf("\tWire: (%d %d) (%d %d)\n",
                 W.x1, W.y1, W.x2, W.y2);
          }
        }
      }
    }
  }

UL_PACKAGE
Data members 

area UL_AREA
description string
headline string
library string
name string (PACKAGE_NAME_LENGTH)

Loop members 
circles() UL_CIRCLE
contacts() UL_CONTACT
dimensions() UL_DIMENSION
frames() UL_FRAME
holes() UL_HOLE
polygons() UL_POLYGON (see note)
rectangles() UL_RECTANGLE
texts() UL_TEXT (see note)
wires() UL_WIRE (see note)

See also UL_DEVICE, UL_ELEMENT, UL_LIBRARY 

Constants
PACKAGE_NAME_LENGT
H 

max. recommended length of a package name (used in formatted 
output only)

Note
The description member returns the complete descriptive text as defined with the 
DESCRIPTION command, while the headline member returns only the first line of the 
description, without any HTML tags. When using the description text keep in mind 
that it may contain newline characters ('\n'). 

If the UL_PACKAGE is derived from a UL_ELEMENT, the texts() member only loops 
through the non-detached texts of that element. 

Polygons and wires belonging to contacts with arbitrary pad shapes are in UL_BOARD 
context only available through the loop members polygons() and wires() of this 



contact. 

Example
library(L) {
  L.packages(PAC) {
    printf("Package: %s\n", PAC.name);
    PAC.contacts(C) {
      if (C.pad)
         printf("\tPad: %s, (%d %d)\n",
                 C.name, C.pad.x, C.pad.y);
      else if (C.smd)
         printf("\tSmd: %s, (%d %d)\n",
                 C.name, C.smd.x, C.smd.y);
      }
    }
  }
board(B) {
  B.elements(E) {
    printf("Element: %s, Package: %s\n", E.name, E.package.name);
    }
  }

UL_PAD
Data members 

angle real (0.0...359.9)
diameter[layer] int
drill int
drillsymbol int
elongation int
flags int (PAD_FLAG_...)
name string (PAD_NAME_LENGTH)
shape[layer] int (PAD_SHAPE_...)
signal string
x, y int (center point, see note)

See also UL_PACKAGE, UL_CONTACT, UL_SMD 

Constants
PAD_FLAG_STOP generate stop mask
PAD_FLAG_THERMALS generate thermals

PAD_FLAG_FIRST 
use special "first pad" 
shape

PAD_SHAPE_SQUARE square
PAD_SHAPE_ROUND round
PAD_SHAPE_OCTAGON octagon
PAD_SHAPE_LONG long
PAD_SHAPE_OFFSET offset
PAD_NAME_LENGT
H 

max. recommended length of a pad name (same as 
CONTACT_NAME_LENGTH)



Note
The parameters of the pad depend on the context in which it is accessed: 

• if the pad is derived from a UL_LIBRARY context, the coordinates (x, y) and 
angle will be the same as defined in the package drawing 

• in all other cases, they will have the actual values from the board 

The diameter and shape of the pad depend on the layer for which they shall be retrieved, 
because they may be different in each layer depending on the Design Rules. If one of the 
layers LAYER_TOP...LAYER_BOTTOM, LAYER_TSTOP or LAYER_BSTOP is given as 
the index to the diameter or shape data member, the resulting value will be calculated 
according to the Design Rules. If LAYER_PADS is given, the raw value as defined in the 
library will be returned. 

drillsymbol returns the number of the drill symbol that has been assigned to this drill 
diameter (see the manual for a list of defined drill symbols). A value of 0 means that no 
symbol has been assigned to this drill diameter. 

angle defines how many degrees the pad is rotated counterclockwise around its center. 

elongation is only valid for shapes PAD_SHAPE_LONG and PAD_SHAPE_OFFSET 
and defines how many percent the long side of such a pad is longer than its small side. This 
member returns 0 for any other pad shapes. 

The value returned by flags must be masked with the PAD_FLAG_... constants to 
determine the individual flag settings, as in 

if (pad.flags & PAD_FLAG_STOP) {
   ...
   }

Note that if your ULP just wants to draw the objects, you don't need to check these flags 
explicitly. The diameter[] and shape[] members will return the proper data; for 
instance, if PAD_FLAG_STOP is set, diameter[LAYER_TSTOP] will return 0, which 
should result in nothing being drawn in that layer. The flags member is mainly for ULPs 
that want to create script files that create library objects. 

Example
library(L) {
  L.packages(PAC) {
    PAC.contacts(C) {
      if (C.pad)
         printf("Pad: '%s', (%d %d), d=%d\n",
                 C.name, C.pad.x, C.pad.y, C.pad.diameter[LAYER_BOTTOM]);
      }
    }
  }

UL_PART
Data members 

attribute[] string (see note)
device UL_DEVICE



deviceset UL_DEVICESET
name string (PART_NAME_LENGTH)

populate 
int (0=do not populate, 
1=populate)

value string (PART_VALUE_LENGTH)
Loop members 

attributes() 
UL_ATTRIBUTE (see 
note)

instances() UL_INSTANCE (see note)
variants() UL_VARIANT

See also UL_SCHEMATIC, UL_SHEET 

Constants

PART_NAME_LENGTH 
max. recommended length of a part name (used in formatted output 
only)

PART_VALUE_LENGTH 
max. recommended length of a part value (used in formatted output 
only)

Note
The attribute[] member can be used to query a UL_PART for the value of a given 
attribute (see the second example below). The returned string is empty if there is no attribute 
by the given name, or if this attribute is explicitly empty. 

When looping through the attributes() of a UL_PART, only the name, value, 
defaultvalue and constant members of the resulting UL_ATTRIBUTE objects are 
valid. 

If the part is in a sheet context, the instances() loop member loops only through those 
instances that are actually used on that sheet. If the part is in a schematic context, all 
instances are looped through. 

Example
schematic(S) {
  S.parts(P) printf("Part: %s\n", P.name);
  }

schematic(SCH) {
  SCH.parts(P) {
    if (P.attribute["REMARK"])
       printf("%s: %s\n", P.name, P.attribute["REMARK"]);
    }
  }

UL_PIN
Data members 

angle real (0, 90, 180 and 270)

contact 
UL_CONTACT (deprecated, see 
note)

direction int (PIN_DIRECTION_...)



function int (PIN_FUNCTION_FLAG_...)
length int (PIN_LENGTH_...)
name string (PIN_NAME_LENGTH)
net string (see note)
route int (CONTACT_ROUTE_...)
swaplevel int
visible int (PIN_VISIBLE_FLAG_...)
x, y int (connection point)

Loop members 
circles() UL_CIRCLE

contacts() 
UL_CONTACT (see 
note)

texts() UL_TEXT
wires() UL_WIRE

See also UL_SYMBOL, UL_PINREF, UL_CONTACTREF 

Constants
PIN_DIRECTION_NC not connected
PIN_DIRECTION_IN input
PIN_DIRECTION_OUT output (totem-pole)

PIN_DIRECTION_IO 
in/output 
(bidirectional)

PIN_DIRECTION_OC open collector
PIN_DIRECTION_PWR power input pin
PIN_DIRECTION_PAS passive
PIN_DIRECTION_HIZ high impedance output
PIN_DIRECTION_SUP supply pin
PIN_FUNCTION_FLAG_NONE no symbol
PIN_FUNCTION_FLAG_DOT inverter symbol
PIN_FUNCTION_FLAG_CLK clock symbol
PIN_LENGTH_POINT no wire
PIN_LENGTH_SHORT 0.1 inch wire
PIN_LENGTH_MIDDLE 0.2 inch wire
PIN_LENGTH_LONG 0.3 inch wire

PIN_NAME_LENGTH 
max. recommended length of a pin name (used in formatted output 
only)

PIN_VISIBLE_FLAG_OFF no name drawn
PIN_VISIBLE_FLAG_PAD pad name drawn
PIN_VISIBLE_FLAG_PIN pin name drawn

CONTACT_ROUTE_ALL 
must explicitly route to all 
contacts

CONTACT_ROUTE_ANY may route to any contact

Note
The contacts() loop member loops through the contacts that have been assigned to the 
pin through a CONNECT command. 

The contact data member returns the contact that has been assigned to the pin through a 
CONNECT command. This member is deprecated! It will work for backwards 
compatibility and as long as only one pad has been connected to the pin, but will cause a 



runtime error when used with a pin that is connected to more than one pad. 

The coordinates (and layer, in case of an SMD) of the contact returned by the contact 
data member depend on the context in which it is called: 

• if the pin is derived from a UL_PART that is used on a sheet, and if there is a 
corresponding element on the board, the resulting contact will have the coordinates as 
used on the board 

• in all other cases, the coordinates of the contact will be the same as defined in the 
package drawing 

The name data member always returns the name of the pin as it was defined in the library, 
with any '@' character for pins with the same name left intact (see the PIN command for 
details).
The texts loop member, on the other hand, returns the pin name (if it is visible) in the 
same way as it is displayed in the current drawing type. 

The net data member returns the name of the net to which this pin is connected (only 
available in a schematic context). 

Example
library(L) {
  L.symbols(S) {
    printf("Symbol: %s\n", S.name);
    S.pins(P) {
      printf("\tPin: %s, (%d %d)", P.name, P.x, P.y);
      if (P.direction == PIN_DIRECTION_IN)
         printf(" input");
      if ((P.function & PIN_FUNCTION_FLAG_DOT) != 0)
         printf(" inverted");
      printf("\n");
      }
    }
  }

UL_PINREF
Data members 

instance UL_INSTANCE
part UL_PART
pin UL_PIN

See also UL_SEGMENT, UL_CONTACTREF 

Example
schematic(SCH) {
  SCH.sheets(SH) {
    printf("Sheet: %d\n", SH.number);
    SH.nets(N) {
      printf("\tNet: %s\n", N.name);
      N.segments(SEG) {
        SEG.pinrefs(P) {
          printf("connected to: %s, %s, %s\n",
                 P.part.name, P.instance.name, P.pin.name);



          }
        }
      }
    }
  }

UL_POLYGON
Data members 

isolate int
layer int
orphans int (0=off, 1=on)
pour int (POLYGON_POUR_...)
rank int
spacing int
thermals int (0=off, 1=on)
width int

Loop members 

contours() 
UL_WIRE (see 
note)

fillings() UL_WIRE
wires() UL_WIRE

See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SIGNAL, UL_SYMBOL 

Constants
POLYGON_POUR_SOLID solid
POLYGON_POUR_HATCH hatch
POLYGON_POUR_CUTOUT cutout

Note
The contours() and fillings() loop members loop through the wires that are used 
to draw the calculated polygon if it is part of a signal and the polygon has been calculated 
by the RATSNEST command. The wires() loop member always loops through the 
polygon wires as they were drawn by the user. For an uncalculated signal polygon 
contours() does the same as wires(), and fillings() does nothing. 

If the contours() loop member is called without a second parameter, it loops through all 
of the contour wires, regardless whether they belong to a positive or a negative polygon. If 
you are interested in getting the positive and negative contour wires separately, you can call 
contours() with an additional integer parameter (see the second example below). The 
sign of that parameter determines whether a positive or a negative polygon will be handled, 
and the value indicates the index of that polygon. If there is no polygon with the given 
index, the statement will not be executed. Another advantage of this method is that you don't 
need to determine the beginning and end of a particular polygon yourself (by comparing 
coordinates). For any given index, the statement will be executed for all the wires of that 
polygon. With the second parameter 0 the behavior is the same as without a second 
parameter. 



Polygon width
When using the fillings() loop member to get the fill wires of a solid polygon, make 
sure the width of the polygon is not zero (actually it should be quite a bit larger than zero, 
for example at least the hardware resolution of the output device you are going to draw on). 
Filling a polygon with zero width may result in enormous amounts of data, since it will 
be calculated with the smallest editor resolution of 1/10000mm! 

Partial polygons
A calculated signal polygon may consist of several distinct parts (called positive polygons), 
each of which can contain extrusions (negative polygons) resulting from other objects being 
subtracted from the polygon. Negative polygons can again contain other positive polygons 
and so on. 

The wires looped through by contours() always start with a positive polygon. To find 
out where one partial polygon ends and the next one begins, simply store the (x1,y1) 
coordinates of the first wire and check them against (x2,y2) of every following wire. As 
soon as these are equal, the last wire of a partial polygon has been found. It is also 
guaranteed that the second point (x2,y2) of one wire is identical to the first point (x1,y1) of 
the next wire in that partial polygon. 

To find out where the "inside" and the "outside" of the polygon lays, take any contour wire 
and imagine looking from its point (x1,y1) to (x2,y2). The "inside" of the polygon is always 
on the right side of the wire. Note that if you simply want to draw the polygon you won't 
need all these details. 

Example
board(B) {
  B.signals(S) {
    S.polygons(P) {
      int x0, y0, first = 1;
      P.contours(W) {
        if (first) {
           // a new partial polygon is starting
           x0 = W.x1;
           y0 = W.y1;
           }
        // ...
        // do something with the wire
        // ...
        if (first)
           first = 0;
        else if (W.x2 == x0 && W.y2 == y0) {
           // this was the last wire of the partial polygon,
           // so the next wire (if any) will be the first wire
           // of the next partial polygon
           first = 1;
           }
        }
      }
    }
  }

board(B) {



  B.signals(S) {
    S.polygons(P) {
      // handle only the "positive" polygons:
      int i = 1;
      int active;
      do {
         active = 0;
         P.contours(W, i) {
           active = 1;
           // do something with the wire
           }
         i++;
         } while (active);
      }
    }
  }

UL_RECTANGLE
Data members 

angle real (0.0...359.9)
layer int
x1, y1 int (lower left corner)

x2, y2 
int (upper right 
corner)

See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SYMBOL 

angle defines how many degrees the rectangle is rotated counterclockwise around its 
center. The center coordinates are given by (x1+x2)/2 and (y1+y2)/2. 

Example
board(B) {
  B.rectangles(R) {
    printf("Rectangle: (%d %d), (%d %d)\n",
           R.x1, R.y1, R.x2, R.y2);
    }
  }

UL_SCHEMATIC
Data members 

alwaysvectorfont int (ALWAYS_VECTOR_FONT_..., see note)
description string
grid UL_GRID
headline string
name string (see note)
verticaltext int (VERTICAL_TEXT_...)
xreflabel string

Loop members 

attributes() 
UL_ATTRIBUTE (see 
note)

classes() UL_CLASS
layers() UL_LAYER



libraries() UL_LIBRARY
nets() UL_NET
parts() UL_PART
sheets() UL_SHEET
variantdefs() UL_VARIANTDEF

See also UL_BOARD, UL_LIBRARY 

Constants

ALWAYS_VECTOR_FONT_GUI alwaysvectorfont is set in the user interface 
dialog

ALWAYS_VECTOR_FONT_PERSISTENT alwaysvectorfont is set persistent in this 
schematic

VERTICAL_TEXT_UP reading direction for vertical texts: up

VERTICAL_TEXT_DOWN reading direction for vertical texts: 
down

Note
The value returned by alwaysvectorfont can be used in boolean context or can be 
masked with the ALWAYS_VECTOR_FONT_... constants to determine the source of this 
setting, as in 

if (sch.alwaysvectorfont) {
   // alwaysvectorfont is set in general
   }
if (sch.alwaysvectorfont & ALWAYS_VECTOR_FONT_GUI) {
   // alwaysvectorfont is set in the user interface
   }

The name member returns the full file name, including the directory. 

The xreflabel member returns the format string used to display cross-reference labels. 

The attributes() loop member loops through the global attributes. 

Example
schematic(S) {
  S.parts(P) printf("Part: %s\n", P.name);
  }

UL_SEGMENT
Loop members 

junctions() UL_JUNCTION (see note)
labels() UL_LABEL
pinrefs() UL_PINREF (see note)

texts() 
UL_TEXT (deprecated, see 
note)

wires() UL_WIRE
See also UL_BUS, UL_NET 



Note
The junctions() and pinrefs() loop members are only available for net segments. 

The texts() loop member was used in older EAGLE versions to loop through the labels 
of a segment, and is only present for compatibility. It will not deliver the text of cross-
reference labels at the correct position. Use the labels() loop member to access a 
segment's labels. 

Example
schematic(SCH) {
  SCH.sheets(SH) {
    printf("Sheet: %d\n", SH.number);
    SH.nets(N) {
      printf("\tNet: %s\n", N.name);
      N.segments(SEG) {
        SEG.pinrefs(P) {
          printf("connected to: %s, %s, %s\n",
                 P.part.name, P.instance.name, P.pin.name);
          }
        }
      }
    }
  }

UL_SHEET
Data members 

area UL_AREA
description string
headline string
number int

Loop members 
busses() UL_BUS
circles() UL_CIRCLE
dimensions() UL_DIMENSION
frames() UL_FRAME
instances() UL_INSTANCE
nets() UL_NET
polygons() UL_POLYGON
rectangles() UL_RECTANGLE
texts() UL_TEXT
wires() UL_WIRE

See also UL_SCHEMATIC 

Example
schematic(SCH) {
  SCH.sheets(S) {
    printf("Sheet: %d\n", S.number);
    }
  }



UL_SIGNAL
Data members 

airwireshidden int
class UL_CLASS
name string (SIGNAL_NAME_LENGTH)

Loop members 
contactrefs() UL_CONTACTREF
polygons() UL_POLYGON
vias() UL_VIA
wires() UL_WIRE

See also UL_BOARD 

Constants
SIGNAL_NAME_LENGT
H 

max. recommended length of a signal name (used in formatted output 
only)

Example
board(B) {
  B.signals(S) printf("Signal: %s\n", S.name);
  }

UL_SMD
Data members 

angle real (0.0...359.9)
dx[layer], dy[layer] int (size)
flags int (SMD_FLAG_...)
layer int (see note)
name string (SMD_NAME_LENGTH)
roundness int (see note)
signal string
x, y int (center point, see note)

See also UL_PACKAGE, UL_CONTACT, UL_PAD 

Constants
SMD_FLAG_STOP generate stop mask
SMD_FLAG_THERMALS generate thermals
SMD_FLAG_CREAM generate cream mask
SMD_NAME_LENGT
H 

max. recommended length of an smd name (same as 
CONTACT_NAME_LENGTH)

Note
The parameters of the smd depend on the context in which it is accessed: 

• if the smd is derived from a UL_LIBRARY context, the coordinates (x, y), angle, 
layer and roundness of the smd will be the same as defined in the package 
drawing 



• in all other cases, they will have the actual values from the board 

If the dx and dy data members are called with an optional layer index, the data for that 
layer is returned according to the Design Rules. Valid layers are LAYER_TOP, 
LAYER_TSTOP and LAYER_TCREAM for an smd in the Top layer, and 
LAYER_BOTTOM, LAYER_BSTOP and LAYER_BCREAM for an smd in the Bottom 
layer, respectively. 

angle defines how many degrees the smd is rotated counterclockwise around its center. 

The value returned by flags must be masked with the SMD_FLAG_... constants to 
determine the individual flag settings, as in 

if (smd.flags & SMD_FLAG_STOP) {
   ...
   }

Note that if your ULP just wants to draw the objects, you don't need to check these flags 
explicitly. The dx[] and dy[] members will return the proper data; for instance, if 
SMD_FLAG_STOP is set, dx[LAYER_TSTOP] will return 0, which should result in 
nothing being drawn in that layer. The flags member is mainly for ULPs that want to 
create script files that create library objects. 

Example
library(L) {
  L.packages(PAC) {
    PAC.contacts(C) {
      if (C.smd)
         printf("Smd: '%s', (%d %d), dx=%d, dy=%d\n",
                 C.name, C.smd.x, C.smd.y, C.smd.dx, C.smd.dy);
      }
    }
  }

UL_SYMBOL
Data members 

area UL_AREA
description string
headline string
library string
name string (SYMBOL_NAME_LENGTH)

Loop members 
circles() UL_CIRCLE
dimensions() UL_DIMENSION
frames() UL_FRAME
rectangles() UL_RECTANGLE
pins() UL_PIN
polygons() UL_POLYGON

texts() 
UL_TEXT (see 
note)

wires() UL_WIRE
See also UL_GATE, UL_LIBRARY 



Constants
SYMBOL_NAME_LENGT
H 

max. recommended length of a symbol name (used in formatted 
output only)

Note
If the UL_SYMBOL is derived from a UL_INSTANCE, the texts() member only loops 
through the non-detached texts of that instance. 

Example
library(L) {
  L.symbols(S) printf("Sym: %s\n", S.name);
  }

UL_TEXT
Data members 

align int (ALIGN_...)
angle real (0.0...359.9)
font int (FONT_...)
layer int
linedistance int
mirror int
ratio int
size int
spin int
value string
x, y int (origin point)

Loop members 

wires() 
UL_WIRE (see 
note)

See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SYMBOL 

Constants
FONT_VECTOR vector font

FONT_PROPORTIONAL 
proportional 
font

FONT_FIXED fixed font
ALIGN_BOTTOM_LEFT bottom/left aligned

ALIGN_BOTTOM_CENTER 
bottom/center 
aligned

ALIGN_BOTTOM_RIGHT bottom/right aligned
ALIGN_CENTER_LEFT center/left aligned
ALIGN_CENTER centered
ALIGN_CENTER_RIGHT center/right aligned
ALIGN_TOP_LEFT top/left aligned
ALIGN_TOP_CENTER top/center aligned
ALIGN_TOP_RIGHT top/right aligned



Note
The wires() loop member always accesses the individual wires the text is composed of 
when using the vector font, even if the actual font is not FONT_VECTOR. 

If the UL_TEXT is derived from a UL_ELEMENT or UL_INSTANCE context, the member 
values will be those of the actual text as located in the board or sheet drawing. 

Example
board(B) {
  B.texts(T) {
    printf("Text: %s\n", T.value);
    }
  }

UL_VARIANTDEF
Data members 

name string
See also UL_VARIANT, UL_SCHEMATIC, UL_BOARD 

Example
schematic(SCH) {
  SCH.variantdefs(VD) {
    printf("Variant: '%s'\n", VD.name);
    }
  }

UL_VARIANT
Data members 

populate 
int (0=do not populate, 
1=populate)

value string
technology string
variantdef UL_VARIANTDEF

See also UL_VARIANTDEF, UL_PART, UL_ELEMENT 

Example
schematic(SCH) {
  SCH.parts(P) {
    P.variants(V) {
      printf("%s: %spopulate\n", V.variantdef.name, V.populate ? "" : "do not 
");
      }
    }
  }



UL_VIA
Data members 

diameter[layer] int
drill int
drillsymbol int
end int
flags int (VIA_FLAG_...)
shape[layer] int (VIA_SHAPE_...)
start int
x, y int (center point)

See also UL_SIGNAL 

Constants
VIA_FLAG_STOP always generate stop mask
VIA_SHAPE_SQUARE square
VIA_SHAPE_ROUND round
VIA_SHAPE_OCTAGON octagon

Note
The diameter and shape of the via depend on the layer for which they shall be retrieved, 
because they may be different in each layer depending on the Design Rules. If one of the 
layers LAYER_TOP...LAYER_BOTTOM, LAYER_TSTOP or LAYER_BSTOP is given as 
the index to the diameter or shape data member, the resulting value will be calculated 
according to the Design Rules. If LAYER_VIAS is given, the raw value as defined in the 
via will be returned. 

Note that diameter and shape will always return the diameter or shape that a via would 
have in the given layer, even if that particular via doesn't cover that layer (or if that layer 
isn't used in the layer setup at all). 

start and end return the layer numbers in which that via starts and ends. The value of 
start will always be less than that of end. 

drillsymbol returns the number of the drill symbol that has been assigned to this drill 
diameter (see the manual for a list of defined drill symbols). A value of 0 means that no 
symbol has been assigned to this drill diameter. 

Example
board(B) {
  B.signals(S) {
    S.vias(V) {
      printf("Via: (%d %d)\n", V.x, V.y);
      }
    }
  }

UL_WIRE
Data members 



arc UL_ARC
cap int (CAP_...)
curve real
layer int
style int (WIRE_STYLE_...)
width int
x1, y1 int (starting point)
x2, y2 int (end point)

Loop members 

pieces() 
UL_WIRE (see 
note)

See also UL_BOARD, UL_PACKAGE, UL_SEGMENT, UL_SHEET, UL_SIGNAL, 
UL_SYMBOL, UL_ARC 

Constants
CAP_FLAT flat arc ends
CAP_ROUND round arc ends
WIRE_STYLE_CONTINUOUS continuous
WIRE_STYLE_LONGDASH long dash
WIRE_STYLE_SHORTDASH short dash
WIRE_STYLE_DASHDOT dash dot

Wire Style
A UL_WIRE that has a style other than WIRE_STYLE_CONTINUOUS can use the 
pieces() loop member to access the individual segments that constitute for example a 
dashed wire. If pieces() is called for a UL_WIRE with WIRE_STYLE_CONTINUOUS, 
a single segment will be accessible which is just the same as the original UL_WIRE. The 
pieces() loop member can't be called from a UL_WIRE that itself has been returned by a 
call to pieces() (this would cause an infinite recursion). 

Arcs at Wire level
Arcs are basically wires, with a few additional properties. At the first level arcs are treated 
exactly the same as wires, meaning they have a start and an end point, a width, layer and 
wire style. In addition to these an arc, at the wire level, has a cap and a curve parameter. cap 
defines whether the arc endings are round or flat, and curve defines the "curvature" of the 
arc. The valid range for curve is -360..+360, and its value means what part of a full circle 
the arc consists of. A value of 90, for instance, would result in a 90° arc, while 180 would 
give you a semicircle. The maximum value of 360 can only be reached theoretically, since 
this would mean that the arc consists of a full circle, which, because the start and end points 
have to lie on the circle, would have to have an infinitely large diameter. Positive values for 
curve mean that the arc is drawn in a mathematically positive sense (i.e. counterclockwise). 
If curve is 0, the arc is a straight line ("no curvature"), which is actually a wire. 

The cap parameter only has a meaning for actual arcs, and will always return CAP_ROUND 
for a straight wire. 

Whether or not an UL_WIRE is an arc can be determined by checking the boolean return 
value of the arc data member. If it returns 0, we have a straight wire, otherwise an arc. If 



arc returns a non-zero value it may be further dereferenced to access the UL_ARC specific 
parameters start and end angle, radius and center point. Note that you may only need these 
additional parameters if you are going to draw the arc or process it in other ways where the 
actual shape is important. 

Example
board(B) {
  B.wires(W) {
    printf("Wire: (%d %d) (%d %d)\n",
           W.x1, W.y1, W.x2, W.y2);
    }
  }

Definitions
The data items to be used in a User Language Program must be defined before they can be 
used. 

There are three kinds of definitions: 

• Constant Definitions   
• Variable Definitions   
• Function Definitions   

The scope of a constant or variable definition goes from the line in which it has been 
defined to the end of the current block, or to the end of the User Language Program, if the 
definition appeared outside any block. 

The scope of a function definition goes from the closing brace (}) of the function body to 
the end of the User Language Program. 

Constant Definitions
Constants are defined using the keyword enum, as in 

enum { a, b, c };

which would define the three constants a, b and c, giving them the values 0, 1 and 2, 
respectively. 

Constants may also be initialized to specific values, like 

enum { a, b = 5, c };

where a would be 0, b would be 5 and c would be 6. 

Variable Definitions
The general syntax of a variable definition is 

[numeric] type identifier [= initializer][, ...];

where type is one of the data or object types, identifier is the name of the variable, 



and initializer is a optional initial value. 

Multiple variable definitions of the same type are separated by commas (,). 

If identifier is followed by a pair of brackets ([]), this defines an array of variables of 
the given type. The size of an array is automatically adjusted at runtime. 

The optional keyword numeric can be used with string arrays to have them sorted 
alphanumerically by the sort() function. 

By default (if no initializer is present), data variables are set to 0 (or "", in case of a 
string), and object variables are "invalid". 

Examples
int i; defines an int variable named i
string s = "Hello"; defines a string variable named s and initializes it to "Hello"

real a, b = 1.0, c; 
defines three real variables named a, b and c, initializing b to the 
value 1.0

int n[] = { 1, 2, 
3 }; 

defines an array of int, initializing the first three elements to 1, 2 
and 3

numeric string 
names[]; 

defines a string array that can be sorted alphanumerically

UL_WIRE w; defines a UL_WIRE object named w
The members of array elements of object types can't be accessed directly: 

UL_SIGNAL signals[];
...
UL_SIGNAL s = signals[0];
printf("%s", s.name);

Function Definitions
You can write your own User Language functions and call them just like the Builtin 
Functions. 

The general syntax of a function definition is 

type identifier(parameters)
{
  statements
}

where type is one of the data or object types, identifier is the name of the function, 
parameters is a list of comma separated parameter definitions, and statements is a 
sequence of statements. 

Functions that do not return a value have the type void. 

A function must be defined before it can be called, and function calls can not be recursive (a 
function cannot call itself). 

The statements in the function body may modify the values of the parameters, but this will 
not have any effect on the arguments of the function call. 

Execution of a function can be terminated by the return statement. Without any return 



statement the function body is executed until it's closing brace (}). 

A call to the exit() function will terminate the entire User Language Program. 

The special function main()
If your User Language Program contains a function called main(), that function will be 
explicitly called as the main function, and it's return value will be the return value of the 
program. 

Command line arguments are available to the program through the global Builtin Variables 
argc and argv. 

Example
int CountDots(string s)
{
  int dots = 0;
  for (int i = 0; s[i]; ++i)
      if (s[i] == '.')
         ++dots;
  return dots;
}
string dotted = "This.has.dots...";
output("test") {
  printf("Number of dots: %d\n",
                 CountDots(dotted));
  }

Operators
The following table lists all of the User Language operators, in order of their precedence 
(Unary having the highest precedence, Comma the lowest): 

Unary ! ~ + - ++ --
Multiplicative * / %
Additive + -
Shift << >>
Relational < <= > >=
Equality == !=
Bitwise AND &
Bitwise XOR ^
Bitwise OR |
Logical AND &&
Logical OR ||
Conditional ?:
Assignment = *= /= %= += -= &= ^= |= <<= >>=
Comma ,
Associativity is left to right for all operators, except for Unary, Conditional and 
Assignment, which are right to left associative. 

The normal operator precedence can be altered by the use of parentheses. 



Bitwise Operators
Bitwise operators work only with data types char and int. 

Unary 

~ 
Bitwise (1's) 
complement

Binary 
<< Shift left
>> Shift right
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
Assignment 
&= Assign bitwise AND
^= Assign bitwise XOR
|= Assign bitwise OR
<<= Assign left shift
>>= Assign right shift

Logical Operators
Logical operators work with expressions of any data type. 

Unary 
! Logical NOT
Binary 
&& Logical AND
|| Logical OR
Using a string expression with a logical operator checks whether the string is empty. 

Using an Object Type with a logical operator checks whether that object contains valid data. 

Comparison Operators
Comparison operators work with expressions of any data type, except Object Types. 

< Less than
<= Less than or equal to
> Greater than

>= 
Greater than or equal 
to

== Equal to
!= Not equal to

Evaluation Operators
Evaluation operators are used to evaluate expressions based on a condition, or to group a 
sequence of expressions and have them evaluated as one expression. 

?: Conditional
, Comma
The Conditional operator is used to make a decision within an expression, as in 



int a;
// ...code that calculates 'a'
string s = a ? "True" : "False";

which is basically the same as 

int a;
string s;
// ...code that calculates 'a'
if (a)
   s = "True";
else
   s = "False";

but the advantage of the conditional operator is that it can be used in an expression. 

The Comma operator is used to evaluate a sequence of expressions from left to right, using 
the type and value of the right operand as the result. 

Note that arguments in a function call as well as multiple variable declarations also use 
commas as delimiters, but in that case this is not a comma operator! 

Arithmetic Operators
Arithmetic operators work with data types char, int and real (except for ++, --, % and 
%=). 

Unary 
+ Unary plus
- Unary minus
++ Pre- or postincrement
-- Pre- or postdecrement
Binary 
* Multiply
/ Divide
% Remainder (modulus)
+ Binary plus
- Binary minus
Assignment 
= Simple assignment
*= Assign product
/= Assign quotient

%= 
Assign remainder 
(modulus)

+= Assign sum
-= Assign difference
See also String Operators 

String Operators
String operators work with data types char, int and string. The left operand must 
always be of type string. 

Binary 
+ Concatenation



Assignment 
= Simple assignment
+= Append to string
The + operator concatenates two strings, or adds a character to the end of a string and 
returns the resulting string. 

The += operator appends a string or a character to the end of a given string. 

See also Arithmetic Operators 

Expressions
An expression can be one of the following: 

• Arithmetic Expression   
• Assignment Expression   
• String Expression   
• Comma Expression   
• Conditional Expression   
• Function Call   

Expressions can be grouped using parentheses, and may be recursive, meaning that an 
expression can consist of subexpressions. 

Arithmetic Expression
An arithmetic expression is any combination of numeric operands and an arithmetic 
operator or a bitwise operator. 

Examples
a + b
c++
m << 1

Assignment Expression
An assignment expression consists of a variable on the left side of an assignment operator, 
and an expression on the right side. 

Examples
a = x + 42
b += c
s = "Hello"

String Expression
A string expression is any combination of string and char operands and a string operator. 



Examples
s + ".brd"
t + 'x'

Comma Expression
A comma expression is a sequence of expressions, delimited by the comma operator 

Comma expressions are evaluated left to right, and the result of a comma expression is the 
type and value of the rightmost expression. 

Example
i++, j++, k++

Conditional Expression
A conditional expression uses the conditional operator to make a decision within an 
expression. 

Example
int a;
// ...code that calculates 'a'
string s = a ? "True" : "False";

Function Call
A function call transfers the program flow to a user defined function or a builtin function. 
The formal parameters defined in the function definition are replaced with the values of the 
expressions used as the actual arguments of the function call. 

Example
int p = strchr(s, 'b');

Statements
A statement can be one of the following: 

• Compound Statement   
• Control Statement   
• Expression Statement   
• Builtin Statement   
• Constant Definition   
• Variable Definition   

Statements specify the flow of control as a User Language Program executes. In absence of 



specific control statements, statements are executed sequentially in the order of appearance 
in the ULP file. 

Compound Statement
A compound statement (also known as block) is a list (possibly empty) of statements 
enclosed in matching braces ({}). Syntactically, a block can be considered to be a single 
statement, but it also controls the scoping of identifiers. An identifier declared within a 
block has a scope starting at the point of declaration and ending at the closing brace. 

Compound statements can be nested to any depth. 

Expression Statement
An expression statement is any expression followed by a semicolon. 

An expression statement is executed by evaluating the expression. All side effects of this 
evaluation are completed before the next statement is executed. Most expression statements 
are assignments or function calls. 

A special case is the empty statement, consisting of only a semicolon. An empty statement 
does nothing, but it may be useful in situations where the ULP syntax expects a statement 
but your program does not need one. 

Control Statements
Control statements are used to control the program flow. 

Iteration statements are 

do...while
for
while

Selection statements are 

if...else
switch

Jump statements are 

break
continue
return

break
The break statement has the general syntax 

break;

and immediately terminates the nearest enclosing do...while, for, switch or while statement. 
This also applies to loop members of object types. 

Since all of these statements can be intermixed and nested to any depth, take care to ensure 



that your break exits from the correct statement. 

continue
The continue statement has the general syntax 

continue;

and immediately transfers control to the test condition of the nearest enclosing do...while, 
while, or for statement, or to the increment expression of the nearest enclosing for 
statement. 

Since all of these statements can be intermixed and nested to any depth, take care to ensure 
that your continue affects the correct statement. 

do...while
The do...while statement has the general syntax 

do statement while (condition);

and executes the statement until the condition expression becomes zero. 

The condition is tested after the first execution of statement, which means that the 
statement is always executed at least one time. 

If there is no break or return inside the statement, the statement must affect the 
value of the condition, or condition itself must change during evaluation in order to 
avoid an endless loop. 

Example
string s = "Trust no one!";
int i = -1;
do {
   ++i;
   } while (s[i]);

for
The for statement has the general syntax 

for ([init]; [test]; [inc]) statement

and performs the following steps: 

1. If an initializing expression init is present, it is executed. 
2. If a test expression is present, it is executed. If the result is nonzero (or if there is 

no test expression at all), the statement is executed. 
3. If an inc expression is present, it is executed. 
4. Finally control returns to step 2. 

If there is no break or return inside the statement, the inc expression (or the 
statement) must affect the value of the test expression, or test itself must change 



during evaluation in order to avoid an endless loop. 

The initializing expression init normally initializes one or more loop counters. It may also 
define a new variable as a loop counter. The scope of such a variable is valid until the end of 
the active block. 

Example
string s = "Trust no one!";
int sum = 0;
for (int i = 0; s[i]; ++i)
    sum += s[i]; // sums up the characters in s

if...else
The if...else statement has the general syntax 

if (expression)
   t_statement
[else
   f_statement]

The conditional expression is evaluated, and if its value is nonzero the t_statement 
is executed. Otherwise the f_statement is executed in case there is an else clause. 

An else clause is always matched to the last encountered if without an else. If this is 
not what you want, you need to use braces to group the statements, as in 

if (a == 1) {
   if (b == 1)
      printf("a == 1 and b == 1\n");
   }
else
   printf("a != 1\n");

return
A function with a return type other than void must contain at least one return statement 
with the syntax 

return expression;

where expression must evaluate to a type that is compatible with the function's return 
type. The value of expression is the value returned by the function. 

If the function is of type void, a return statement without an expression can be used 
to return from the function call. 

switch
The switch statement has the general syntax 

switch (sw_exp) {
  case case_exp: case_statement
  ...



  [default: def_statement]
  }

and allows for the transfer of control to one of several case-labeled statements, depending 
on the value of sw_exp (which must be of integral type). 

Any case_statement can be labeled by one or more case labels. The case_exp of 
each case label must evaluate to a constant integer which is unique within it's enclosing 
switch statement. 

There can also be at most one default label. 

After evaluating sw_exp, the case_exp are checked for a match. If a match is found, 
control passes to the case_statement with the matching case label. 

If no match is found and there is a default label, control passes to def_statement. 
Otherwise none of the statements in the switch is executed. 

Program execution is not affected when case and default labels are encountered. 
Control simply passes through the labels to the following statement. 

To stop execution at the end of a group of statements for a particular case, use the break 
statement. 

Example
string s = "Hello World";
int vowels = 0, others = 0;
for (int i = 0; s[i]; ++i)
    switch (toupper(s[i])) {
      case 'A':
      case 'E':
      case 'I':
      case 'O':
      case 'U': ++vowels;
                break;
      default: ++others;
      }
printf("There are %d vowels in '%s'\n", vowels, s);

while
The while statement has the general syntax 

while (condition) statement

and executes the statement as long as the condition expression is not zero. 

The condition is tested before the first possible execution of statement, which 
means that the statement may never be executed if condition is initially zero. 

If there is no break or return inside the statement, the statement must affect the 
value of the condition, or condition itself must change during evaluation in order to 
avoid an endless loop. 



Example
string s = "Trust no one!";
int i = 0;
while (s[i])
      ++i;

Builtins
Builtins are Constants, Variables, Functions and Statements that provide additional 
information and allow for data manipulations. 

• Builtin Constants   
• Builtin Variables   
• Builtin Functions   
• Builtin Statements   

Builtin Constants
Builtin constants are used to provide information about object parameters, such as 
maximum recommended name length, flags etc. 

Many of the object types have their own Constants section which lists the builtin constants 
for that particular object (see e.g. UL_PIN). 

The following builtin constants are defined in addition to the ones listed for the various 
object types: 

EAGLE_VERSION EAGLE program version number (int)
EAGLE_RELEASE EAGLE program release number (int)
EAGLE_SIGNATUR
E 

a string containing EAGLE program name, version and copyright 
information

EAGLE_PATH a string containing the complete path of the EAGLE executable
EAGLE_DIR a string containing the directory of the EAGLE installation ($EAGLEDIR)

EAGLE_HOME 
a string containing the user's home directory when starting EAGLE 
($HOME)

OS_SIGNATURE 
a string containing a signature of the operating system (e.g. Mac..., 
Windows... or Linux)

REAL_EPSILON 
the minimum positive real number such that 1.0 + REAL_EPSILON !
= 1.0

REAL_MAX the largest possible real value

REAL_MIN 
the smallest possible (positive!) real value
the smallest representable number is -REAL_MAX

INT_MAX the largest possible int value
INT_MIN the smallest possible int value
PI the value of "pi" (3.14..., real)
usage a string containing the text from the #usage directive
These builtin constants contain the directory paths defined in the directories dialog, with any 
of the special variables ($HOME and $EAGLEDIR) replaced by their actual values. Since 
each path can consist of several directories, these constants are string arrays with an 
individual directory in each member. The first empty member marks the end of the path: 

path_lbr[] Libraries



path_dru[] Design Rules

path_ulp[] 
User Language 
Programs

path_scr[] Scripts
path_cam[] CAM Jobs
path_epf[] Projects
When using these constants to build a full file name, you need to use a directory separator, 
as in 

string s = path_lbr[0] + '/' + "mylib.lbr";

The libraries that are currently in use through the USE command: 

used_libraries[] 

Builtin Variables
Builtin variables are used to provide information at runtime. 

int argc number of arguments given to the RUN command

string argv[] 
arguments given to the RUN command (argv[0] is the full ULP file 
name)

Builtin Functions
Builtin functions are used to perform specific tasks, like printing formatted strings, sorting 
data arrays or the like. 

You may also write your own functions and use them to structure your User Language 
Program. 

The builtin functions are grouped into the following categories: 

• Character Functions   
• File Handling Functions   
• Mathematical Functions   
• Miscellaneous Functions   
• Network Functions   
• Printing Functions   
• String Functions   
• Time Functions   
• Object Functions   
• XML Functions   

Alphabetical reference of all builtin functions: 

• abs()   
• acos()   
• asin()   
• atan()   
• ceil()   
• cfgget()   
• cfgset()   



• clrgroup()   
• country()   
• cos()   
• exit()   
• exp()   
• fdlsignature()   
• filedir()   
• fileerror()   
• fileext()   
• fileglob()   
• filename()   
• fileread()   
• filesetext()   
• filesize()   
• filetime()   
• floor()   
• frac()   
• inch2u()   
• ingroup()   
• isalnum()   
• isalpha()   
• iscntrl()   
• isdigit()   
• isgraph()   
• islower()   
• isprint()   
• ispunct()   
• isspace()   
• isupper()   
• isxdigit()   
• language()   
• log()   
• log10()   
• lookup()   
• max()   
• mic2u()   
• mil2u()   
• min()   
• mm2u()   
• neterror()   
• netget()   
• netpost()   
• palette()   
• pow()   



• printf()   
• round()   
• setgroup()   
• setvariant()   
• sin()   
• sort()   
• sprintf()   
• sqrt()   
• status()   
• strchr()   
• strjoin()   
• strlen()   
• strlwr()   
• strrchr()   
• strrstr()   
• strsplit()   
• strstr()   
• strsub()   
• strtod()   
• strtol()   
• strupr()   
• strxstr()   
• system()   
• t2day()   
• t2dayofweek()   
• t2hour()   
• t2minute()   
• t2month()   
• t2second()   
• t2string()   
• t2year()   
• tan()   
• time()   
• tolower()   
• toupper()   
• trunc()   
• u2inch()   
• u2mic()   
• u2mil()   
• u2mm()   
• variant()   
• xmlattribute()   
• xmlattributes()   
• xmlelement()   



• xmlelements()   
• xmltags()   
• xmltext()   

Character Functions
Character functions are used to manipulate single characters. 

The following character functions are available: 

• isalnum()   
• isalpha()   
• iscntrl()   
• isdigit()   
• isgraph()   
• islower()   
• isprint()   
• ispunct()   
• isspace()   
• isupper()   
• isxdigit()   
• tolower()   
• toupper()   

is...()
Function 

Check whether a character falls into a given category. 
Syntax 

int isalnum(char c);
int isalpha(char c);
int iscntrl(char c);
int isdigit(char c);
int isgraph(char c);
int islower(char c);
int isprint(char c);
int ispunct(char c);
int isspace(char c);
int isupper(char c);
int isxdigit(char c); 

Returns 
The is... functions return nonzero if the given character falls into the category, zero 
otherwise. 

Character categories
isalnum letters (A to Z or a to z) or digits (0 to 9)
isalpha letters (A to Z or a to z)
iscntrl delete characters or ordinary control characters (0x7F or 0x00 to 0x1F)



isdigit digits (0 to 9)
isgraph printing characters (except space)
islower lowercase letters (a to z)
isprint printing characters (0x20 to 0x7E)
ispunct punctuation characters (iscntrl or isspace)

isspace 
space, tab, carriage return, new line, vertical tab, or formfeed (0x09 to 0x0D, 
0x20)

isupper uppercase letters (A to Z)
isxdigit hex digits (0 to 9, A to F, a to f)

Example
char c = 'A';
if (isxdigit(c))
   printf("%c is hex\n", c);
else
   printf("%c is not hex\n", c);

to...()
Function 

Convert a character to upper- or lowercase. 
Syntax 

char tolower(char c);
char toupper(char c); 

Returns 
The tolower function returns the converted character if c is uppercase. All other characters 
are returned unchanged.
The toupper function returns the converted character if c is lowercase. All other characters 
are returned unchanged. 

See also strupr, strlwr 

File Handling Functions
Filename handling functions are used to work with file names, sizes and timestamps. 

The following file handling functions are available: 

• fileerror()   
• fileglob()   
• filedir()   
• fileext()   
• filename()   
• fileread()   
• filesetext()   
• filesize()   
• filetime()   

See output() for information about how to write into a file. 



fileerror()
Function 

Returns the status of I/O operations. 
Syntax 

int fileerror(); 
Returns 

The fileerror function returns 0 if everything is ok. 

See also output, printf, fileread 

fileerror checks the status of any I/O operations that have been performed since the last 
call to this function and returns 0 if everything was ok. If any of the I/O operations has 
caused an error, a value other than 0 will be returned. 

You should call fileerror before any I/O operations to reset any previous error state, 
and call it again after the I/O operations to see if they were successful. 

When fileerror returns a value other than 0 (thus indicating an error) a proper error 
message has already been given to the user. 

Example
fileerror();
output("file.txt", "wt") {
  printf("Test\n");
  }
if (fileerror())
   exit(1);

fileglob()
Function 

Perform a directory search. 
Syntax 

int fileglob(string &array[], string pattern); 
Returns 

The fileglob function returns the number of entries copied into array. 

See also dlgFileOpen(), dlgFileSave() 

fileglob performs a directory search using pattern. 

pattern may contain '*' and '?' as wildcard characters. If pattern ends with a '/', 
the contents of the given directory will be returned. 

Names in the resulting array that end with a '/' are directory names. 

The array is sorted alphabetically, with the directories coming first. 

The special entries '.' and '..' (for the current and parent directories) are never returned 
in the array. 

If pattern doesn't match, or if you don't have permission to search the given directory, 
the resulting array will be empty. 



Note for Windows users
The directory delimiter in the array is always a forward slash. This makes sure User 
Language Programs will work platform independently. In the pattern the backslash 
('\') is also treated as a directory delimiter. 

Sorting filenames under Windows is done case insensitively. 

Example
string a[];
int n = fileglob(a, "*.brd");

Filename Functions
Function 

Split a filename into its separate parts. 
Syntax 

string filedir(string file);
string fileext(string file);
string filename(string file);
string filesetext(string file, string newext); 

Returns 
filedir returns the directory of file (including the drive letter under Windows).
fileext returns the extension of file.
filename returns the file name of file (including the extension).
filesetext returns file with the extension set to newext. 

See also Filedata Functions 

Example
if (board) board(B) {
  output(filesetext(B.name, ".out")) {
    ...
    }
  }

Filedata Functions
Function 

Gets the timestamp and size of a file. 
Syntax 

int filesize(string filename);
int filetime(string filename); 

Returns 
filesize returns the size (in byte) of the given file.
filetime returns the timestamp of the given file in a format to be used with the time 
functions. 

See also time, Filename Functions 



Example
board(B)
  printf("Board: %s\nSize: %d\nTime: %s\n",
         B.name, filesize(B.name),
         t2string(filetime(B.name)));

File Input Functions
File input functions are used to read data from files. 

The following file input is available: 

• fileread()   

See output() for information about how to write into a file. 

fileread()
Function 

Reads data from a file. 
Syntax 

int fileread(dest, string file); 
Returns 

fileread returns the number of objects read from the file.
The actual meaning of the return value depends on the type of dest. 

See also lookup, strsplit, fileerror 

If dest is a character array, the file will be read as raw binary data and the return value 
reflects the number of bytes read into the character array (which is equal to the file size). 

If dest is a string array, the file will be read as a text file (one line per array member) and 
the return value will be the number of lines read into the string array. Newline characters 
will be stripped. 

If dest is a string, the entire file will be read into that string and the return value will be the 
length of that string (which is not necessarily equal to the file size, if the operating system 
stores text files with "cr/lf" instead of a "newline" character). 

Example
char b[];
int nBytes = fileread(b, "data.bin");
string lines[];
int nLines = fileread(lines, "data.txt");
string text;
int nChars = fileread(text, "data.txt");

Mathematical Functions
Mathematical functions are used to perform mathematical operations. 

The following mathematical functions are available: 



• abs()   
• acos()   
• asin()   
• atan()   
• ceil()   
• cos()   
• exp()   
• floor()   
• frac()   
• log()   
• log10()   
• max()   
• min()   
• pow()   
• round()   
• sin()   
• sqrt()   
• trunc()   
• tan()   

Error Messages
If the arguments of a mathematical function call lead to an error, the error message will 
show the actual values of the arguments. Thus the statements 

real x = -1.0;
real r = sqrt(2 * x);

will lead to the error message 

Invalid argument in call to 'sqrt(-2)'

Absolute, Maximum and Minimum Functions
Function 

Absolute, maximum and minimum functions. 
Syntax 

type abs(type x);
type max(type x, type y);
type min(type x, type y); 

Returns 
abs returns the absolute value of x.
max returns the maximum of x and y.
min returns the minimum of x and y. 

The return type of these functions is the same as the (larger) type of the arguments. type 
must be one of char, int or real. 



Example
real x = 2.567, y = 3.14;
printf("The maximum is %f\n", max(x, y));

Rounding Functions
Function 

Rounding functions. 
Syntax 

real ceil(real x);
real floor(real x);
real frac(real x);
real round(real x);
real trunc(real x); 

Returns 
ceil returns the smallest integer not less than x.
floor returns the largest integer not greater than x.
frac returns the fractional part of x.
round returns x rounded to the nearest integer.
trunc returns the integer part of x. 

Example
real x = 2.567;
printf("The rounded value of %f is %f\n", x, round(x));

Trigonometric Functions
Function 

Trigonometric functions. 
Syntax 

real acos(real x);
real asin(real x);
real atan(real x);
real cos(real x);
real sin(real x);
real tan(real x); 

Returns 
acos returns the arc cosine of x.
asin returns the arc sine of x.
atan returns the arc tangent of x.
cos returns the cosine of x.
sin returns the sine of x.
tan returns the tangent of x. 

Constants
PI the value of "pi" 



(3.14...)

Note
Angles are given in radian. 

Example
real x = PI / 2;
printf("The sine of %f is %f\n", x, sin(x));

Exponential Functions
Function 

Exponential Functions. 
Syntax 

real exp(real x);
real log(real x);
real log10(real x);
real pow(real x, real y);
real sqrt(real x); 

Returns 
exp returns the exponential e to the power of x.
log returns the natural logarithm of x.
log10 returns the base 10 logarithm of x.
pow returns the value of x to the power of y.
sqrt returns the square root of x. 

Example
real x = 2.1;
printf("The square root of %f is %f\n", x, sqrt(x));
printf("The 3rd root of %f is %f\n", x, pow(x, 1.0/3));

Miscellaneous Functions
Miscellaneous functions are used to perform various tasks. 

The following miscellaneous functions are available: 

• country()   
• exit()   
• fdlsignature()   
• language()   
• lookup()   
• palette()   
• sort()   
• status()   
• system()   
• Configuration Parameters   



• Unit Conversions   

Configuration Parameters
Function 

Store and retrieve configuration parameters. 
Syntax 

string cfgget(string name[, string default]);
void cfgset(string name, string value); 

Returns 
cfgget returns the value of the parameter stored under the given name. If no such 
parameter has been stored, yet, the value of the optional default is returned (or an empty 
string, if no default is given). 

The cfgget function retrieves values that have previously been stored with a call to 
cfgset(). 

The cfgset function sets the parameter with the given name to the given value. 

The valid characters for name are 'A'-'Z', 'a'-'z', '0'-'9', '.' and '_'.
Parameter names are case sensitive. 

The parameters are stored in the user's eaglerc file. To ensure that different User Language 
Programs don't overwrite each other's parameters in case they use the same parameter 
names, it is recommended to put the name of the ULP at the beginning of the parameter 
name. For example, a ULP named mytool.ulp that uses a parameter named MyParam 
could store that parameter under the name 

mytool.MyParam

Because the configuration parameters are stored in the eaglerc file, which also contains all 
of EAGLE's other user specific parameters, it is also possible to access the EAGLE 
parameters with cfgget() and cfgset(). In order to make sure no ULP parameters 
collide with any EAGLE parameters, the EAGLE parameters must be prefixed with 
"EAGLE:", as in 

EAGLE:Option.XrefLabelFormat

Note that there is no documentation of all of EAGLE's internal parameters and how they are 
stored in the eaglerc file. Also, be very careful when changing any of these parameters! As 
with the eaglerc file itself, you should only manipulate these parameters if you know what 
you are doing! Some EAGLE parameters may require a restart of EAGLE for changes to 
take effect. 

In the eaglerc file the User Language parameters are stored with the prefix "ULP:". 
Therefore this prefix may be optionally put in front of User Language parameter names, as 
in 

ULP:mytool.MyParam

Example
string MyParam = cfgget("mytool.MyParam", "SomeDefault");
MyParam = "OtherValue";



cfgset("mytool.MyParam", MyParam);

country()
Function 

Returns the country code of the system in use. 
Syntax 

string country(); 
Returns 

country returns a string consisting of two uppercase characters that identifies the country 
used on the current system. If no such country setting can be determined, the default "US" 
will be returned. 

See also language 

Example
dlgMessageBox("Your country code is: " + country());

exit()
Function 

Exits from a User Language Program. 
Syntax 

void exit(int result);
void exit(string command); 

See also RUN 

The exit function terminates execution of a User Language Program.
If an integer result is given it will be used as the return value of the program.
If a string command is given, that command will be executed as if it were entered into the 
command line immediately after the RUN command. In that case the return value of the 
ULP is set to EXIT_SUCCESS. 

Constants

EXIT_SUCCESS 
return value for successful program execution (value 
0)

EXIT_FAILURE return value for failed program execution (value -1)

fdlsignature()
Function 

Calculates a digital signature for Premier Farnell's Design Link. 
Syntax 

string fdlsignature(string s, string key); 

The fdlsignature function is used to calculate a digital signature when accessing 
Premier Farnell's Design Link interface. 



language()
Function 

Returns the language code of the system in use. 
Syntax 

string language(); 
Returns 

language returns a string consisting of two lowercase characters that identifies the 
language used on the current system. If no such language setting can be determined, the 
default "en" will be returned. 

See also country 

The language function can be used to make a ULP use different message string, 
depending on which language the current system is using. 

In the example below all the strings used in the ULP are listed in the string array I18N[], 
preceeded by a string containing the various language codes supported by this ULP. Note 
the vtab characters used to separate the individual parts of each string (they are important 
for the lookup function) and the use of the commas to separate the strings. The actual 
work is done in the function tr(), which returns the translated version of the given string. 
If the original string can't be found in the I18N array, or there is no translation for the 
current language, the original string will be used untranslated. 

The first language defined in the I18N array must be the one in which the strings used 
throughout the ULP are written, and should generally be English in order to make the 
program accessible to the largest number of users. 

Example
string I18N[] = {
  "en\v"
  "de\v"
  "it\v"
  ,
  "I18N Demo\v"
  "Beispiel für Internationalisierung\v"
  "Esempio per internazionalizzazione\v"
  ,
  "Hello world!\v"
  "Hallo Welt!\v"
  "Ciao mondo!\v"
  ,
  "+Ok\v"
  "+Ok\v"
  "+Approvazione\v"
  ,
  "-Cancel\v"
  "-Abbrechen\v"
  "-Annullamento\v"
  };
int Language = strstr(I18N[0], language()) / 3;
string tr(string s)
{
  string t = lookup(I18N, s, Language, '\v');
  return t ? t : s;
}



dlgDialog(tr("I18N Demo")) {
  dlgHBoxLayout dlgSpacing(350);
  dlgLabel(tr("Hello world!"));
  dlgHBoxLayout {
    dlgPushButton(tr("+Ok")) dlgAccept();
    dlgPushButton(tr("-Cancel")) dlgReject();
    }
  };

lookup()
Function 

Looks up data in a string array. 
Syntax 

string lookup(string array[], string key, int field_index[, 
char separator]);
string lookup(string array[], string key, string field_name[, 
char separator]); 

Returns 
lookup returns the value of the field identified by field_index or field_name.
If the field doesn't exist, or no string matching key is found, an empty string is returned. 

See also fileread, strsplit 

An array that can be used with lookup() consists of strings of text, each string 
representing one data record. 

Each data record contains an arbitrary number of fields, which are separated by the 
character separator (default is '\t', the tabulator). The first field in a record is used as 
the key and is numbered 0. 

All records must have unique key fields and none of the key fields may be empty - 
otherwise it is undefined which record will be found. 

If the first string in the array contains a "Header" record (i.e. a record where each field 
describes its contents), using lookup with a field_name string automatically 
determines the index of that field. This allows using the lookup function without exactly 
knowing which field index contains the desired data.
It is up to the user to make sure that the first record actually contains header information. 

If the key parameter in the call to lookup() is an empty string, the first string of the 
array will be used. This allows a program to determine whether there is a header record 
with the required field names. 

If a field contains the separator character, that field must be enclosed in double quotes 
(as in "abc;def", assuming the semicolon (';') is used as separator). The same applies 
if the field contains double quotes ("), in which case the double quotes inside the field have 
to be doubled (as in "abc;""def"";ghi", which would be abc;"def";ghi).
It is best to use the default "tab" separator, which doesn't have these problems (no 
field can contain a tabulator). 

Here's an example data file (';' has been used as separator for better readability): 

Name;Manufacturer;Code;Price
7400;Intel;I-01-234-97;$0.10



68HC12;Motorola;M68HC1201234;$3.50

Example
string OrderCodes[];
if (fileread(OrderCodes, "ordercodes") > 0) {
   if (lookup(OrderCodes, "", "Code", ';')) {
      schematic(SCH) {
        SCH.parts(P) {
          string OrderCode;
          // both following statements do exactly the same:
          OrderCode = lookup(OrderCodes, P.device.name, "Code", ';');
          OrderCode = lookup(OrderCodes, P.device.name, 2, ';');
          }
        }
      }
   else
      dlgMessageBox("Missing 'Code' field in file 'ordercodes');
   }

palette()
Function 

Returns color palette information. 
Syntax 

int palette(int index[, int type]); 
Returns 

The palette function returns an integer ARGB value in the form 0xaarrggbb, or the type of 
the currently used palette (depending on the value of index). 

The palette function returns the ARGB value of the color with the given index (which 
may be in the range 0..PALETTE_ENTRIES-1). If type is not given (or is -1) the palette 
assigned to the current editor window will be used. Otherwise type specifies which color 
palette to use (PALETTE_BLACK, PALETTE_WHITE or PALETTE_COLORED). 

The special value -1 for index makes the function return the type of the palette that is 
currently in use by the editor window. 

If either index or type is out of range, an error message will be given and the ULP will 
be terminated. 

Constants
PALETTE_TYPES the number of palette types (3)
PALETTE_BLACK the black background palette (0)
PALETTE_WHITE the white background palette (1)
PALETTE_COLORED the colored background palette (2)

PALETTE_ENTRIES 
the number of colors per palette 
(64)

sort()
Function 



Sorts an array or a set of arrays. 
Syntax 

void sort(int number, array1[, array2,...]); 

The sort function either directly sorts a given array1, or it sorts a set of arrays (starting 
with array2), in which case array1 is supposed to be an array of int, which will be used 
as a pointer array. 

In any case, the number argument defines the number of items in the array(s). 

Sorting a single array
If the sort function is called with one single array, that array will be sorted directly, as in 
the following example: 

string A[];
int n = 0;
A[n++] = "World";
A[n++] = "Hello";
A[n++] = "The truth is out there...";
sort(n, A);
for (int i = 0; i < n; ++i)
    printf(A[i]);

Sorting a set of arrays
If the sort function is called with more than one array, the first array must be an array of 
int, while all of the other arrays may be of any array type and hold the data to be sorted. The 
following example illustrates how the first array will be used as a pointer: 

numeric string Nets[], Parts[], Instances[], Pins[];
int n = 0;
int index[];
schematic(S) {
  S.nets(N) N.pinrefs(P) {
    Nets[n] = N.name;
    Parts[n] = P.part.name;
    Instances[n] = P.instance.name;
    Pins[n] = P.pin.name;
    ++n;
    }
  sort(n, index, Nets, Parts, Instances, Pins);
  for (int i = 0; i < n; ++i)
      printf("%-8s %-8s %-8s %-8s\n",
             Nets[index[i]], Parts[index[i]],
             Instances[index[i]], Pins[index[i]]);
  }

The idea behind this is that one net can have several pins connected to it, and in a netlist you 
might want to have the net names sorted, and within one net you also want the part names 
sorted and so on. 

Note the use of the keyword numeric in the string arrays. This causes the strings to be 
sorted in a way that takes into account a numeric part at the end of the strings, which leads 
to IC1, IC2,... IC9, IC10 instead of the alphabetical order IC1, IC10, IC2,...IC9. 

When sorting a set of arrays, the first (index) array must be of type int and need not be 



initialized. Any contents the index array might have before calling the sort function will 
be overwritten by the resulting index values. 

status()
Function 

Displays a status message in the status bar. 
Syntax 

void status(string message);

See also dlgMessageBox() 

The status function displays the given message in the status bar of the editor window 
in which the ULP is running. 

system()
Function 

Executes an external program. 
Syntax 

int system(string command); 
Returns 

The system function returns the exit status of the command. This is typically 0 if everything 
was ok, and non-zero in case of an error. 

The system function executes the external program given by the command string, and 
waits until the program ends. 

Input/Output redirection
If the external program shall read its standard input from (or write its standard output to) a 
particular file, input/output needs to be redirected. 

On Linux and Mac OS X this is done by simply adding a '<' or '>' to the command line, 
followed by the desired file name, as in 

system("program < infile > outfile");

which runs program and makes it read from infile and write to outfile. 

On Windows you have to explicitly run a command processor to do this, as in 

system("cmd.exe /c program < infile > outfile");

(on DOS based Windows systems use command.com instead of cmd.exe). 

Background execution
The system function waits until the given program has ended. This is useful for programs 
that only run for a few seconds, or completely take over the user's attention. 

If an external program runs for a longer time, and you want the system call to return 
immediately, without waiting for the program to end, you can simply add an '&' to the 



command string under Linux and Mac OS X, as in 

system("program &");

Under Windows you need to explicitly run a command processor to do this, as in 

system("cmd.exe /c start program");

(on DOS based Windows systems use command.com instead of cmd.exe). 

Example
int result = system("simulate -f filename");

This would call a simulation program, giving it a file which the ULP has just created. Note 
that simulate here is just an example, it is not part of the EAGLE package! 

If you want to have control over what system commands are actually executed, you can 
write a wrapper function that prompts the user for confirmation before executing the 
command, like 

int MySystem(string command)
{
  if (dlgMessageBox("!Ok to execute the following command?<p><tt>" + command + 
"</tt>", "&Yes", "&No") == 0)
     return system(command);
  return -1;
}
int result = MySystem("simulate -f filename");

Unit Conversions
Function 

Converts internal units. 
Syntax 

real u2inch(int n);
real u2mic(int n);
real u2mil(int n);
real u2mm(int n);
int inch2u(real n);
int mic2u(real n);
int mil2u(real n);
int mm2u(real n); 

Returns 
u2inch returns the value of n in inch.
u2mic returns the value of n in microns (1/1000mm).
u2mil returns the value of n in mil (1/1000inch).
u2mm returns the value of n in millimeters.
inch2u returns the value of n (which is in inch) as internal units.
mic2u returns the value of n (which is in microns) as internal units.
mil2u returns the value of n (which is in mil) as internal units.
mm2u returns the value of n (which is in millimeters) as internal units. 



See also UL_GRID 

EAGLE stores all coordinate and size values as int values with a resolution of 
1/320000mm (0.003125µ). The above unit conversion functions can be used to convert 
these internal units to the desired measurement units, and vice versa. 

Example
board(B) {
  B.elements(E) {
    printf("%s at (%f, %f)\n", E.name,
           u2mm(E.x), u2mm(E.y));
    }
  }

Network Functions
Network functions are used to access remote sites on the Internet. 

The following network functions are available: 

• neterror()   
• netget()   
• netpost()   

neterror()
Function 

Returns the error message of the most recent network function call. 
Syntax 

string neterror(void); 
Returns 

neterror returns a textual message describing the error that occurred in the most recent 
call to a network function.
If no error has occurred, the return value is an empty string. 

See also netget, netpost 

The neterror function should be called after any of the other network functions has 
returned a negative value, indicating that an error has occurred. The return value of 
neterror is a textual string that can be presented to the user. 

Example
string Result;
if (netget(Result, "http://www.cadsoft.de/cgi-bin/http-test?see=me&hear=them") 
>= 0) {
   // process Result
   }
else
   dlgMessageBox(neterror());



netget()
Function 

Performs a GET request on the network. 
Syntax 

int netget(dest, string url[, int timeout]); 
Returns 

netget returns the number of objects read from the network.
The actual meaning of the return value depends on the type of dest.
In case of an error, a negative value is returned and neterror() may be called to display an 
error message to the user. 

See also netpost, neterror, fileread 

The netget function sends the given url to the network and stores the result in the dest 
variable.
If no network activity has occurred for timeout seconds, the connection will be 
terminated. The default timeout is 20 seconds.
The url must contain the protocol to use (HTTP, HTTPS or FTP) and can contain 
name=value pairs of parameters, as in 

http://www.cadsoft.de/cgi-bin/http-test?see=me&hear=them
ftp://ftp.cadsoft.de/eagle/userfiles/README

If a user id and password is required to access a remote site, these can be given as 

https://userid:password@www.secret-site.com/...

If dest is a character array, the result will be treated as raw binary data and the return value 
reflects the number of bytes stored in the character array. 

If dest is a string array, the result will be treated as text data (one line per array member) 
and the return value will be the number of lines stored in the string array. Newline 
characters will be stripped. 

If dest is a string, the result will be stored in that string and the return value will be the 
length of the string. Note that in case of binary data the result is truncated at the first 
occurrence of a byte with the value 0x00. 

If you need to use a proxy to access the Internet with HTTP or HTTPS, you can set that up 
in the "Configure" dialog under "Help/Check for Update" in the Control Panel. 

Example
string Result;
if (netget(Result, "http://www.cadsoft.de/cgi-bin/http-test?see=me&hear=them") 
>= 0) {
   // process Result
   }
else
   dlgMessageBox(neterror());



netpost()
Function 

Performs a POST request on the network. 
Syntax 

int netpost(dest, string url, string data[, int timeout[, 
string content_type] ]); 

Returns 
netpost returns the number of objects read from the network.
The actual meaning of the return value depends on the type of dest.
In case of an error, a negative value is returned and neterror() may be called to display an 
error message to the user. 

See also netget, neterror, fileread 

The netpost function sends the given data to the given url on the network and stores 
the result in the dest variable.
If no network activity has occurred for timeout seconds, the connection will be 
terminated. The default timeout is 20 seconds.
If content_type is given, it overwrites the default content type of "text/html; 
charset=utf-8".
The url must contain the protocol to use (HTTP or HTTPS). 

If a user id and password is required to access a remote site, these can be given as 

https://userid:password@www.secret-site.com/...

If dest is a character array, the result will be treated as raw binary data and the return value 
reflects the number of bytes stored in the character array. 

If dest is a string array, the result will be treated as text data (one line per array member) 
and the return value will be the number of lines stored in the string array. Newline 
characters will be stripped. 

If dest is a string, the result will be stored in that string and the return value will be the 
length of the string. Note that in case of binary data the result is truncated at the first 
occurrence of a byte with the value 0x00. 

If you need to use a proxy to access the Internet with HTTP or HTTPS, you can set that up 
in the "Configure" dialog under "Help/Check for Update" in the Control Panel. 

Example
string Data = "see=me\nhear=them";
string Result;
if (netpost(Result, "http://www.cadsoft.de/cgi-bin/http-test", Data) >= 0) {
   // process Result
   }
else
   dlgMessageBox(neterror());

Printing Functions
Printing functions are used to print formatted strings. 



The following printing functions are available: 

• printf()   
• sprintf()   

printf()
Function 

Writes formatted output to a file. 
Syntax 

int printf(string format[, argument, ...]); 
Returns 

The printf function returns the number of characters written to the file that has been 
opened by the most recent output statement. 

In case of an error, printf returns -1. 

See also sprintf, output, fileerror 

Format string
The format string controls how the arguments will be converted, formatted and printed. 
There must be exactly as many arguments as necessary for the format. The number and type 
of arguments will be checked against the format, and any mismatch will lead to an error 
message. 

The format string contains two types of objects - plain characters and format specifiers: 

• Plain characters are simply copied verbatim to the output 
• Format specifiers fetch arguments from the argument list and apply formatting to 

them 

Format specifiers
A format specifier has the following form: 

% [flags] [width] [.prec] type 

Each format specification begins with the percent character (%). After the % comes the 
following, in this order: 

• an optional sequence of flag characters, [flags] 
• an optional width specifier, [width] 
• an optional precision specifier, [.prec] 
• the conversion type character, type 

Conversion type characters
d signed decimal int
o unsigned octal int
u unsigned decimal int
x unsigned hexadecimal int (with a, b,...)



X unsigned hexadecimal int (with A, B,...)
f signed real value of the form [-]dddd.dddd
e signed real value of the form [-]d.dddde[±]ddd
E same as e, but with E for exponent

g 
signed real value in either e or f form, based on given value and 
precision

G same as g, but with E for exponent if e format used
c single character
s character string
% the % character is printed

Flag characters
The following flag characters can appear in any order and combination. 

"-" the formatted item is left-justified within the field; normally, items are right-justified

"+" a signed, positive item will always start with a plus character (+); normally, only negative 
items begin with a sign

" " 
a signed, positive item will always start with a space character; if both "+" and " " are 
specified, "+" overrides " "

Width specifiers
The width specifier sets the minimum field width for an output value. 

Width is specified either directly, through a decimal digit string, or indirectly, through an 
asterisk (*). If you use an asterisk for the width specifier, the preceding argument (which 
must be an int) to the one being formatted (with this format specifier) determines the 
minimum output field width. 

In no case does a nonexistent or small field width cause truncation of a field. If the result of 
a conversion is wider than the field width, the field is simply expanded to contain the 
conversion result. 

n 
At least n characters are printed. If the output value has less than n characters, the output is 
padded with blanks (right-padded if "-" flag given, left-padded otherwise).

0n 
At least n characters are printed. If the output value has less than n characters, it is filled on the 
left with zeros.

* 
The argument list supplies the width specifier, which must precede the actual argument being 
formatted.

Precision specifiers
A precision specifier always begins with a period (.) to separate it from any preceding 
width specifier. Then, like width, precision is specified either directly through a decimal 
digit string, or indirectly, through an asterisk (*). If you use an asterisk for the precision 
specifier, the preceding argument (which must be an int) to the one being formatted (with 
this format specifier) determines the precision. 

none Precision set to default.
.0 For int types, precision is set to default; for real types, no decimal point is printed.

.n 
n characters or n decimal places are printed. If the output value has more than n characters 
the output might be truncated or rounded (depending on the type character).

* 
The argument list supplies the precision specifier, which must precede the actual argument 
being formatted.



Default precision values
douxX 1
eEf 6

gG 
all significant 
digits

c no effect
s print entire string

How precision specification (.n) affects conversion

douxX 
.n specifies that at least n characters are printed. If the input argument has less than n 
digits, the output value is left-padded with zeros. If the input argument has more than n 
digits, the output value is not truncated.

eEf 
.n specifies that n characters are printed after the decimal point, and the last digit printed is 
rounded.

gG .n specifies that at most n significant digits are printed.
c .n has no effect on the output.
s .n specifies that no more than n characters are printed.

Binary zero characters
Unlike sprintf, the printf function can print binary zero characters (0x00). 

char c = 0x00;
printf("%c", c);

Example
int i = 42;
real r = 3.14;
char c = 'A';
string s = "Hello";
printf("Integer: %8d\n", i);
printf("Hex:     %8X\n", i);
printf("Real:    %8f\n", r);
printf("Char:    %-8c\n", c);
printf("String:  %-8s\n", s);

sprintf()
Function 

Writes formatted output into a string. 
Syntax 

int sprintf(string result, string format[, argument, ...]); 
Returns 

The sprintf function returns the number of characters written into the result string. 

In case of an error, sprintf returns -1. 

See also printf 



Format string
See printf. 

Binary zero characters
Note that sprintf can not return strings with embedded binary zero characters (0x00). If 
the resulting string contains a binary zero character, any characters following that zero 
character will be dropped. Use printf if you need to output binary data. 

Example
string result;
int number = 42;
sprintf(result, "The number is %d", number);

String Functions
String functions are used to manipulate character strings. 

The following string functions are available: 

• strchr()   
• strjoin()   
• strlen()   
• strlwr()   
• strrchr()   
• strrstr()   
• strsplit()   
• strstr()   
• strsub()   
• strtod()   
• strtol()   
• strupr()   
• strxstr()   

strchr()
Function 

Scans a string for the first occurrence of a given character. 
Syntax 

int strchr(string s, char c[, int index]); 
Returns 

The strchr function returns the integer offset of the character in the string, or -1 if the 
character does not occur in the string. 

See also strrchr, strstr 

If index is given, the search starts at that position. Negative values are counted from the 
end of the string. 



Example
string s = "This is a string";
char c = 'a';
int pos = strchr(s, c);
if (pos >= 0)
   printf("The character %c is at position %d\n", c, pos);
else
   printf("The character was not found\n");

strjoin()
Function 

Joins a string array to form a single string. 
Syntax 

string strjoin(string array[], char separator); 
Returns 

The strjoin function returns the combined entries of array. 

See also strsplit, lookup, fileread 

strjoin joins all entries in array, delimited by the given separator and returns the 
resulting string. 

If separator is the newline character ('\n') the resulting string will be terminated with 
a newline character. This is done to have a text file that consists of N lines (each of which is 
terminated with a newline) and is read in with the fileread() function and split into an array 
of N strings to be joined to the original string as read from the file. 

Example
string a[] = { "Field 1", "Field 2", "Field 3" };
string s = strjoin(a, ':');

strlen()
Function 

Calculates the length of a string. 
Syntax 

int strlen(string s); 
Returns 

The strlen function returns the number of characters in the string. 

Example
string s = "This is a string";
int l = strlen(s);
printf("The string is %d characters long\n", l);



strlwr()
Function 

Converts uppercase letters in a string to lowercase. 
Syntax 

string strlwr(string s); 
Returns 

The strlwr function returns the modified string. The original string (given as parameter) is 
not changed. 

See also strupr, tolower 

Example
string s = "This Is A String";
string r = strlwr(s);
printf("Prior to strlwr: %s - after strlwr: %s\n", s, r);

strrchr()
Function 

Scans a string for the last occurrence of a given character. 
Syntax 

int strrchr(string s, char c[, int index]); 
Returns 

The strrchr function returns the integer offset of the character in the string, or -1 if the 
character does not occur in the string. 

See also strchr, strrstr 

If index is given, the search starts at that position. Negative values are counted from the 
end of the string. 

Example
string s = "This is a string";
char c = 'a';
int pos = strrchr(s, c);
if (pos >= 0)
   printf("The character %c is at position %d\n", c, pos);
else
   printf("The character was not found\n");

strrstr()
Function 

Scans a string for the last occurrence of a given substring. 
Syntax 

int strrstr(string s1, string s2[, int index]); 
Returns 

The strrstr function returns the integer offset of the first character of s2 in s1, or -1 if the 
substring does not occur in the string. 



See also strstr, strrchr 

If index is given, the search starts at that position. Negative values are counted from the 
end of the string. 

Example
string s1 = "This is a string", s2 = "is a";
int pos = strrstr(s1, s2);
if (pos >= 0)
   printf("The substring starts at %d\n", pos);
else
   printf("The substring was not found\n");

strsplit()
Function 

Splits a string into separate fields. 
Syntax 

int strsplit(string &array[], string s, char separator); 
Returns 

The strsplit function returns the number of entries copied into array. 

See also strjoin, lookup, fileread 

strsplit splits the string s at the given separator and stores the resulting fields in 
the array. 

If separator is the newline character ('\n') the last field will be silently dropped if it is 
empty. This is done to have a text file that consists of N lines (each of which is terminated 
with a newline) and is read in with the fileread() function to be split into an array of N 
strings. With any other separator an empty field at the end of the string will count, so 
"a:b:c:" will result in 4 fields, the last of which is empty. 

Example
string a[];
int n = strsplit(a, "Field 1:Field 2:Field 3", ':');

strstr()
Function 

Scans a string for the first occurrence of a given substring. 
Syntax 

int strstr(string s1, string s2[, int index]); 
Returns 

The strstr function returns the integer offset of the first character of s2 in s1, or -1 if the 
substring does not occur in the string. 

See also strrstr, strchr, strxstr 

If index is given, the search starts at that position. Negative values are counted from the 



end of the string. 

Example
string s1 = "This is a string", s2 = "is a";
int pos = strstr(s1, s2);
if (pos >= 0)
   printf("The substring starts at %d\n", pos);
else
   printf("The substring was not found\n");

strsub()
Function 

Extracts a substring from a string. 
Syntax 

string strsub(string s, int start[, int length]); 
Returns 

The strsub function returns the substring indicated by the start and length value. 

The value for length must be positive, otherwise an empty string will be returned. If 
length is ommitted, the rest of the string (beginning at start) is returned. 

If start points to a position outside the string, an empty string is returned. 

Example
string s = "This is a string";
string t = strsub(s, 4, 7);
printf("The extracted substring is: %s\n", t);

strtod()
Function 

Converts a string to a real value. 
Syntax 

real strtod(string s); 
Returns 

The strtod function returns the numerical representation of the given string as a real 
value. Conversion ends at the first character that does not fit into the format of a real constant. 
If an error occurs during conversion of the string 0.0 will be returned. 

See also strtol 

Example
string s = "3.1415";
real r = strtod(s);
printf("The value is %f\n", r);



strtol()
Function 

Converts a string to an integer value. 
Syntax 

int strtol(string s); 
Returns 

The strtol function returns the numerical representation of the given string as an int 
value. Conversion ends at the first character that does not fit into the format of an integer 
constant. If an error occurs during conversion of the string 0 will be returned. 

See also strtod 

Example
string s = "1234";
int i = strtol(s);
printf("The value is %d\n", i);

strupr()
Function 

Converts lowercase letters in a string to uppercase. 
Syntax 

string strupr(string s); 
Returns 

The strupr function returns the modified string. The original string (given as parameter) is 
not changed. 

See also strlwr, toupper 

Example
string s = "This Is A String";
string r = strupr(s);
printf("Prior to strupr: %s - after strupr: %s\n", s, r);

strxstr()
Function 

Scans a string for the first occurrence of a given regular expression. 
Syntax 

int strxstr(string s1, string s2[, int index[, int &length]]); 
Returns 

The strxstr function returns the integer offset of the substring in s1 that matches the 
regular expression in s2, or -1 if the regular expression does not match in the string. 

See also strstr, strchr, strrstr 

If index is given, the search starts at that position. Negative values are counted from the 
end of the string. 



If length is given, the actual length of the matching substring is returned in that variable. 

Regular expressions allow you to find a pattern within a text string. For instance, the regular 
expression "i.*a" would find a sequence of characters that starts with an 'i', followed by any 
character ('.') any number of times ('*'), and ends with an 'a'. It would match on "is a" as well 
as "is this a" or "ia".
Details on regular expressions can be found, for instance, in the book Mastering Regular 
Expressions by Jeffrey E. F. Friedl. 

Example
string s1 = "This is a string", s2 = "i.*a";
int len = 0;
int pos = strxstr(s1, s2, 0, len);
if (pos >= 0)
   printf("The substring starts at %d and is %d charcaters long\n", pos, len);
else
   printf("The substring was not found\n");

Time Functions
Time functions are used to get and process time and date information. 

The following time functions are available: 

• t2day()   
• t2dayofweek()   
• t2hour()   
• t2minute()   
• t2month()   
• t2second()   
• t2string()   
• t2year()   
• time()   
• timems()   

time()
Function 

Gets the current system time. 
Syntax 

int time(void); 
Returns 

The time function returns the current system time as the number of seconds elapsed since a 
system dependent reference date. 

See also Time Conversions, filetime, timems() 

Example
int CurrentTime = time();



timems()
Function 

Gets the number of milliseconds since the start of the ULP. 
Syntax 

int timems(void); 
Returns 

The timems function returns the number of milliseconds since the start of the ULP. 

After 86400000 milliseconds (i.e. every 24 hours), the value starts at 0 again. 

See also time 

Example
int elapsed = timems();

Time Conversions
Function 

Convert a time value to day, month, year etc. 
Syntax 

int t2day(int t);
int t2dayofweek(int t);
int t2hour(int t);
int t2minute(int t);
int t2month(int t);
int t2second(int t);
int t2year(int t);

string t2string(int t[, string format]); 
Returns 

t2day returns the day of the month (1..31)
t2dayofweek returns the day of the week (0=sunday..6)
t2hour returns the hour (0..23)
t2minute returns the minute (0..59)
t2month returns the month (0..11)
t2second returns the second (0..59)
t2year returns the year (including century!)
t2string returns a formatted string containing date and time 

See also time 

The t2string function without the optional format parameter converts the given time 
t into a country specific string in local time. 

If t2string is called with a format string, that format is used to determine what the 
result should look like. 

The following expressions can be used in a format string: 

d the day as a number without a leading zero (1 to 31)



dd the day as a number with a leading zero (01 to 31)
ddd the abbreviated localized day name (e.g. "Mon" to "Sun")
dddd the long localized day name (e.g. "Monday" to "Sunday")
M the month as a number without a leading zero (1-12)
MM the month as a number with a leading zero (01-12)
MMM the abbreviated localized month name (e.g. "Jan" to "Dec")
MMMM the long localized month name (e.g. "January" to "December")
yy the year as a two digit number (00-99)
yyyy the year as a four digit number
h the hour without a leading zero (0 to 23 or 1 to 12 if AM/PM display)
hh the hour with a leading zero (00 to 23 or 01 to 12 if AM/PM display)
m the minute without a leading zero (0 to 59)
mm the minute with a leading zero (00 to 59)
s the second without a leading zero (0 to 59)
ss the second with a leading zero (00 to 59)

z
the milliseconds without leading zeros (always 0, since the given time only has a one 
second resolution)

zzz
the milliseconds with leading zeros (always 000, since the given time only has a one 
second resolution)

AP use AM/PM display (AP will be replaced by either "AM" or "PM")
ap use am/pm display (ap will be replaced by either "am" or "pm")
U display the given time as UTC (must be the first character; default is local time)
All other characters will be copied "as is". Any sequence of characters that are enclosed in 
singlequotes will be treated as text and not be used as an expression. Two consecutive single 
quotes ('') are replaced by a single quote in the output. 

Example
int t = time();
printf("It is now %02d:%02d:%02d\n",
       t2hour(t), t2minute(t), t2second(t));
printf("ISO time is %s\n", t2string(t, "Uyyyy-MM-dd hh:mm:ss"));

Object Functions
Object functions are used to access common information about objects. 

The following object functions are available: 

• clrgroup()   
• ingroup()   
• setgroup()   
• setvariant()   
• variant()   

clrgroup()
Function 

Clears the group flags of an object. 
Syntax 

void clrgroup(object); 



See also ingroup(), setgroup(), GROUP command 

The clrgroup() function clears the group flags of the given object, so that it is no longer 
part of the previously defined group. 

When applied to an object that contains other objects (like a UL_BOARD or UL_NET) the 
group flags of all contained objects are cleared recursively, but with analogous limitations 
like for setgroup(). 

Example
board(B) {
  B.elements(E)
    clrgroup(E);
  }

ingroup()
Function 

Checks whether an object is in the group. 
Syntax 

int ingroup(object); 
Returns 

The ingroup function returns a non-zero value if the given object is in the group. 

See also clrgroup(), setgroup(), GROUP command 

If a group has been defined in the editor, the ingroup() function can be used to check 
whether a particular object is part of the group. 

Objects with a single coordinate that are individually selectable in the current drawing (like 
UL_TEXT, UL_VIA, UL_CIRCLE etc.) return a non-zero value in a call to ingroup() if 
that coordinate is within the defined group. 

A UL_WIRE returns 0, 1, 2 or 3, depending on whether none, the first, the second or both of 
its end points are in the group. 

A UL_RECTANGLE and UL_FRAME returns a non-zero value if one or more of its 
corners are in the group. The value has bit 0 set for the upper right corner, bit 1 for the upper 
left, bit 2 for the bottom left, and bit 3 for the bottom right corner. 

Higher ranking objects that have no coordinates (UL_NET, UL_SEGMENT, UL_SIGNAL, 
UL_POLYGON) or that are actually not available as drawing objects (UL_SHEET, 
UL_DEVICESET, UL_SYMBOL, UL_PACKAGE), return a non-zero value if one or more 
of the objects within them are in the group. For details on the object hierarchies see Object 
Types. 
UL_CONTACTREF and UL_PINREF, though not having coordinates of their own, return a 
non-zero value if the referenced UL_CONTACT or UL_PIN, respectively, is within the 
group. 
For other not selectable objects like UL_GRID, UL_VARIANT or wires of a UL_TEXT or 
UL_FRAME object, the behaviour of ingroup() is undefined and therefore should not be 
used. 



Identifying the context menu object 
If the ULP is started from a context menu the selected object can be accessed by the group 
mechansim (see RUN): A one element group is made from the selected object. So it can be 
identified with ingroup(). 

Example
output("group.txt") {
  board(B) {
    B.elements(E) {
      if (ingroup(E))
         printf("Element %s is in the group\n", E.name);
      }
    }
  }

setgroup()
Function 

Sets the group flags of an object. 
Syntax 

void setgroup(object[, int flags]); 

See also clrgroup(), ingroup(), GROUP command 

The setgroup() function sets the group flags of the given object, so that it becomes part 
of the group. 

If no flags are given, the object is added to the group as a whole (i.e. all of its selection 
points, in case it has more than one). 

If flags has a non-zero value, only the group flags of the given points of the object are set. 
For a UL_WIRE this means that '1' sets the group flag of the first point, '2' that of the 
second point, and '3' sets both. Any previously set group flags remain unchanged by a call 
to setgroup(). 

When applied to an object that contains other objects (like a UL_BOARD or UL_NET) the 
group flags of all contained objects are set recursively with following limitations:
It's not the case for UL_LIBRARY and UL_SCHEMATIC. Subordinate objects that are not 
selectable or not inidividually selectable are not flagged (e.g. UL_GRID or UL_VARIANT 
objects or wires of UL_TEXT or UL_FRAME objects). 
For details on the object hierarchies see Object Types. 

Example
board(B) {
  B.elements(E)
    setgroup(E);
  }



setvariant()
Function 

Sets the current assembly variant. 
Syntax 

int setvariant(string name); 

See also variant(), UL_VARIANTDEF, VARIANT command 

The setvariant() function sets the current assembly variant to the one given by name. 
This can be used to loop through all of the parts and "see" their data exactly as defined in 
the given variant. 

name must reference a valid assembly variant that is contained in the current drawing. 

This function returns a non-zero value if the given assembly variant exists, zero otherwise. 

The assembly variant that has been set by a call to setvariant() is only active until the 
User Language Program returns. After that, the variant in the drawing will be the same as 
before the start of the ULP. 

Example
if (setvariant("My variant")) {
   // do something ...
else
   // error: unknown variant

variant()
Function 

Query the current assembly variant. 
Syntax 

string variant(void); 

See also setvariant(), UL_VARIANTDEF, VARIANT command 

The variant() function returns the name of the current assembly variant. If no variant is 
currently selected, the empty string ('') is returned. 

Example
string CurrentVariant = variant();

XML Functions
XML functions are used to process XML (Extensible Markup Language) data. 

The following XML functions are available: 

• xmlattribute()   
• xmlattributes()   
• xmlelement()   



• xmlelements()   
• xmltags()   
• xmltext()   

xmlattribute(), xmlattributes()
Function 

Extract the attributes of an XML tag. 
Syntax 

string xmlattribute(string xml, string tag, string attribute);
int xmlattributes(string &array[], string xml, string tag); 

See also xmlelement(), xmltags(), xmltext() 

The xmlattribute function returns the value of the given attribute from the given 
tag within the given xml code. If an attribute appears more than once in the same tag, the 
value of its last occurrence is taken. 

The xmlattributes function stores the names of all attributes from the given tag 
within the given xml code in the array and returns the number of attributes found. If an 
attribute appears more than once in the same tag, its name appears only once in the array. 

The tag is given in the form of a path. 

If the given xml code contains an error, the result of any XML function is empty, and a 
warning dialog is presented to the user, giving information about where in the ULP and 
XML code the error occurred. Note that the line and column number within the XML code 
refers to the actual string given to this function as the xml parameter. 

Example
// XML contains the following data:
<root>
  <body abc="def" xyz="123">
    ...
  </body>
</root>
//
string s[];
int n = xmlattributes(s, XML, "root/body");
Result: { "abc", "xyz" }
string s = xmlattribute(XML, "root/body", "xyz");
Result: "123"

xmlelement(), xmlelements()
Function 

Extract elements from an XML code. 
Syntax 

string xmlelement(string xml, string tag);
int xmlelements(string &array[], string xml, string tag); 

See also xmltags(), xmlattribute(), xmltext() 



The xmlelement function returns the complete XML element of the given tag within the 
given xml code. The result still contains the element's outer XML tag, and can thus be used 
for further processing with the other XML functions. Any whitespace within plain text parts 
of the element is retained. The overall formatting of the XML tags within the element may 
be different than the original xml code, though.
If there is more than one occurrence of tag within xml, the first one will be returned. Use 
xmlelements if you want to get all occurrences. 

The xmlelements function works just like xmlelement, but returns all occurrences of 
elements with the given tag. The return value is the number of elements stored in the 
array. 

The tag is given in the form of a path. 

If the given xml code contains an error, the result of any XML function is empty, and a 
warning dialog is presented to the user, giving information about where in the ULP and 
XML code the error occurred. Note that the line and column number within the XML code 
refers to the actual string given to this function as the xml parameter. 

Example
// XML contains the following data:
<root>
  <body>
    <contents>
      <string>Some text 1</string>
      <any>anything 1</any>
    </contents>
    <contents>
      <string>Some text 2</string>
      <any>anything 2</any>
    </contents>
    <appendix>
      <string>Some text 3</string>
    </appendix>
  </body>
</root>
//
string s = xmlelement(XML, "root/body/appendix");
Result: " <appendix>\n  <string>Some text 3</string>\n </appendix>\n"
string s[];
int n = xmlelements(s, XML, "root/body/contents");
Result: { " <contents>\n  <string>Some text 1</string>\n  <any>anything 
1</any>\n </contents>\n",
          " <contents>\n  <string>Some text 2</string>\n  <any>anything 
2</any>\n </contents>\n"
        }

xmltags()
Function 

Extract the list of tag names within an XML code. 
Syntax 

int xmltags(string &array[], string xml, string tag); 



See also xmlelement(), xmlattribute(), xmltext() 

The xmltags function returns the names of all the tags on the top level of the given tag 
within the given xml code. The return value is the number of tag names stored in the 
array. 

Each tag name is returned only once, even if it appears several times in the XML code. 

The tag is given in the form of a path. 

If the given xml code contains an error, the result of any XML function is empty, and a 
warning dialog is presented to the user, giving information about where in the ULP and 
XML code the error occurred. Note that the line and column number within the XML code 
refers to the actual string given to this function as the xml parameter. 

Example
// XML contains the following data:
<root>
  <body>
    <contents>
      <string>Some text 1</string>
      <any>anything 1</any>
    </contents>
    <contents>
      <string>Some text 2</string>
      <any>anything 2</any>
    </contents>
    <appendix>
      <string>Some text 3</string>
    </appendix>
  </body>
</root>
//
string s[];
int n = xmltags(s, XML, "root/body");
Result: { "contents", "appendix" }
int n = xmltags(s, XML, "");
Result: "root"

xmltext()
Function 

Extract the textual data of an XML element. 
Syntax 

string xmltext(string xml, string tag); 

See also xmlelement(), xmlattribute(), xmltags() 

The xmltext function returns the textual data from the given tag within the given xml 
code. 

Any tags within the text are stripped, whitespace (including newline characters) is retained. 

The tag is given in the form of a path. 

If the given xml code contains an error, the result of any XML function is empty, and a 
warning dialog is presented to the user, giving information about where in the ULP and 



XML code the error occurred. Note that the line and column number within the XML code 
refers to the actual string given to this function as the xml parameter. 

Example
// XML contains the following data:
<root>
  <body>
    Some <b>text</b>.
  </body>
</root>
//
string s = xmltext(XML, "root/body");
Result: "\n    Some text.\n  "

Builtin Statements
Builtin statements are generally used to open a certain context in which data structures or 
files can be accessed. 

The general syntax of a builtin statement is 

name(parameters) statement

where name is the name of the builtin statement, parameters stands for one or more 
parameters, and statement is the code that will be executed inside the context opened by 
the builtin statement. 

Note that statement can be a compound statement, as in 

board(B) {
  B.elements(E) printf("Element: %s\n", E.name);
  B.Signals(S)  printf("Signal: %s\n", S.name);
  }

The following builtin statements are available: 

• board()   
• deviceset()   
• library()   
• output()   
• package()   
• schematic()   
• sheet()   
• symbol()   

board()
Function 

Opens a board context. 
Syntax 

board(identifier) statement 



See also schematic, library 

The board statement opens a board context if the current editor window contains a board 
drawing. A variable of type UL_BOARD is created and is given the name indicated by 
identifier. 

Once the board context is successfully opened and a board variable has been created, the 
statement is executed. Within the scope of the statement the board variable can be 
accessed to retrieve further data from the board. 

If the current editor window does not contain a board drawing, an error message is given 
and the ULP is terminated. 

Check if there is a board
By using the board statement without an argument you can check if the current editor 
window contains a board drawing. In that case, board behaves like an integer constant, 
returning 1 if there is a board drawing in the current editor window, and 0 otherwise. 

Accessing board from a schematic
If the current editor window contains a schematic drawing, you can still access that 
schematic's board by preceding the board statement with the prefix project, as in 

project.board(B) { ... }

This will open a board context regardless whether the current editor window contains a 
board or a schematic drawing. However, there must be an editor window containing that 
board somewhere on the desktop! 

Example
if (board)
   board(B) {
     B.elements(E)
       printf("Element: %s\n", E.name);
     }

deviceset()
Function 

Opens a device set context. 
Syntax 

deviceset(identifier) statement 

See also package, symbol, library 

The deviceset statement opens a device set context if the current editor window contains 
a device drawing. A variable of type UL_DEVICESET is created and is given the name 
indicated by identifier. 

Once the device set context is successfully opened and a device set variable has been 
created, the statement is executed. Within the scope of the statement the device set 



variable can be accessed to retrieve further data from the device set. 

If the current editor window does not contain a device drawing, an error message is given 
and the ULP is terminated. 

Check if there is a device set
By using the deviceset statement without an argument you can check if the current 
editor window contains a device drawing. In that case, deviceset behaves like an integer 
constant, returning 1 if there is a device drawing in the current editor window, and 0 
otherwise. 

Example
if (deviceset)
   deviceset(D) {
     D.gates(G)
       printf("Gate: %s\n", G.name);
     }

library()
Function 

Opens a library context. 
Syntax 

library(identifier) statement 

See also board, schematic, deviceset, package, symbol 

The library statement opens a library context if the current editor window contains a 
library drawing. A variable of type UL_LIBRARY is created and is given the name 
indicated by identifier. 

Once the library context is successfully opened and a library variable has been created, the 
statement is executed. Within the scope of the statement the library variable can be 
accessed to retrieve further data from the library. 

If the current editor window does not contain a library drawing, an error message is given 
and the ULP is terminated. 

Check if there is a library
By using the library statement without an argument you can check if the current editor 
window contains a library drawing. In that case, library behaves like an integer constant, 
returning 1 if there is a library drawing in the current editor window, and 0 otherwise. 

Example
if (library)
   library(L) {
     L.devices(D)
       printf("Device: %s\n", D.name);
     }



output()
Function 

Opens an output file for subsequent printf() calls. 
Syntax 

output(string filename[, string mode]) statement 

See also printf, fileerror 

The output statement opens a file with the given filename and mode for output 
through subsequent printf() calls. If the file has been successfully opened, the statement 
is executed, and after that the file is closed. 

If the file cannot be opened, an error message is given and execution of the ULP is 
terminated. 

By default the output file is written into the Project directory. 

File Modes
The mode parameter defines how the output file is to be opened. If no mode parameter is 
given, the default is "wt". 

a append to an existing file, or create a new file if it does not exist
w create a new file (overwriting an existing file)
t open file in text mode
b open file in binary mode

D 
delete this file when ending the EAGLE session (only works together with 
w)

F force using this file name (normally *.brd, *.sch and *.lbr are rejected)
Mode characters may appear in any order and combination. However, only the last one of a 
and w or t and b, respectively, is significant. For example a mode of "abtw" would open a 
file for textual write, which would be the same as "wt". 

Nested Output statements
output statements can be nested, as long as there are enough file handles available, and 
provided that no two active output statements access the same file. 

Example
void PrintText(string s)
{
  printf("This also goes into the file: %s\n", s);
}
output("file.txt", "wt") {
  printf("Directly printed\n");
  PrintText("via function call");
  }

package()
Function 



Opens a package context. 
Syntax 

package(identifier) statement 

See also library, deviceset, symbol 

The package statement opens a package context if the current editor window contains a 
package drawing. A variable of type UL_PACKAGE is created and is given the name 
indicated by identifier. 

Once the package context is successfully opened and a package variable has been created, 
the statement is executed. Within the scope of the statement the package variable 
can be accessed to retrieve further data from the package. 

If the current editor window does not contain a package drawing, an error message is given 
and the ULP is terminated. 

Check if there is a package
By using the package statement without an argument you can check if the current editor 
window contains a package drawing. In that case, package behaves like an integer 
constant, returning 1 if there is a package drawing in the current editor window, and 0 
otherwise. 

Example
if (package)
   package(P) {
     P.contacts(C)
       printf("Contact: %s\n", C.name);
     }

schematic()
Function 

Opens a schematic context. 
Syntax 

schematic(identifier) statement 

See also board, library, sheet 

The schematic statement opens a schematic context if the current editor window contains 
a schematic drawing. A variable of type UL_SCHEMATIC is created and is given the name 
indicated by identifier. 

Once the schematic context is successfully opened and a schematic variable has been 
created, the statement is executed. Within the scope of the statement the schematic 
variable can be accessed to retrieve further data from the schematic. 

If the current editor window does not contain a schematic drawing, an error message is 
given and the ULP is terminated. 



Check if there is a schematic
By using the schematic statement without an argument you can check if the current 
editor window contains a schematic drawing. In that case, schematic behaves like an 
integer constant, returning 1 if there is a schematic drawing in the current editor window, 
and 0 otherwise. 

Accessing schematic from a board
If the current editor window contains a board drawing, you can still access that board's 
schematic by preceding the schematic statement with the prefix project, as in 

project.schematic(S) { ... }

This will open a schematic context regardless whether the current editor window contains a 
schematic or a board drawing. However, there must be an editor window containing that 
schematic somewhere on the desktop! 

Access the current Sheet
Use the sheet statement to directly access the currently loaded sheet. 

Example
if (schematic)
   schematic(S) {
     S.parts(P)
       printf("Part: %s\n", P.name);
     }

sheet()
Function 

Opens a sheet context. 
Syntax 

sheet(identifier) statement 

See also schematic 

The sheet statement opens a sheet context if the current editor window contains a sheet 
drawing. A variable of type UL_SHEET is created and is given the name indicated by 
identifier. 

Once the sheet context is successfully opened and a sheet variable has been created, the 
statement is executed. Within the scope of the statement the sheet variable can be 
accessed to retrieve further data from the sheet. 

If the current editor window does not contain a sheet drawing, an error message is given and 
the ULP is terminated. 



Check if there is a sheet
By using the sheet statement without an argument you can check if the current editor 
window contains a sheet drawing. In that case, sheet behaves like an integer constant, 
returning 1 if there is a sheet drawing in the current editor window, and 0 otherwise. 

Example
if (sheet)
   sheet(S) {
     S.instances(I)
       printf("Instance: %s\n", I.name);
     }

symbol()
Function 

Opens a symbol context. 
Syntax 

symbol(identifier) statement 

See also library, deviceset, package 

The symbol statement opens a symbol context if the current editor window contains a 
symbol drawing. A variable of type UL_SYMBOL is created and is given the name 
indicated by identifier. 

Once the symbol context is successfully opened and a symbol variable has been created, the 
statement is executed. Within the scope of the statement the symbol variable can be 
accessed to retrieve further data from the symbol. 

If the current editor window does not contain a symbol drawing, an error message is given 
and the ULP is terminated. 

Check if there is a symbol
By using the symbol statement without an argument you can check if the current editor 
window contains a symbol drawing. In that case, symbol behaves like an integer constant, 
returning 1 if there is a symbol drawing in the current editor window, and 0 otherwise. 

Example
if (symbol)
   symbol(S) {
     S.pins(P)
       printf("Pin: %s\n", P.name);
     }

Dialogs
User Language Dialogs allow you to define your own frontend to a User Language 
Program. 



The following sections describe User Language Dialogs in detail: 

Predefined Dialogs describes the ready to use standard dialogs
Dialog Objects defines the objects that can be used in a dialog

Layout Information 
explains how to define the location of objects within a 
dialog

Dialog Functions describes special functions for use with dialogs
A Complete Example shows a complete ULP with a data entry dialog

Predefined Dialogs
Predefined Dialogs implement the typical standard dialogs that are frequently used for 
selecting file names or issuing error messages. 

The following predefined dialogs are available: 

• dlgDirectory()   
• dlgFileOpen()   
• dlgFileSave()   
• dlgMessageBox()   

See Dialog Objects for information on how to define your own complex user dialogs. 

dlgDirectory()
Function 

Displays a directory dialog. 
Syntax 

string dlgDirectory(string Title[, string Start]) 
Returns 

The dlgDirectory function returns the full pathname of the selected directory.
If the user has canceled the dialog, the result will be an empty string. 

See also dlgFileOpen 

The dlgDirectory function displays a directory dialog from which the user can select a 
directory. 

Title will be used as the dialog's title. 

If Start is not empty, it will be used as the starting point for the dlgDirectory. 

Example
string dirName;
dirName = dlgDirectory("Select a directory", "");

dlgFileOpen(), dlgFileSave()
Function 

Displays a file dialog. 
Syntax 

string dlgFileOpen(string Title[, string Start[, string 



Filter]])
string dlgFileSave(string Title[, string Start[, string 
Filter]]) 

Returns 
The dlgFileOpen and dlgFileSave functions return the full pathname of the selected 
file.
If the user has canceled the dialog, the result will be an empty string. 

See also dlgDirectory 

The dlgFileOpen and dlgFileSave functions display a file dialog from which the 
user can select a file. 

Title will be used as the dialog's title. 

If Start is not empty, it will be used as the starting point for the file dialog. Otherwise the 
current directory will be used. 

Only files matching Filter will be displayed. If Filter is empty, all files will be 
displayed. 

Filter can be either a simple wildcard (as in "*.brd"), a list of wildcards (as in 
"*.bmp *.jpg") or may even contain descriptive text, as in 
"Bitmap files (*.bmp)". If the "File type" combo box of the file dialog shall 
contain several entries, they have to be separated by double semicolons, as in 
"Bitmap files (*.bmp);;Other images (*.jpg *.png)". 

Example
string fileName;
fileName = dlgFileOpen("Select a file", "", "*.brd");

dlgMessageBox()
Function 

Displays a message box. 
Syntax 

int dlgMessageBox(string Message[, button_list]) 
Returns 

The dlgMessageBox function returns the index of the button the user has selected.
The first button in button_list has index 0. 

See also status() 

The dlgMessageBox function displays the given Message in a modal dialog and waits 
until the user selects one of the buttons defined in button_list. 

If Message contains any HTML tags, the characters '<', '>' and '&' must be given as "&lt;", 
"&gt;" and "&amp;", respectively, if they shall be displayed as such. 

button_list is an optional list of comma separated strings, which defines the set of 
buttons that will be displayed at the bottom of the message box.
A maximum of three buttons can be defined. If no button_list is given, it defaults to 
"OK". 



The first button in button_list will become the default button (which will be selected if 
the user hits ENTER), and the last button in the list will become the "cancel button", which 
is selected if the user hits ESCape or closes the message box. You can make a different 
button the default button by starting its name with a '+', and you can make a different 
button the cancel button by starting its name with a '-'. To start a button text with an 
actual '+' or '-' it has to be escaped. 

If a button text contains an '&', the character following the ampersand will become a 
hotkey, and when the user hits the corresponding key, that button will be selected. To have 
an actual '&' character in the text it has to be escaped. 

The message box can be given an icon by setting the first character of Message to
   ';' - for an Information
   '!' - for a Warning
   ':' - for an Error
If, however, the Message shall begin with one of these characters, it has to be escaped. 

On Mac OS X only the character ':' will actually result in showing an icon. All others are 
ignored. 

Example
if (dlgMessageBox("!Are you sure?", "&Yes", "&No") == 0) {
   // let's do it!
   }

Dialog Objects
A User Language Dialog is built from the following Dialog Objects: 

dlgCell a grid cell context
dlgCheckBox a checkbox
dlgComboBox a combo box selection field

dlgDialog 
the basic container of any 
dialog

dlgGridLayout a grid based layout context
dlgGroup a group field
dlgHBoxLayout a horizontal box layout context
dlgIntEdit an integer entry field
dlgLabel a text label
dlgListBox a list box
dlgListView a list view
dlgPushButton a push button
dlgRadioButton a radio button
dlgRealEdit a real entry field
dlgSpacing a layout spacing object
dlgSpinBox a spin box selection field
dlgStretch a layout stretch object
dlgStringEdit a string entry field
dlgTabPage a tab page
dlgTabWidget a tab page container
dlgTextEdit a text entry field
dlgTextView a text viewer field



dlgVBoxLayout a vertical box layout context

dlgCell
Function 

Defines a cell location within a grid layout context. 
Syntax 

dlgCell(int row, int column[, int row2, int column2]) 
statement 

See also dlgGridLayout, dlgHBoxLayout, dlgVBoxLayout, Layout Information, A 
Complete Example 

The dlgCell statement defines the location of a cell within a grid layout context. 

The row and column indexes start at 0, so the upper left cell has the index (0, 0). 

With two parameters the dialog object defined by statement will be placed in the single 
cell addresses by row and column. With four parameters the dialog object will span over 
all cells from row/column to row2/column2. 

By default a dlgCell contains a dlgHBoxLayout, so if the cell contains more than one 
dialog object, they will be placed next to each other horizontally. 

Example
string Text;
dlgGridLayout {
  dlgCell(0, 0) dlgLabel("Cell 0,0");
  dlgCell(1, 2, 4, 7) dlgTextEdit(Text);
  }

dlgCheckBox
Function 

Defines a checkbox. 
Syntax 

dlgCheckBox(string Text, int &Checked) [ statement ] 

See also dlgRadioButton, dlgGroup, Layout Information, A Complete Example 

The dlgCheckBox statement defines a check box with the given Text. 

If Text contains an '&', the character following the ampersand will become a hotkey, and 
when the user hits Alt+hotkey, the checkbox will be toggled. To have an actual '&' 
character in the text it has to be escaped. 

dlgCheckBox is mainly used within a dlgGroup, but can also be used otherwise.
All check boxes within the same dialog must have different Checked variables! 

If the user checks a dlgCheckBox, the associated Checked variable is set to 1, 
otherwise it is set to 0. The initial value of Checked defines whether a checkbox is 
initially checked. If Checked is not equal to 0, the checkbox is initially checked. 

The optional statement is executed every time the dlgCheckBox is toggled. 



Example
int mirror = 0;
int rotate = 1;
int flip   = 0;
dlgGroup("Orientation") {
  dlgCheckBox("&Mirror", mirror);
  dlgCheckBox("&Rotate", rotate);
  dlgCheckBox("&Flip", flip);
  }

dlgComboBox
Function 

Defines a combo box selection field. 
Syntax 

dlgComboBox(string array[], int &Selected) [ statement ] 

See also dlgListBox, dlgLabel, Layout Information, A Complete Example 

The dlgComboBox statement defines a combo box selection field with the contents of the 
given array. 

Selected reflects the index of the selected combo box entry. The first entry has index 0. 

Each element of array defines the contents of one entry in the combo box. None of the 
strings in array may be empty (if there is an empty string, all strings after and including 
that one will be dropped). 

The optional statement is executed whenever the selection in the dlgComboBox 
changes.
Before the statement is executed, all variables that have been used with dialog objects 
are updated to their current values, and any changes made to these variables inside the 
statement will be reflected in the dialog when the statement returns. 

If the initial value of Selected is outside the range of the array indexes, it is set to 0. 

Example
string Colors[] = { "red", "green", "blue", "yellow" };
int Selected = 2; // initially selects "blue"
dlgComboBox(Colors, Selected) dlgMessageBox("You have selected " + 
Colors[Selected]);

dlgDialog
Function 

Executes a User Language Dialog. 
Syntax 

int dlgDialog(string Title) block ; 
Returns 

The dlgDialog function returns an integer value that can be given a user defined meaning 
through a call to the dlgAccept() function.
If the dialog is simply closed, the return value will be -1. 



See also dlgGridLayout, dlgHBoxLayout, dlgVBoxLayout, dlgAccept, dlgReset, dlgReject, 
A Complete Example 

The dlgDialog function executes the dialog defined by block. This is the only dialog 
object that actually is a User Language builtin function. Therefore it can be used anywhere 
where a function call is allowed. 

The block normally contains only other dialog objects, but it is also possible to use other 
User Language statements, for example to conditionally add objects to the dialog (see the 
second example below). 

By default a dlgDialog contains a dlgVBoxLayout, so a simple dialog doesn't have to 
worry about the layout. 

A dlgDialog should at some point contain a call to the dlgAccept() function in order 
to allow the user to close the dialog and accept its contents. 

If all you need is a simple message box or file dialog you might want to use one of the 
Predefined Dialogs instead. 

Examples
int Result = dlgDialog("Hello") {
  dlgLabel("Hello world");
  dlgPushButton("+OK") dlgAccept();
  };
int haveButton = 1;
dlgDialog("Test") {
  dlgLabel("Start");
  if (haveButton)
     dlgPushButton("Here") dlgAccept();
  };

dlgGridLayout
Function 

Opens a grid layout context. 
Syntax 

dlgGridLayout statement 

See also dlgCell, dlgHBoxLayout, dlgVBoxLayout, Layout Information, A Complete 
Example 

The dlgGridLayout statement opens a grid layout context. 

The only dialog object that can be used directly in statement is dlgCell, which defines 
the location of a particular dialog object within the grid layout. 

The row and column indexes start at 0, so the upper left cell has the index (0, 0).
The number of rows and columns is automatically extended according to the location of 
dialog objects that are defined within the grid layout context, so you don't have to explicitly 
define the number of rows and columns. 



Example
dlgGridLayout {
  dlgCell(0, 0) dlgLabel("Row 0/Col 0");
  dlgCell(1, 0) dlgLabel("Row 1/Col 0");
  dlgCell(0, 1) dlgLabel("Row 0/Col 1");
  dlgCell(1, 1) dlgLabel("Row 1/Col 1");
  }

dlgGroup
Function 

Defines a group field. 
Syntax 

dlgGroup(string Title) statement 

See also dlgCheckBox, dlgRadioButton, Layout Information, A Complete Example 

The dlgGroup statement defines a group with the given Title. 

By default a dlgGroup contains a dlgVBoxLayout, so a simple group doesn't have to 
worry about the layout. 

dlgGroup is mainly used to contain a set of radio buttons or check boxes, but may as well 
contain any other objects in its statement.
Radio buttons within a dlgGroup are numbered starting with 0. 

Example
int align = 1;
dlgGroup("Alignment") {
  dlgRadioButton("&Top", align);
  dlgRadioButton("&Center", align);
  dlgRadioButton("&Bottom", align);
  }

dlgHBoxLayout
Function 

Opens a horizontal box layout context. 
Syntax 

dlgHBoxLayout statement 

See also dlgGridLayout, dlgVBoxLayout, Layout Information, A Complete Example 

The dlgHBoxLayout statement opens a horizontal box layout context for the given 
statement. 

Example
dlgHBoxLayout {
  dlgLabel("Box 1");
  dlgLabel("Box 2");
  dlgLabel("Box 3");



  }

dlgIntEdit
Function 

Defines an integer entry field. 
Syntax 

dlgIntEdit(int &Value, int Min, int Max) 

See also dlgRealEdit, dlgStringEdit, dlgLabel, Layout Information, A Complete Example 

The dlgIntEdit statement defines an integer entry field with the given Value. 

If Value is initially outside the range defined by Min and Max it will be limited to these 
values. 

Example
int Value = 42;
dlgHBoxLayout {
  dlgLabel("Enter a &Number between 0 and 99");
  dlgIntEdit(Value, 0, 99);
  }

dlgLabel
Function 

Defines a text label. 
Syntax 

dlgLabel(string Text [, int Update]) 

See also Layout Information, A Complete Example, dlgRedisplay() 

The dlgLabel statement defines a label with the given Text. 

Text can be either a string literal, as in "Hello", or a string variable. 

If Text contains any HTML tags, the characters '<', '>' and '&' must be given as "&lt;", 
"&gt;" and "&amp;", respectively, if they shall be displayed as such. 

External hyperlinks in the Text will be opened with the appropriate application program. 

If the Update parameter is not 0 and Text is a string variable, its contents can be 
modified in the statement of, e.g., a dlgPushButton, and the label will be automatically 
updated. This, of course, is only useful if Text is a dedicated string variable (not, e.g., the 
loop variable of a for statement). 

If Text contains an '&', and the object following the label can have the keyboard focus, 
the character following the ampersand will become a hotkey, and when the user hits 
Alt+hotkey, the focus will go to the object that was defined immediately following the 
dlgLabel. To have an actual '&' character in the text it has to be escaped. 



Example
string OS = "Windows";
dlgHBoxLayout {
  dlgLabel(OS, 1);
  dlgPushButton("&Change OS") { OS = "Linux"; }
  }

dlgListBox
Function 

Defines a list box selection field. 
Syntax 

dlgListBox(string array[], int &Selected) [ statement ] 

See also dlgComboBox, dlgListView, dlgSelectionChanged, dlgLabel, Layout Information, 
A Complete Example 

The dlgListBox statement defines a list box selection field with the contents of the given 
array. 

Selected reflects the index of the selected list box entry. The first entry has index 0. 

Each element of array defines the contents of one line in the list box. None of the strings 
in array may be empty (if there is an empty string, all strings after and including that one 
will be dropped). 

The optional statement is executed whenever the user double clicks on an entry of the 
dlgListBox (see dlgSelectionChanged for information on how to have the statement 
called when only the selection in the list changes).
Before the statement is executed, all variables that have been used with dialog objects 
are updated to their current values, and any changes made to these variables inside the 
statement will be reflected in the dialog when the statement returns. 

If the initial value of Selected is outside the range of the array indexes, no entry will 
be selected. 

Example
string Colors[] = { "red", "green", "blue", "yellow" };
int Selected = 2; // initially selects "blue"
dlgListBox(Colors, Selected) dlgMessageBox("You have selected " + 
Colors[Selected]);

dlgListView
Function 

Defines a multi column list view selection field. 
Syntax 

dlgListView(string Headers, string array[], int &Selected[, 
int &Sort]) [ statement ] 

See also dlgListBox, dlgSelectionChanged, dlgLabel, Layout Information, A Complete 



Example 

The dlgListView statement defines a multi column list view selection field with the 
contents of the given array. 

Headers is the tab separated list of column headers. 

Selected reflects the index of the selected list view entry in the array (the sequence in 
which the entries are actually displayed may be different, because the contents of a 
dlgListView can be sorted by the various columns). The first entry has index 0.
If no particular entry shall be initially selected, Selected should be initialized to -1. If it 
is set to -2, the first item according to the current sort column is made current. 

Sort defines which column should be used to sort the list view. The leftmost column is 
numbered 1. The sign of this parameter defines the direction in which to sort (positive 
values sort in ascending order). If Sort is 0 or outside the valid number of columns, no 
sorting will be done. The returned value of Sort reflects the column and sort mode selected 
by the user by clicking on the list column headers. By default dlgListView sorts by the 
first column, in ascending order. 

Each element of array defines the contents of one line in the list view, and must contain 
tab separated values. If there are fewer values in an element of array than there are entries 
in the Headers string the remaining fields will be empty. If there are more values in an 
element of array than there are entries in the Headers string the superfluous elements 
will be silently dropped. None of the strings in array may be empty (if there is an empty 
string, all strings after and including that one will be dropped). 

A list entry that contains line feeds ('\n') will be displayed in several lines accordingly. 

The optional statement is executed whenever the user double clicks on an entry of the 
dlgListView (see dlgSelectionChanged for information on how to have the 
statement called when only the selection in the list changes).
Before the statement is executed, all variables that have been used with dialog objects 
are updated to their current values, and any changes made to these variables inside the 
statement will be reflected in the dialog when the statement returns. 

If the initial value of Selected is outside the range of the array indexes, no entry will 
be selected. 

If Headers is an empty string, the first element of the array is used as the header string. 
Consequently the index of the first entry is then 1. 

The contents of a dlgListView can be sorted by any column by clicking on that column's 
header. Columns can also be swapped by "click&dragging" a column header. Note that none 
of these changes will have any effect on the contents of the array. If the contents shall be 
sorted alphanumerically a numeric string[] array can be used. 

Example
string Colors[] = { "red\tThe color RED", "green\tThe color GREEN", "blue\tThe 
color BLUE" };
int Selected = 0; // initially selects "red"
dlgListView("Name\tDescription", Colors, Selected) dlgMessageBox("You have 
selected " + Colors[Selected]);



dlgPushButton
Function 

Defines a push button. 
Syntax 

dlgPushButton(string Text) statement 

See also Layout Information, Dialog Functions, A Complete Example 

The dlgPushButton statement defines a push button with the given Text. 

If Text contains an '&', the character following the ampersand will become a hotkey, and 
when the user hits Alt+hotkey, the button will be selected. To have an actual '&' 
character in the text it has to be escaped. 

If Text starts with a '+' character, this button will become the default button, which will 
be selected if the user hits ENTER.
If Text starts with a '-' character, this button will become the cancel button, which will 
be selected if the user closes the dialog.
CAUTION: Make sure that the statement of such a marked cancel button contains 
a call to dlgReject()! Otherwise the user may be unable to close the dialog at all!
To have an actual '+' or '-' character as the first character of the text it has to be escaped. 

If the user selects a dlgPushButton, the given statement is executed.
Before the statement is executed, all variables that have been used with dialog objects 
are updated to their current values, and any changes made to these variables inside the 
statement will be reflected in the dialog when the statement returns. 

Example
int defaultWidth = 10;
int defaultHeight = 20;
int width = 5;
int height = 7;
dlgPushButton("&Reset defaults") {
  width = defaultWidth;
  height = defaultHeight;
  }
dlgPushButton("+&Accept") dlgAccept();
dlgPushButton("-Cancel") { if (dlgMessageBox("Are you sure?", "Yes", "No") == 0) 
dlgReject(); }

dlgRadioButton
Function 

Defines a radio button. 
Syntax 

dlgRadioButton(string Text, int &Selected) [ statement ] 

See also dlgCheckBox, dlgGroup, Layout Information, A Complete Example 

The dlgRadioButton statement defines a radio button with the given Text. 

If Text contains an '&', the character following the ampersand will become a hotkey, and 



when the user hits Alt+hotkey, the button will be selected. To have an actual '&' 
character in the text it has to be escaped. 

dlgRadioButton can only be used within a dlgGroup.
All radio buttons within the same group must use the same Selected variable! 

If the user selects a dlgRadioButton, the index of that button within the dlgGroup is 
stored in the Selected variable.
The initial value of Selected defines which radio button is initially selected. If 
Selected is outside the valid range for this group, no radio button will be selected. In 
order to get the correct radio button selection, Selected must be set before the first 
dlgRadioButton is defined, and must not be modified between adding subsequent radio 
buttons. Otherwise it is undefined which (if any) radio button will be selected. 

The optional statement is executed every time the dlgRadioButton is selected. 

Example
int align = 1;
dlgGroup("Alignment") {
  dlgRadioButton("&Top", align);
  dlgRadioButton("&Center", align);
  dlgRadioButton("&Bottom", align);
  }

dlgRealEdit
Function 

Defines a real entry field. 
Syntax 

dlgRealEdit(real &Value, real Min, real Max) 

See also dlgIntEdit, dlgStringEdit, dlgLabel, Layout Information, A Complete Example 

The dlgRealEdit statement defines a real entry field with the given Value. 

If Value is initially outside the range defined by Min and Max it will be limited to these 
values. 

Example
real Value = 1.4142;
dlgHBoxLayout {
  dlgLabel("Enter a &Number between 0 and 99");
  dlgRealEdit(Value, 0.0, 99.0);
  }

dlgSpacing
Function 

Defines additional space in a box layout context. 
Syntax 

dlgSpacing(int Size) 



See also dlgHBoxLayout, dlgVBoxLayout, dlgStretch, Layout Information, A Complete 
Example 

The dlgSpacing statement defines additional space in a vertical or horizontal box layout 
context. 

Size defines the number of pixels of the additional space. 

Example
dlgVBoxLayout {
  dlgLabel("Label 1");
  dlgSpacing(40);
  dlgLabel("Label 2");
  }

dlgSpinBox
Function 

Defines a spin box selection field. 
Syntax 

dlgSpinBox(int &Value, int Min, int Max) 

See also dlgIntEdit, dlgLabel, Layout Information, A Complete Example 

The dlgSpinBox statement defines a spin box entry field with the given Value. 

If Value is initially outside the range defined by Min and Max it will be limited to these 
values. 

Example
int Value = 42;
dlgHBoxLayout {
  dlgLabel("&Select value");
  dlgSpinBox(Value, 0, 99);
  }

dlgStretch
Function 

Defines an empty stretchable space in a box layout context. 
Syntax 

dlgStretch(int Factor) 

See also dlgHBoxLayout, dlgVBoxLayout, dlgSpacing, Layout Information, A Complete 
Example 

The dlgStretch statement defines an empty stretchable space in a vertical or horizontal 
box layout context. 

Factor defines the stretch factor of the space. 



Example
dlgHBoxLayout {
  dlgStretch(1);
  dlgPushButton("+OK")    { dlgAccept(); };
  dlgPushButton("Cancel") { dlgReject(); };
  }

dlgStringEdit
Function 

Defines a string entry field. 
Syntax 

dlgStringEdit(string &Text[, string &History[][, int Size]]) 

See also dlgRealEdit, dlgIntEdit, dlgTextEdit, dlgLabel, Layout Information, A Complete 
Example 

The dlgStringEdit statement defines a one line text entry field with the given Text. 

If History is given, the strings the user has entered over time are stored in that string 
array. The entry field then has a button that allows the user to select from previously entered 
strings. If a Size greater than zero is given, only at most that number of strings are stored 
in the array. If History contains data when the dialog is newly opened, that data will be 
used to initialize the history. The most recently entered user input is stored at index 0.
None of the strings in History may be empty (if there is an empty string, all strings after 
and including that one will be dropped). 

Example
string Name = "Linus";
dlgHBoxLayout {
  dlgLabel("Enter &Name");
  dlgStringEdit(Name);
  }

dlgTabPage
Function 

Defines a tab page. 
Syntax 

dlgTabPage(string Title) statement 

See also dlgTabWidget, Layout Information, A Complete Example 

The dlgTabPage statement defines a tab page with the given Title containing the given 
statement. 

If Title contains an '&', the character following the ampersand will become a hotkey, 
and when the user hits Alt+hotkey, this tab page will be opened. To have an actual '&' 
character in the text it has to be escaped. 

Tab pages can only be used within a dlgTabWidget. 



By default a dlgTabPage contains a dlgVBoxLayout, so a simple tab page doesn't have to 
worry about the layout. 

Example
dlgTabWidget {
  dlgTabPage("Tab &1") {
    dlgLabel("This is page 1");
    }
  dlgTabPage("Tab &2") {
    dlgLabel("This is page 2");
    }
  }

dlgTabWidget
Function 

Defines a container for tab pages. 
Syntax 

dlgTabWidget statement 

See also dlgTabPage, Layout Information, A Complete Example 

The dlgTabWidget statement defines a container for a set of tab pages. 

statement must be a sequence of one or more dlgTabPage objects. There must be no 
other dialog objects in this sequence. 

Example
dlgTabWidget {
  dlgTabPage("Tab &1") {
    dlgLabel("This is page 1");
    }
  dlgTabPage("Tab &2") {
    dlgLabel("This is page 2");
    }
  }

dlgTextEdit
Function 

Defines a multiline text entry field. 
Syntax 

dlgTextEdit(string &Text) 

See also dlgStringEdit, dlgTextView, dlgLabel, Layout Information, A Complete Example 

The dlgTextEdit statement defines a multiline text entry field with the given Text. 

The lines in the Text have to be delimited by a newline character ('\n'). Any whitespace 
characters at the end of the lines contained in Text will be removed, and upon return there 
will be no whitespace characters at the end of the lines. Empty lines at the end of the text 
will be removed entirely. 



Example
string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout {
  dlgLabel("&Edit the text");
  dlgTextEdit(Text);
  }

dlgTextView
Function 

Defines a multiline text viewer field. 
Syntax 

dlgTextView(string Text)
dlgTextView(string Text, string &Link) statement 

See also dlgTextEdit, dlgLabel, Layout Information, A Complete Example 

The dlgTextView statement defines a multiline text viewer field with the given Text. 

The Text may contain HTML tags. 

External hyperlinks in the Text will be opened with the appropriate application program. 

If Link is given and the Text contains hyperlinks, statement will be executed every 
time the user clicks on a hyperlink, with the value of Link set to whatever the <a 
href=...> tag defines as the value of href. If, after the execution of statement, the 
Link variable is not empty, the default handling of hyperlinks will take place. This is also 
the case if Link contains some text before dlgTextView is opened, which allows for an 
initial scrolling to a given position. If a Link is given, external hyperlinks will not be 
opened. 

Example
string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout {
  dlgLabel("&View the text");
  dlgTextView(Text);
  }

dlgVBoxLayout
Function 

Opens a vertical box layout context. 
Syntax 

dlgVBoxLayout statement 

See also dlgGridLayout, dlgHBoxLayout, Layout Information, A Complete Example 

The dlgVBoxLayout statement opens a vertical box layout context for the given 
statement. 

By default a dlgDialog contains a dlgVBoxLayout, so a simple dialog doesn't have to 
worry about the layout. 



Example
dlgVBoxLayout {
  dlgLabel("Box 1");
  dlgLabel("Box 2");
  dlgLabel("Box 3");
  }

Layout Information
All objects within a User Language Dialog a placed inside a layout context. 

Layout contexts can be either grid, horizontal or vertical. 

Grid Layout Context
Objects in a grid layout context must specify the grid coordinates of the cell or cells into 
which they shall be placed. To place a text label at row 5, column 2, you would write 

dlgGridLayout {
  dlgCell(5, 2) dlgLabel("Text");
  }

If the object shall span over more than one cell you need to specify the coordinates of the 
starting cell and the ending cell. To place a group that extends from row 1, column 2 up to 
row 3, column 5, you would write 

dlgGridLayout {
  dlgCell(1, 2, 3, 5) dlgGroup("Title") {
    //...
    }
  }

Horizontal Layout Context
Objects in a horizontal layout context are placed left to right. 

The special objects dlgStretch and dlgSpacing can be used to further refine the distribution 
of the available space. 

To define two buttons that are pushed all the way to the right edge of the dialog, you would 
write 

dlgHBoxLayout {
  dlgStretch(1);
  dlgPushButton("+OK")    dlgAccept();
  dlgPushButton("Cancel") dlgReject();
  }

Vertical Layout Context
Objects in a vertical layout context follow the same rules as those in a horizontal layout 
context, except that they are placed top to bottom. 



Mixing Layout Contexts
Vertical, horizontal and grid layout contexts can be mixed to create the desired layout 
structure of a dialog. See the Complete Example for a demonstration of this. 

Dialog Functions
The following functions can be used with User Language Dialogs: 

dlgAccept() closes the dialog and accepts its contents
dlgRedisplay() immediately redisplays the dialog after changes to any values
dlgReset() resets all dialog objects to their initial values
dlgReject() closes the dialog and rejects its contents

dlgSelectionChanged() 
tells whether the current selection in a dlgListView or dlgListBox has 
changed

dlgAccept()
Function 

Closes the dialog and accepts its contents. 
Syntax 

void dlgAccept([ int Result ]); 

See also dlgReject, dlgDialog, A Complete Example 

The dlgAccept function causes the dlgDialog to be closed and return after the current 
statement sequence has been completed. 

Any changes the user has made to the dialog values will be accepted and are copied into the 
variables that have been given when the dialog objects were defined. 

The optional Result is the value that will be returned by the dialog. Typically this should 
be a positive integer value. If no value is given, it defaults to 1. 

Note that dlgAccept() does return to the normal program execution, so in a sequence 
like 

dlgPushButton("OK") {
  dlgAccept();
  dlgMessageBox("Accepting!");
  }

the statement after dlgAccept() will still be executed! 

Example
int Result = dlgDialog("Test") {
               dlgPushButton("+OK")    dlgAccept(42);
               dlgPushButton("Cancel") dlgReject();
               };

dlgRedisplay()
Function 



Redisplays the dialog after changing values. 
Syntax 

void dlgRedisplay(void); 

See also dlgReset, dlgDialog, A Complete Example 

The dlgRedisplay function can be called to immediately refresh the dlgDialog after 
changes have been made to the variables used when defining the dialog objects. 

You only need to call dlgRedisplay() if you want the dialog to be refreshed while still 
executing program code. In the example below the status is changed to "Running..." and 
dlgRedisplay() has to be called to make this change take effect before the "program 
action" is performed. After the final status change to "Finished." there is no need to call 
dlgRedisplay(), since all dialog objects are automatically updated after leaving the 
statement. 

Example
string Status = "Idle";
int Result = dlgDialog("Test") {
               dlgLabel(Status, 1); // note the '1' to tell the label to be 
updated!
               dlgPushButton("+OK")    dlgAccept(42);
               dlgPushButton("Cancel") dlgReject();
               dlgPushButton("Run") {
                 Status = "Running...";
                 dlgRedisplay();
                 // some program action here...
                 Status = "Finished.";
                 }
               };

dlgReset()
Function 

Resets all dialog objects to their initial values. 
Syntax 

void dlgReset(void); 

See also dlgReject, dlgDialog, A Complete Example 

The dlgReset function copies the initial values back into all dialog objects of the current 
dlgDialog. 

Any changes the user has made to the dialog values will be discarded. 

Calling dlgReject() implies a call to dlgReset(). 

Example
int Number = 1;
int Result = dlgDialog("Test") {
               dlgIntEdit(Number);
               dlgPushButton("+OK")    dlgAccept(42);
               dlgPushButton("Cancel") dlgReject();
               dlgPushButton("Reset")  dlgReset();



               };

dlgReject()
Function 

Closes the dialog and rejects its contents. 
Syntax 

void dlgReject([ int Result ]); 

See also dlgAccept, dlgReset, dlgDialog, A Complete Example 

The dlgReject function causes the dlgDialog to be closed and return after the current 
statement sequence has been completed. 

Any changes the user has made to the dialog values will be discarded. The variables that 
have been given when the dialog objects were defined will be reset to their original values 
when the dialog returns. 

The optional Result is the value that will be returned by the dialog. Typically this should 
be 0 or a negative integer value. If no value is given, it defaults to 0. 

Note that dlgReject() does return to the normal program execution, so in a sequence 
like 

dlgPushButton("Cancel") {
  dlgReject();
  dlgMessageBox("Rejecting!");
  }

the statement after dlgReject() will still be executed! 

Calling dlgReject() implies a call to dlgReset(). 

Example
int Result = dlgDialog("Test") {
               dlgPushButton("+OK")    dlgAccept(42);
               dlgPushButton("Cancel") dlgReject();
               };

dlgSelectionChanged()
Function 

Tells whether the current selection in a dlgListView or dlgListBox has changed. 
Syntax 

int dlgSelectionChanged(void); 
Returns 

The dlgSelectionChanged function returns a nonzero value if only the selection in the 
list has changed. 

See also dlgListView, dlgListBox 

The dlgSelectionChanged function can be used in a list context to determine whether 
the statement of the dlgListView or dlgListBox was called because the user double 



clicked on an item, or whether only the current selection in the list has changed. 

If the statement of a dlgListView or dlgListBox doesn't contain any call to 
dlgSelectionChanged, that statement is only executed when the user double clicks on 
an item in the list. However, if a ULP needs to react on changes to the current selection in 
the list, it can call dlgSelectionChanged within the list's statement. This causes the 
statement to also be called if the current selection in the list changes. 

If a list item is initially selected when the dialog is opened and the list's statement contains a 
call to dlgSelectionChanged, the statement is executed with 
dlgSelectionChanged returning true in order to indicate the initial change from "no 
selection" to an actual selection. Any later programmatical changes to the strings or the 
selection of the list will not trigger an automatic execution of the list's statement. This is 
important to remember in case the current list item controls another dialog object, for 
instance a dlgTextView that shows an extended representation of the currently selected 
item. 

Example
string Colors[] = { "red\tThe color RED", "green\tThe color GREEN", "blue\tThe 
color BLUE" };
int Selected = 0; // initially selects "red"
string MyColor;
dlgLabel(MyColor, 1);
dlgListView("Name\tDescription", Colors, Selected) {
  if (dlgSelectionChanged())
     MyColor = Colors[Selected];
  else
     dlgMessageBox("You have chosen " + Colors[Selected]);
  }

Escape Character
Some characters have special meanings in button or label texts, so they need to be escaped 
if they shall appear literally. 

To do this you need to prepend the character with a backslash, as in 

dlgLabel("Miller \\& Co.");

This will result in "Miller & Co." displayed in the dialog. 

Note that there are actually two backslash characters here, since this line will first go 
through the User Language parser, which will strip the first backslash. 

A Complete Example
Here's a complete example of a User Language Dialog. 

int hor = 1;
int ver = 1;
string fileName;
int Result = dlgDialog("Enter Parameters") {
  dlgHBoxLayout {
    dlgStretch(1);



    dlgLabel("This is a simple dialog");
    dlgStretch(1);
    }
  dlgHBoxLayout {
    dlgGroup("Horizontal") {
      dlgRadioButton("&Top", hor);
      dlgRadioButton("&Center", hor);
      dlgRadioButton("&Bottom", hor);
      }
    dlgGroup("Vertical") {
      dlgRadioButton("&Left", ver);
      dlgRadioButton("C&enter", ver);
      dlgRadioButton("&Right", ver);
      }
    }
  dlgHBoxLayout {
    dlgLabel("File &name:");
    dlgStringEdit(fileName);
    dlgPushButton("Bro&wse") {
      fileName = dlgFileOpen("Select a file", fileName);
      }
    }
  dlgGridLayout {
    dlgCell(0, 0) dlgLabel("Row 0/Col 0");
    dlgCell(1, 0) dlgLabel("Row 1/Col 0");
    dlgCell(0, 1) dlgLabel("Row 0/Col 1");
    dlgCell(1, 1) dlgLabel("Row 1/Col 1");
    }
  dlgSpacing(10);
  dlgHBoxLayout {
    dlgStretch(1);
    dlgPushButton("+OK")    dlgAccept();
    dlgPushButton("Cancel") dlgReject();
    }
  };

Supported HTML tags
EAGLE supports a subset of the tags used to format HTML pages. This can be used to 
format the text of several User Language Dialog objects, in the #usage directive or in the 
description of library objects. 

Text is considered to be HTML if the first line contains a tag. If this is not the case, and you 
want the text to be formatted, you need to enclose the entire text in the 
<html>...</html> tag. 

The following table lists all supported HTML tags and their available attributes: 

Tag Description
<html>...</html> An HTML document.

<html>...</html>

The body of an HTML document. It understands the following attribute 

• bgcolor - The background color, for example bgcolor="yellow" 
or bgcolor="#0000FF". This attribute works only within a 
dlgTextView. 

<h1>...</h1> A top-level heading.
<h2>...</h2> A sub-level heading.



<h3>...</h3> A sub-sub-level heading.

<p>...</p>
A left-aligned paragraph. Adjust the alignment with the align attribute. 
Possible values are left, right and center.

<center>...</center
>

A centered paragraph.

<blockquote>...</b
lockquote>

An indented paragraph, useful for quotes.

<ul>...</ul>
An un-ordered list. You can also pass a type argument to define the bullet style. 
The default is type=disc, other types are circle and square.

<ol>...</ol>
An ordered list. You can also pass a type argument to define the enumeration 
label style. The default is type="1", other types are "a" and "A".

<li>...</li> A list item. This tag can only be used within the context of ol or ul.

<pre>...</pre>
For larger chunks of code. Whitespaces in the contents are preserved. For small 
bits of code, use the inline-style code.

<a>...</a>

An anchor or link. It understands the following attributes: 

• href - The reference target as in <a 
href="target.html">...</a>. You can also specify an 
additional anchor within the specified target document, for example <a 
href="target.html#123">...</a>. If you want to link to a 
local file that has a blank in its name, you need to prepend the file name 
with file:, as in <a href="file:/path with 
blanks/target.html">...</a>. 

• name - The anchor name, as in <a name="123">...</a>. 

<em>...</em> Emphasized (same as <i>...</i>).
<strong>...</strong
>

Strong (same as <b>...</b>).

<i>...</i> Italic font style.
<b>...</b> Bold font style.
<u>...</u> Underlined font style.
<big>...</big> A larger font size.
<small>...</small> A smaller font size.

<code>...</code>
Indicates Code. (same as <tt>...</tt>. For larger chunks of code, use the 
block-tag pre.

<tt>...</tt> Typewriter font style.

<font>...</font>

Customizes the font size, family and text color. The tag understands the 
following attributes: 

• color - The text color, for example color="red" or 
color="#FF0000". 

• size - The logical size of the font. Logical sizes 1 to 7 are supported. 
The value may either be absolute, for example size=3, or relative like 
size=-2. In the latter case, the sizes are simply added. 

• face - The family of the font, for example face=times. 

<img...> An image. This tag understands the following attributes: 

• src - The image name, for example <img src="image.png">.
The URL of the image may be external, as in <img 
src="http://www.cadsoft.de/cslogo.gif">. 



• width - The width of the image. If the image does not fit to the 
specified size, it will be scaled automatically. 

• height - The height of the image. 
• align - Determines where the image is placed. Per default, an image is 

placed inline, just like a normal character. Specify left or right to 
place the image at the respective side. 

<hr> A horizonal line.
<br> A line break.
<nobr>...</nobr> No break. Prevents word wrap.

<table>...</table>

A table definition. The default table is frameless. Specify the boolean attribute 
border in order to get a frame. Other attributes are: 

• bgcolor - The background color. 
• width - The table width. This is either absolute in pixels or relative in 

percent of the column width, for example width=80%. 
• border - The width of the table border. The default is 0 (= no border). 
• cellspacing - Additional space around the table cells. The default is 

2. 
• cellpadding - Additional space around the contents of table cells. 

Default is 1. 

<tr>...</tr>

A table row. Can only be used within table. Understands the attribute 

• bgcolor - The background color. 

<td>...</td>

A table data cell. Can only be used within tr. Understands the attributes 

• bgcolor - The background color. 
• width - The cell width. This is either absolute in pixels or relative in 

percent of the entire table width, for example width=50%. 
• colspan - Defines how many columns this cell spans. The default is 1. 
• rowspan - Defines how many rows this cell spans. The default is 1. 
• align - Alignment, possible values are left, right and center. 

The default is left-aligned. 

<th>...</th> A table header cell. Like td but defaults to center-alignment and a bold font.
<author>...</autho
r>

Marks the author of this text.

<dl>...</dl> A definition list.
<dt>...</dt> A definition tag. Can only be used within dl.
<dd>...</dd> Definition data. Can only be used within dl.
Tag Meaning
&lt; <
&gt; >
&amp; &
&nbsp; non-breaking space
&auml; ä
&ouml; ö
&uuml; ü
&Auml; Ä



&Ouml; Ö
&Uuml; Ü
&szlig; ß
&copy; ©
&deg; °
&micro; µ
&plusmn
;

±

&quot; "

Automatic Backup

Maximum backup level
The WRITE command creates backup copies of the saved files. These backups have the 
same name as the original file, with a modified extension that follows the pattern 

.x#n

In this pattern 'x' is replaced by the character 

'b' for board files
's' for schematic files
'l' for library files 

'n' stands for a single digit number in the range 1..9. Higher numbers indicate older files. 

The fixed '#' character makes it easy to delete all backup files from the operating system, 
using *.?#? as a wildcard. 

Note that backup files with the same number 'n' do not necessarily represent consistent 
combinations of board and schematic files! 

The maximum number of backup copies can be set in the backup dialog. 

Auto backup interval
If a drawing has been modified a safety backup copy will be automatically created after at 
most the given Auto backup interval. 

This safety backup file will have a name that follows the pattern 

.x##

In this pattern 'x' is replaced by the character 

'b' for board files
's' for schematic files
'l' for library files 

The safety backup file will be deleted after a successful regular save operation. If the 
drawing has not been saved with the WRITE command (e.g. due to a power failure) this file 
can be renamed and loaded as a normal board, schematic or library file, repectively. 

The auto backup interval can be set in the backup dialog. 



Forward&Back Annotation
A schematic and board file are logically interconnected through automatic Forward&Back 
Annotation. Normally there are no special things to be considered about Forward&Back 
Annotation. This section, however, lists all of the details about what exactly happens during 
f/b activities: 

• When adding a new part to a schematic, the part's package is added to the board at 
the lower left corner of the drawing. If the part contains power pins (pins with 
Direction "Pwr") the related pads will be automatically connected to their power 
signals. 

• When deleting a part from a schematic drawing, the part's package is deleted from 
the board. Any wires that were connected to that package are left unchanged. This 
may require additional vias to be set in order to keep signals connected. These vias 
will not be set automatically! The ratsnest will be re-calculated for those signals that 
were connected to the removed package. 

• When deleting a part from a board drawing, all of the gates contained in that part will 
be deleted from the schematic. Note that this may affect more than one sheet, if the 
gates were placed on different sheets! 

• After an operation that removes a pad from a signal (or adds it to a signal) that has a 
polygon, the display of the connections to that polygon may be incorrect. In such a 
case the RATSNEST command will recalculate the polygon to show the correct 
Thermal/Annulus symbols. The same applies to Undo/Redo operations that involve 
pads connected to signals with polygons. 

• A PinSwap or GateSwap operation in the schematic will make all the necessary 
changes to the wires of the board. However, after this operation the wires may 
overlap or violate minimum distance rules. Therefore the user should take a look at 
these wires and modify them with Move, Split, Change Layer etc. 

• To make absolutely sure that a board and schematic belong to each other (and are 
therefore connected via Forward&Back Annotation) the two files must have the same 
file name (with extensions .brd and .sch) and must be located in the same directory! 

• The Replace command checks whether all pads in the old package which have been 
assigned to pins will also be present in the new package, regardless whether they are 
connected to a signal or not. 

• When the pins of two parts in the schematic are directly overlapping (and thus 
connected without a visible net wire), a net wire will be generated when these parts 
are moved away from each other. This is done to avoid unnecessary ripup of signal 
wires in the board. 

Consistency Check
In order to use Forward&Back Annotation a board and schematic must be consistent, which 
means they must contain an equivalent set of parts/elements and nets/signals. 

Normally a board and schematic will always be consistent as long as they have never been 
edited separately (in which case the message "No Forward&Back Annotation will be 
performed!" will have warned you). 

When loading a pair of board and schematic files the program will check some consistency 



markers in the data files to see if these two files are still consistent. If these markers indicate 
an inconsistency, you will be offered to run an Electrical Rule Check (ERC), which will do 
a detailed cross-check on both files. 

If this check turns out positive, the two files are marked as consistent and Forward&Back 
Annotation will be activated. 

If the two files are found to be inconsistent the ERC protocol file will be brought up in a 
dialog and Forward&Back Annotation will not be activated. 

Please do not be alarmed if you get a lot of inconsistency messages. In most cases fixing 
one error (like renaming a part or a net) will considerably reduce the number of error 
messages you get in the next ERC run. 

Making a Board and Schematic consistent
To make an inconsistent pair of board and schematic files consistent, you have to manually 
fix any inconsistency listed in the ERC protocol. This can be done by applying editor 
commands like NAME, VALUE, PINSWAP, REPLACE etc. After fixing the 
inconsistencies you must use the ERC command again to check the files and eventually 
activate Forward&Back Annotation. 

Limitations
The following actions are not allowed in a board when Back Annotation is active (i.e. the 
schematic is loaded, too): 

• adding or copying a part that contains Pads or Smds 
• deleting an airwire 
• defining connections with the Signal command 
• pasting from a board into a board, if the pasted objects contain parts with Pads or 

Smds, or Signals with connections 

If you try to do one of the above things, you will receive a message telling you that this 
operation cannot be backannotated. In such a case please do the necessary operations in the 
schematic (they will then be forward annotated to the board). If you absolutely have to do it 
in the board, you can close the schematic window and then do anything you like inside the 
board. In that case, however, board and schematic will not be consistent any more! 

Technical Support
As a registered EAGLE user you get free technical support from CadSoft. There are several 
ways to contact us or obtain the latest part libraries, drivers or program versions: 

CadSoft Computer
19620 Pines Blvd. Suite 217
Pembroke Pines, FL 33029
USA 

Phone 954-237-0932
Fax 954-237-0968
Email support@cadsoftusa.com

mailto:support@cadsoftusa.com


URL www.cadsoftusa.com

License
To legally use EAGLE you need a registered user license. Please check whether the dialog 
"Help/About EAGLE" contains your name and address under "Registered to:". If you have 
any doubts about the validity or authenticity of your license, please contact our Technical 
Support staff for verification. 

Under Mac OS X you can find this information under "EAGLE/About EAGLE". 

There are different types of licenses, varying in the number of users who may use the 
program and in the areas of application the program may be used in: 

Single-User License
Only one user may use the program at any given time. However, that user may install the 
program on any of his computers, as long as he makes sure that the program will only be 
used on one of these computers at a time. 

A typical application of this kind would be a user who has a PC at home and also a notebook 
or laptop computer which he uses "on the road". As he would only use one of these 
computers at a time it is ok to have EAGLE installed on both of them. 

Multi-user License
A multi-user license may be used by several users (up to the maximum number listed on the 
license) simultaneously. The program may be installed on any number of different 
computers at the location of the license holder. 

Commercial License
The program may be used for any purpose, be it commercial or private. 

Educational License
The program may only be used in an educational environment like a school, university or 
training workshop, in order to teach how to use ECAD software. 

Student License
The program may only be used for private ("non-profit") purposes. Student versions are sold 
at a very low price, to allow people who could otherwise never afford buying EAGLE the 
use of the program for their private hobby or education. It is a violation of the license terms 
if you "earn money" by using a Student Licence of EAGLE. 

EAGLE License
Before you can work with EAGLE it is necessary to register the program with your 
personalized license data. 

http://www.cadsoftusa.com/


In the dialog "EAGLE License" enter the name of your EAGLE license file, as well as the 
corresponding Installation Code you have received together with your license file (this code 
consists of 10 lowercase characters). 

After pressing enter or clicking on the OK button, EAGLE will be installed with your 
personalized license data. 

If you have problems installing EAGLE or are in doubt about the validity of your license 
please contact our Technical Support staff for assistance. 

Installing additional modules
If you decided to update your license with the schematic/autorouter module you get a new 
license file with a new Installation Code. To make the new modules available you have to 
register your EAGLE again. Start the EAGLE program and choose in the Control Panel in 
the Help menu the item EAGLE License. 

EAGLE Editions
EAGLE is available in three different editions to fit various user requirements. 

Professional
The Professional edition provides full functionality: 

• board area up to 1600x1600mm (64x64inch) 
• up to 16 routing layers 
• up to 999 sheets per schematic 

Standard
The Standard edition has the following limitations: 

• board area limited to 160x100mm (6.3x4inch), which corresponds to a full Eurocard 
• only six routing layers (Top, Route2, Route3, Route14, Route15 and Bottom) 
• a schematic can consist of up to 99 separate sheets 

Light
The Light edition has the following limitations: 

• board area limited to 100x80mm (4x3.2inch), which corresponds to half of a 
Eurocard 

• only two routing layers (Top and Bottom) 
• a schematic can consist of only one single sheet 

Freemium
The Freemium edition is a Free Premium edition, which has capabilities between the Light 
and the Standard editions. The Freemium edition is available only after registration on 
http://www.element-14.com/eagle-freemium and has the following limitations: 

http://www.element-14.com/eagle-freemium


• board area limited to 100x80mm (4x3.2inch), which corresponds to half of a 
Eurocard 

• only four routing layers (Top, Route2, Route15 and Bottom) 
• a schematic can consist of only four sheets 
• a Freemium license is limited to one single user and computer, and requires an active 

connection to the Internet in order to work; it expires 60 days after installation 

If you receive an error message like 

The Light edition of EAGLE can't perform the requested action! 

this means that you are attempting to do something that would violate the limitations that 
apply to the EAGLE edition in use, like for example placing an element outside of the 
allowed area. 

All editions of EAGLE can be used to view files created with the Standard or Professional 
edition, even if these drawings exceed the editing capabilities of the edition currently in use. 

To check which edition your license has enabled, select Help/About EAGLE from the 
Control Panel's menu. 


	General Help
	Configuring EAGLE
	User Interface
	Screen Display
	Mode Parameters
	Presettings

	Command Line Options
	Options
	User settings
	Defining Tolerance Values
	Executing commands
	Filename

	Quick Introduction
	Control Panel and Editor Windows
	Entering Parameters and Values
	Drawing a Schematic
	Create a Schematic File
	Load a Drawing Frame
	Place Symbols
	Draw Bus Connections
	Draw Net Connections

	Checking the Schematic
	Generating a Board from a Schematic
	Set Board Outlines and Place Components
	Define Restricted Areas
	Routing

	Checking the Layout
	Creating a Library Device
	Create a Package
	Create a Symbol
	Create the Device

	Control Panel
	Directories
	Context menu
	Descriptions
	Drag&drop
	Information window
	Pulldown menu
	File
	View
	Options
	Window
	Help
	Search Bar
	Status line

	Context Menus
	New Folder
	Edit Description
	Rename
	Copy
	Delete
	Use
	Use all
	Use none
	Update
	Update in Library
	Add to Schematic
	Add to Board
	Copy to Library
	New package variant in Library
	Open/Close Project
	New
	Open
	Print...
	Run in ...
	Execute in ...
	Load into Board

	Directories
	Backup
	Maximum backup level
	Auto backup interval (minutes)
	Automatically save project file

	User Interface
	Controls
	Layout
	Schematic
	Vertical text
	Help
	Misc

	Window positions
	Check for Update
	Keyboard and Mouse
	Alt
	Ctrl
	Shift
	Esc
	Crsr-Up/Down
	Function Keys
	Left Mouse Button
	Center Mouse Button
	Right Mouse Button
	Mouse Wheel

	Selecting objects in dense areas
	Editor Windows
	Library Editor
	Edit Library Object
	Board Editor
	Schematic Editor
	Text Editor
	Using an external text editor

	Editor Commands
	Change Mode/File Commands
	Edit Drawings or Libraries
	Special Commands for Boards
	Special Commands for Schematics
	Special Commands for Libraries
	Change Screen Display and User Interface
	Miscellaneous Commands

	Command Syntax
	Shorten key words
	Alternative Parameters
	Repetition Points
	Coordinates
	Decimal numbers
	Semicolon

	ADD
	Fetching a Package or Symbol into a Drawing
	Wildcards
	Names
	Particular Gates
	Orientation
	Error messages

	Fetch Symbol into Device
	Swaplevel
	Addlevel


	ARC
	Signal name
	Line Width

	ASSIGN
	Examples
	Define Command Menu
	Presetting of key assignments

	ATTRIBUTE
	Attributes in the Library
	Attributes in the Schematic
	Attributes in the Board
	Global attributes
	Selecting the layer
	Examples

	AUTO
	Example
	Wildcards
	Polygons
	Protocol File
	Board Size
	Signals
	Restricted Areas
	Canceling

	BOARD
	Creating a board from a schematic

	BUS
	Bus name examples
	Inverted signals

	CHANGE
	Change Groups
	What can be changed?

	CIRCLE
	Example

	CLASS
	Width
	Clearance
	Drill
	Clearance between net classes

	CLOSE
	CONNECT
	Device with one Gate
	Device with several Gates
	Several Pads connected to the same Pin
	Gate or Pin names that contain periods
	Example

	COPY
	Copy to the system's clipboard
	Copy Wires
	Copy Parts
	Copy library objects
	Copy a group
	Copy objects to an other sheet

	CUT
	Reference Point
	Note

	DELETE
	Deleting Wire Joints
	Deleting Polygon Corners
	Deleting Components
	Deleting Junctions, Nets, and Buses
	Deleting Supply Symbols
	Deleting Signals
	Deleting all Signals
	Deleting higher level objects

	DESCRIPTION
	Example

	DIMENSION
	Dimension Type
	Selection

	DISPLAY
	Undefined Layers
	Pads and Vias
	Selecting Objects
	Parameter Aliases

	DRC
	Related SET commands

	EDIT
	Which Directory?

	ERC
	Consistency Check

	ERRORS
	Marking a message as processed
	Approving a message
	Clearing the list

	EXPORT
	SCRIPT
	NETLIST
	NETSCRIPT
	PARTLIST
	PINLIST
	DIRECTORY
	IMAGE
	Further formats

	FRAME
	Example

	GATESWAP
	GRID
	Examples
	Parameter Aliases

	GROUP
	Move Group
	Extending the group
	Individual objects

	HELP
	Example

	HOLE
	Example

	INFO
	INVOKE
	Gates on Different Sheets

	JUNCTION
	LABEL
	Cross-reference labels
	Selecting the layer

	LAYER
	Choose Drawing Layer
	Define Layers
	Delete Layers
	Predefined EAGLE Layers
	Layout
	Schematic


	LOCK
	MARK
	MEANDER
	Measuring signal lengths
	Symmetrical and asymmetrical meanders
	Length tolerance

	MENU
	Examples

	MIRROR
	Mirror a Group
	Mirror Texts

	MITER
	Mitering a point
	Mitering a wire
	Straight versus round mitering
	Miter radius and wire bend style

	MOVE
	Move Wires
	Move Groups
	Hints for Schematics
	Selecting objects at their origin
	Move part of a sheet to an other sheet

	NAME
	Library
	Automatic Naming
	Schematic
	Polygon

	NET
	Select Bus Signal
	Net Names
	Line Width
	Inverted signals

	OPEN
	OPTIMIZE
	Automatic Optimization

	PACKAGE
	Devices without packages
	Supply devices
	External devices


	PAD
	Example
	Pad Shapes
	Arbitrary Pad Shapes
	Pad Names
	Flags
	Single Pads
	Alter Package

	PASTE
	Pasting from a file

	PIN
	Options
	Direction
	Function
	Length
	Orientation
	Visible
	Swaplevel

	Using the PIN Command
	Automatic Naming
	Predefine options with CHANGE
	Pins with the same Name
	Pin Lettering
	Inverted pins

	PINSWAP
	POLYGON
	Note
	Outlines or Real Mode
	Other commands and Polygons
	Parameters
	Width
	Layer
	Pour
	Rank
	Thermals
	Spacing
	Isolate
	Orphans

	Thermal dimensions
	Outlines data
	Hatched polygons and airwires
	Polygon cutouts

	PREFIX
	Example

	PRINT
	Printing to a file
	Printing to a given paper size
	Printing a range of sheets
	Examples

	QUIT
	RATSNEST
	Zero length airwires
	Making sure everything has been routed
	Wildcards
	Hiding selected airwires
	Differential Pairs

	RECT
	Not Part of Signals
	Restricted Areas

	REDO
	REMOVE
	Files
	Devices, Symbols, Packages
	Sheets

	RENAME
	REPLACE
	RIPUP
	Wildcards
	Polygons

	ROTATE
	Elements
	Text

	ROUTE
	Selecting the routing layer and wire width
	Snap Function
	Follow-me Router
	Differential Pair routing

	RUN
	Running a ULP from a script file
	Editor commands resulting from running a ULP

	SCRIPT
	Examples
	Continued Lines
	Set Default Parameters
	Script Labels
	Execute Script Files in the Library Editor

	SET
	User Interface
	Screen display
	Mode parameters
	Colors
	Automatic Confirmation
	EagleRc Parameters

	SHOW
	Cross Probing
	Different Objects
	Small Objects
	Wildcards
	Objects on different Sheets
	Examples

	SIGNAL
	Mouse Input
	Text Input
	On-line Check
	Outlines data

	SMASH
	SMD
	Roundness
	Arbitrary Pad Shapes
	Names
	Flags
	Single Smds
	Alter Package

	SPLIT
	TECHNOLOGY
	Example

	TEXT
	Orientation
	Special Characters
	Key Words
	Text Height
	Text Font
	Text Alignment
	Character Sets
	Text Variables
	Attributes
	Overlined text

	UNDO
	UNDO buffer dialog

	UPDATE
	Update in a board or schematic
	Update in a library

	USE
	Using Libraries via the Control Panel
	Used Libraries and Projects
	Examples

	VALUE
	In Boards and Schematics
	Example
	In Device Mode

	VARIANT
	VIA
	Signal name
	Via diameter
	Shape
	Layers
	Flags

	WINDOW
	Refresh screen
	New center
	Corner points
	New center and zoom
	Zoom in and out
	The whole drawing
	Back to the previous window
	Very large zoom factors
	Parameter Aliases

	WIRE
	Signal name
	Wire Width
	Wire Style
	Signals in Top, Bottom, and Route Layers
	Drawing Arcs

	WRITE
	Generating Output
	Printing
	Printing a Drawing
	Paper
	Orientation
	Preview
	Mirror
	Rotate
	Upside down
	Black
	Solid
	Scale factor
	Page limit
	All
	From...to
	This
	Printer...
	PDF...

	Printing a Text
	Wrap long lines
	Printer...
	PDF...

	Printer Page Setup
	Border
	Calibrate
	Aligment
	Caption

	CAM Processor
	Main CAM Menu
	File
	Layer
	Window
	Help

	CAM Processor Job
	Section
	Prompt
	Add
	Del
	Process Section
	Process Job

	Output Device
	Device
	Scale
	File
	Wheel
	Rack

	Device Parameters
	Aperture Wheel File
	Examples

	Aperture Emulation
	Aperture Tolerances
	Drill Rack File
	Example

	Drill Tolerances
	Offset
	Printable Area
	Height
	Width

	Pen Data
	Diameter
	Velocity

	Defining Your Own Device Driver
	Output File
	Placeholders
	Drill data with blind&buried vias

	Flag Options
	Mirror
	Rotate
	Upside down
	pos. Coord
	Quickplot
	Optimize
	Fill pads

	Layers and Colors
	Outlines data
	Preparing the board
	Extracting the data
	Milling tool diameter
	Cleaning up

	Autorouter
	Design Checks
	Design Rules
	File
	Layers
	Clearance
	Distance
	Sizes
	Restring
	Shapes
	Supply
	Masks
	Misc

	Cross-references
	Cross-reference labels
	Part cross-references
	Contact cross-references
	User Language
	Writing a ULP
	Executing a ULP
	Syntax
	Whitespace
	Comments
	Directives
	#include
	Portability note

	#require
	#usage
	Example

	Keywords
	Identifiers
	Constants
	Character Constants
	Integer Constants
	Examples

	Real Constants
	Examples

	String Constants
	Escape Sequences
	Examples

	Punctuators
	Brackets
	Parentheses
	Braces
	Comma
	Semicolon
	Colon
	Equal Sign
	Data Types
	char
	int
	real
	string
	Implementation details

	Type Conversions
	Typecast
	Object Types
	Object hierarchy of a Library:
	Object hierarchy of a Schematic:
	Change note from version 5 to version 6, compatibility

	Object hierarchy of a Board:

	UL_ARC
	Constants
	Note
	Example

	UL_AREA
	Example

	UL_ATTRIBUTE
	Constants
	Note
	Example

	UL_BOARD
	Constants
	Note
	Example

	UL_BUS
	Constants
	Example

	UL_CIRCLE
	Example

	UL_CLASS
	Note
	Example

	UL_CONTACT
	Constants
	Note
	Example

	UL_CONTACTREF
	Constants
	Note
	Example

	UL_DEVICE
	Constants
	Note
	Examples

	UL_DEVICESET
	Constants
	Note
	Example

	UL_DIMENSION
	Constants
	Note
	Example

	UL_ELEMENT
	Constants
	Note
	Examples

	UL_FRAME
	Constants
	Note
	Example

	UL_GATE
	Constants
	Note
	Example

	UL_GRID
	Constants
	Note
	Example

	UL_HOLE
	Note
	Example

	UL_INSTANCE
	Constants
	Note
	Example

	UL_JUNCTION
	Example

	UL_LABEL
	Note
	Example

	UL_LAYER
	Constants
	Example

	UL_LIBRARY
	Constants
	Note
	Example

	UL_NET
	Constants
	Note
	Example

	UL_PACKAGE
	Constants
	Note
	Example

	UL_PAD
	Constants
	Note
	Example

	UL_PART
	Constants
	Note
	Example

	UL_PIN
	Constants
	Note
	Example

	UL_PINREF
	Example

	UL_POLYGON
	Constants
	Note
	Polygon width
	Partial polygons
	Example

	UL_RECTANGLE
	Example

	UL_SCHEMATIC
	Constants
	Note
	Example

	UL_SEGMENT
	Note
	Example

	UL_SHEET
	Example

	UL_SIGNAL
	Constants
	Example

	UL_SMD
	Constants
	Note
	Example

	UL_SYMBOL
	Constants
	Note
	Example

	UL_TEXT
	Constants
	Note
	Example

	UL_VARIANTDEF
	Example

	UL_VARIANT
	Example

	UL_VIA
	Constants
	Note
	Example

	UL_WIRE
	Constants
	Wire Style
	Arcs at Wire level
	Example

	Definitions
	Constant Definitions
	Variable Definitions
	Examples

	Function Definitions
	The special function main()
	Example

	Operators
	Bitwise Operators
	Logical Operators
	Comparison Operators
	Evaluation Operators
	Arithmetic Operators
	String Operators
	Expressions
	Arithmetic Expression
	Examples

	Assignment Expression
	Examples

	String Expression
	Examples

	Comma Expression
	Example

	Conditional Expression
	Example

	Function Call
	Example

	Statements
	Compound Statement
	Expression Statement
	Control Statements
	break
	continue
	do...while
	Example

	for
	Example

	if...else
	return
	switch
	Example

	while
	Example

	Builtins
	Builtin Constants
	Builtin Variables
	Builtin Functions
	Character Functions
	is...()
	Character categories
	Example

	to...()
	File Handling Functions
	fileerror()
	Example

	fileglob()
	Note for Windows users
	Example

	Filename Functions
	Example

	Filedata Functions
	Example

	File Input Functions
	fileread()
	Example

	Mathematical Functions
	Error Messages

	Absolute, Maximum and Minimum Functions
	Example

	Rounding Functions
	Example

	Trigonometric Functions
	Constants
	Note
	Example

	Exponential Functions
	Example

	Miscellaneous Functions
	Configuration Parameters
	Example

	country()
	Example

	exit()
	Constants

	fdlsignature()
	language()
	Example

	lookup()
	Example

	palette()
	Constants

	sort()
	Sorting a single array
	Sorting a set of arrays

	status()
	system()
	Input/Output redirection
	Background execution
	Example

	Unit Conversions
	Example

	Network Functions
	neterror()
	Example

	netget()
	Example

	netpost()
	Example

	Printing Functions
	printf()
	Format string
	Format specifiers
	Conversion type characters
	Flag characters
	Width specifiers
	Precision specifiers
	Default precision values
	How precision specification (.n) affects conversion
	Binary zero characters
	Example

	sprintf()
	Format string
	Binary zero characters
	Example

	String Functions
	strchr()
	Example

	strjoin()
	Example

	strlen()
	Example

	strlwr()
	Example

	strrchr()
	Example

	strrstr()
	Example

	strsplit()
	Example

	strstr()
	Example

	strsub()
	Example

	strtod()
	Example

	strtol()
	Example

	strupr()
	Example

	strxstr()
	Example

	Time Functions
	time()
	Example

	timems()
	Example

	Time Conversions
	Example

	Object Functions
	clrgroup()
	Example

	ingroup()
	Identifying the context menu object
	Example

	setgroup()
	Example

	setvariant()
	Example

	variant()
	Example

	XML Functions
	xmlattribute(), xmlattributes()
	Example

	xmlelement(), xmlelements()
	Example

	xmltags()
	Example

	xmltext()
	Example

	Builtin Statements
	board()
	Check if there is a board
	Accessing board from a schematic
	Example

	deviceset()
	Check if there is a device set
	Example

	library()
	Check if there is a library
	Example

	output()
	File Modes
	Nested Output statements
	Example

	package()
	Check if there is a package
	Example

	schematic()
	Check if there is a schematic
	Accessing schematic from a board
	Access the current Sheet
	Example

	sheet()
	Check if there is a sheet
	Example

	symbol()
	Check if there is a symbol
	Example

	Dialogs
	Predefined Dialogs
	dlgDirectory()
	Example

	dlgFileOpen(), dlgFileSave()
	Example

	dlgMessageBox()
	Example

	Dialog Objects
	dlgCell
	Example

	dlgCheckBox
	Example

	dlgComboBox
	Example

	dlgDialog
	Examples

	dlgGridLayout
	Example

	dlgGroup
	Example

	dlgHBoxLayout
	Example

	dlgIntEdit
	Example

	dlgLabel
	Example

	dlgListBox
	Example

	dlgListView
	Example

	dlgPushButton
	Example

	dlgRadioButton
	Example

	dlgRealEdit
	Example

	dlgSpacing
	Example

	dlgSpinBox
	Example

	dlgStretch
	Example

	dlgStringEdit
	Example

	dlgTabPage
	Example

	dlgTabWidget
	Example

	dlgTextEdit
	Example

	dlgTextView
	Example

	dlgVBoxLayout
	Example

	Layout Information
	Grid Layout Context
	Horizontal Layout Context
	Vertical Layout Context
	Mixing Layout Contexts

	Dialog Functions
	dlgAccept()
	Example

	dlgRedisplay()
	Example

	dlgReset()
	Example

	dlgReject()
	Example

	dlgSelectionChanged()
	Example

	Escape Character
	A Complete Example
	Supported HTML tags
	Automatic Backup
	Maximum backup level
	Auto backup interval

	Forward&Back Annotation
	Consistency Check
	Making a Board and Schematic consistent

	Limitations
	Technical Support
	License
	Single-User License
	Multi-user License
	Commercial License
	Educational License
	Student License

	EAGLE License
	Installing additional modules

	EAGLE Editions
	Professional
	Standard
	Light
	Freemium


