EAGLE

EASILY APPLICABLE GRAPHICAL LAYOUT EDITOR

User Language

Version 6.5.0

© 2013 CadSoft Computer GmbH All rights reserved

Table Of Contents

USET LaANGUAZE. c.euueieiiiieeietiiieeeetiiee e ettt e e ettt e eetanaaaseetaaaeeeetaasesertsnsnssesnsnssseesssnnssnnssennssennnns 1
WIHINE @ ULP.. ittt e e s e e e et e ttata e e e e e e eeetabbasssaeseeeanaeaeannnssessnnnsesees 1
EXECULINE @ ULP..ccitiiiiieiiiiiiiiiiiiiieee ettt e e s e e ee et taaaasse e e e s eeeetasaassasssseeeasanssnsnssnsseseeesesnennns 2
N4 8L b: SO O PP P PP PPPRPP PRI 2
W HIEESPACE. ... s aaeeeeaeaaannaeeeaaeeennnn 2
COTTIIMIEIIES. ..ottt ettt ettt e e e e e ettt ae e e e e e e ettt aaas e e e e e e et aanasaa e e e s eeeetanannnnaseseeeenenns 3
DT CEIVES. . e e e e e et eenan 3
FEITICIUA . ettt e e e e ettt e e e e e e et e e e e e ettt e e e baebanaaaaas 3
POTtabIlity NOTE...cciiieeieeee e 4
FETEQUITE. ettt e eeeeiiiiiiiee e e e e eee ettt eeeeeeeeeeettaaaaa e eeeeeaeeessssassnsssseeesssssssnssnnsseesssnnseessnnssessnnnseennnnns 4
a1 =T T UURRPPIIN 4
|25 € 101 o) (T 5
|G AT) (e J P PPPPTPPR 5
LAEIIEI OIS ..ttt ettt ettt ettt ettt e e ettt e e s sttt e e e s s bt e e e e ssaabbeeeessssbeteaaaeeaeasesessnnnnnsnnnnes 6
L000) 1 1) 7= 1 1 113 PPPPPPPPRP 6
CRaracter COMSTATIES. .eeeuuuieirreeeeeeeeeeriiiiette ettt e eeeseteeteeeeeeesessaaanebeteeeeeessasannssaaeeeeeeessssnnnreeaeeees 6
INTEEET COMSTATIES cuvuuuuieereteteiiiiiiiaeeeeeeeeettrtnaeaaeeseeeeesessnsnssaseseeeesssssnsnsssssseesssnssmsnssnsessesesssnnnnns 6
00 101 0] 1 J S PPPPPPPPR 7
REAL COMSEANLES. .. uiiiiiiiieeeeeeeeeeiet et e e e ettt e e e e e e sttt e e e e eeessaabebeeeeeeessesannanannaaaeeeeeeeas 7
00 101 0] 1 J S PPPPPPPPR 7
STTINE COMSTATIES. .. uueeereieeiiiiiiiiieeeeeeeeeettuunieaaeeeeeeeetrraneaasaaeseeeeessssssssssssssesessssssnnssessnnssessssnseesnnnns 7
ESCAPE SEQUETICES. ...uuiiiiiiieiiiiiiee ettt e ettt e e e ttaae e e eetaa e s eetanaeseeaaaaeseeeaasnssasnseannnsasnnsennnns 8
L0 101 0] T J PP PPPPPPR 8
PUNCTUATOTS. ettt e e s e e e et et e e s e e e et e tanasaa e e e s eeeeeannnnnans 8
BIaACKETS. ceeeiieiieeiiieeeee ettt ettt e et e e ettt e e e e e e e bbbt e e e e e e e e e e e e e e e e e eeeas 9
PaATENENESES. ...ttt e e e e e et e e e e e e e e bbbt et e e e e e e e e e e eeeeeeens 9
BrACES. ..ttt e ettt e e e ettt e b s et b s e etan e eeanas 9
L0003 101 1 0T DTSR PP PR PPPRR 10
SEIMICOLOM. 1ttt ettt et e e e ettt e e e e e e s e bt a e e e e e e e e e ettt e enaaaaes 10
[010] (o] s FOU O OO 10
EQUAL ST@N..iiiiiiiiieeicecceeee 10
D L2 R) 0 < S OO P PP PP PP PPRTPPION 11
(602 U OO OTTUSPUPPPT TSRO PPRPPPP 11
IThEe ettt et e aaeeaeeaaeaaaaaaeaeaaaeaaaeeeeeeatnaaaeeeeeeaenas 11
1421 FO U PP UUR PP PPPPPPPPPN 11
SETITIE v eeeeeeeeetttrtuieeeeeeeeeeetaaesa e eeeeeeeeaassssassaeseeeeeasssssassnseseeesesessnnnnnaseeanssnneersnneeersnnneernnnnns 11
Implementation details.......cceeeeeeeeeeeeieeeereeceeeeee e 12
TYPE COMVETSIONS. ..eeeetiiiriiiiieeeeeeeettttiuaieaeeeeeeeettarasanaaeseeeeeessssnsnssasseseeessssmmssnsssseseeesssssssnssessnns 12
Y DB CAST. ettt ettt ettt e ettt e ettt e e e e et e e e e et e e ettt e e e aaa s e e tan e e e aaaaeeeaanneaaaneannns 13
(@]0) [Tot 74 01T PP PSRRPNt 13
Object hierarchy of @ LiDrary:.......ccccuuiiiiiiiiiiecciieeee e e e e e e e e e e aanenes 14
Object hierarchy of @ SCheMAIC:.......ccciiiiiieiciiiieiee e e e e e e e e e eaaaaeeeees 15
Change note from version 5 to version 6, compatibility........cccccccceeeeeiiiiiiiiiiiiiiiiiiinnnn. 15
Object hierarchy of @ BoArd:.........cccciieeeiiiiiiiiiiee et e e e e e e e e e e e e 16
UL ARG . ettt ettt ettt et e e e e ettt e e e e e e s e ettt e e e e e e e e e s e e e e e e e eeeeeeeeeees 16
L000) 1 51 7 1 1L 3PP PP PP PP PP PPPPPPPPPPRRN 16
0 16
EXAMIPIE. e 17

UL AREA. ... es s sa s s seseenseen e 17

EXAIMIPLE. ..ttt ettt e et e e et e e e nnee e e e eanee 17

UL ATTRIBUTE. ...ccittitiiiitiiiiiiiiititttttetteeteeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeeeteeeeeeeeeeeeassnnnnsseeeemsnnnnaeseeeees 17
L0} 3 11 71 | £ RPNt 17
A\ o) (PRt 18
15 211010 (TSSO PP OPPPPPPT 18
UL BOARD ...ttt ettt et et e et e ettt e et e e e e e e e e e e e e e e e e ettt e e e e e eeaaaas 18
L0} 3 11 71 | £ J SRRt 19
A\ o) (PRt 19
|5 21101 0) (TSSO PPPPPPPPT 19
UL BU S e aeeaeas 20
L0} 3 11 71 | £ RPNt 20
|5 21101 0] (TSSO PPPPPPPTI 20
UL CIRCLE. ..ttt ettt e et e e et e e et e e e e e e e e e eeeeeeeeeeeeeeaaaaeeeeeeeaenas 20
|5 21101 0) (TSSO PPPPPPPPT 20
UL CLASS...cc ettt ettt ettt ettt ettt ee et e tet ettt tes et ae et essas s ses s e s s as s st sssssssssssssesneanssnnnennnnaenes 20
A\ (o) (RPNt 21
|5 21101 0) (TSSO PP PPPPPT 21
UL CONTACT ... ettt ettt et e et e et e e e et e et e e e e eeeeeeeeeeeeaaeeeeeeaana e eeeeeeennas 21
L0} 3 11 71 | £ UURRPRNt 21
A\ (0] (RPNt 21
|5 €211 01 0) (TSSOSO PPPPPPR 22
UL CONTACTREFccittitiiiiiiititiititietttettteettetteettteetteteeeeteeeteaetae et e e eaeeeteetteettteteeeeeaeeeaaaaeesnnaanes 22
L0} 3 11 71 | £ RPNt 22
A\ o) (RPNt 22
|5 21101 0) (TSSO PP PP PP PPPPPPPR 22
UL DEVICE... .o eeeeaaaaaas 23
L0} 3 11 71 | £ USRIt 23
A\ o) (SRRt 23
EXAIMIPLES....ceiiniiiiieeietee ettt et et e e st e e e e e e e e e nnnees 24
UL DEVICESET ... oo e aeeeaas 24
L0} 3 11 71 | £ RPNt 25
A\ (o) (USRIt 25
|5 21101 0) (TSSOSO PPPPPPPR 25
UL DIMENSION. ...ttt e e s e e e eensnaeeeeeeeees 25
(@00) 515 21 01 £-JHNN O OO UPO RPN 26
|\ (o) TR RTPT ORI 26
|5 €211 01 0) (TSSOSO PPPPPPR 26
UL ELEMENTt e e e e e e e e e et e e e e eeeeeas 26
L0} 3 11 71 | £ RPNt 27
L0 T 27
EXAIMIPLES....ceiiniiiiieeietee ettt et et e e st e e e e e e e e e nnnees 27
UL FRAME . ..ottt ettt ettt tee et e et tee et e e et ettt ettt e e et e et e eeeassnanaseeeeessnnnnaeseenees 28
L0} 3 11 71 | £ USRIt 28
A\ 0] (RPNt 28
|5 €211 01 0) (TSSOSO PPPPPPR 28
UL GATE. ... et e aeeaeeeans 29
L0} 3 11 71 | £ RPNt 29
A\ (0] (PRt 29
|5 €211 01 0) (TSSOSO PPPPPPR 29

UL GRID....eoeeeeeeeeee e e e s s see e s s ees s ees e s s e s seeseaeseeseeseenesean 29

0] LT PROO R PPPPPINN 30
|5 €211 01 0) (TSSOSO PPPPPPR 30
UL HOLE.....etiiiiiitee ettt ettt ettt e s ettt e e e et e e e e e e e e s e mbe e e e e e nr e e e e eaamnneeeeeeeeeeeanns 30
0] (TP PRRR R PPPPPIEN 30
|05 211010 (TSSO PPPPPPPPT 30
UL INSTANCGE.....ceeieiiteeeeettte ettt e ettt e e ettt e e e ettt e e s e bsee e e e e nbateesesamsreaeeeeeeeeeeeessessnnnnnnnes 31
@00 0F] 21 01 1 J U UTUPPPTPRRRRRPPRt 31
0] (TSP PRRS R PPPPPIRN 31
15 €211 010 (TSSO PP PPPPPPPPT 32
UL JUNCTTION......ctttiiiiiittee ettt ettt ettt e e ettt e e s s te e e s et e e s eeseae e e s e nreeeeeemnaeeesesnnnneeeas 32
|5 21101 0] (TSSO PPPPPPPTI 32
UL LABEL. ...ttt ettt ettt e s ettt e e s et e e et e e e s e mree e e e e nraeeeeeeeeeenas 32
0] (T PP PPPPPINN 33
|5 €211 01 0) (TSSO PP PPPPPPPR 33
UL LAYER. ..ottt ettt ettt e e et e s sttt e e e e et e e e eeambee e e s e nbr e e e e eemnaeeeseennnneeeas 33
@00 0E] 21 1 & J U OUTUPPPPPRRRRRPPRt 33
EXAIMIPLE. ..ttt ettt e et e e e na e e s e e e e eanes 34
UL LIBRARY ...ttt ettt ettt ettt e e sttt e e et e e e e easb et e e s eanbeeeeeennreeeeeeeeeeeeeeans 35
@00 0E] 21 1L 1 J U OUUPPPPTPRRRRRPRt 35
0] (TSR PR PPPPPINN 35
|5 21101 0) (TSSO PP PPPPPPPPR 35
UL NET .ttt ettt ettt ettt e e ettt e ettt et e e e b bt e e e eanae e e e eeamanabee et eeeeeeeeeessnsnnnnnnnns 36
L000) 1 1 7 1 1 L &3P P PP PPPPPPPPPPPPPREN 36
0 36
|5 €211 01 0) (TSSOSO PPPPPPR 36
UL PACKAGE...... ettt ettt e st e e st e e s e seee e e e e enreeeeeeeeeeenas 37
@00 0E] 21 1 & J U UTUPPPPPRRRRRPRt 37
0 PP PPN 37
|5 €211 01 0) (TSSOSO PPPPPPR 38
UL PAD ...ttt ettt e e ettt e e e ettt e e st e e e e et e e e e e bt e e e e e rr et e e e e nreeeeeeeas 38
@00 0E] 21 1 & J U OUTUPPPPPRRRRRPRt 38
0] (T PP PPPPPINN 39
|05 21101 0) (TSSOSO PPPPPPTI 39
UL PART ...ttt ettt ettt e ettt e e e ettt e s ettt e e s et e e e e b et e e s eansaeeeeeansrneeeeeeeeens 40
@00 0E] 21 1 & J PO UTPPPPPPRRRRRPRt 40
0 PP PPPPPR PN 40
EXAIMIPL. .ttt ettt e e e e e et e e s nneeeeeennes 40
UL PIN. ittt ettt ettt e e ettt e e e bbbt e e e e te e e e s msbteeeeamssanaeeeeeeeeeeeeeesssannnnnnnes 41
@00 0F] 21 01 1 J U UTUPPPTPRRRRRPPRt 41
0 (PP PO PPPPPRPIN 42
EXAIMIPLE. ..ttt et e e et e e e et e e s nnee e e e ennes 42
UL PINREF ...ttt ettt et e ettt e s ettt e e st e e e e et e e e eemrnneeeeeeeeeeeeaeanns 43
EXAIMIPLE. ..ttt et e e et e e e et e e s nnee e e e ennes 43
UL POLYGON...ceiiiititteeeiitiee ettt ettt e e ettt e e s et e e s e e msee e e e e sastt e e s eeamseeeeeemreeeeeeeeeeeeeesseeannn 43
@00 0E] 21 1 1 J U OUTUPPPPPRRRRRPRt 43
0 PP PPPPPR PN 44
POLYGON WIAth...cciiiiiiiiiie et 44
Partial POLYZOMS. cccuueiiiiieiitee ettt e e e e e e 44

EXAIMIPLE. ..ttt et e e et e e e et e e s nnee e e e ennes 45

UL RECTANGLE.....cuttiiiiiiiiiiiiiiiiiiititttteette e s s e s saasa e s e eesasaaaasseeeesnns 45

EXAIMIPL. ..ttt et e s e e e et e e s nneeeeeennes 46
UL SCHEMATTC.... .ttt e ettt e e e e e et eteeee e e e s e e eeeana e e eennaseennnaseennnannnne 46
L0} 3 11 71 | £ J PRt 46
A\ o) (PRt 46
EXAIMIPL. .ttt ettt e e e e e et e e s nneeeeeennes 47
UL SEGMENT ...ttt ettt e e e e e ettt e e e s e e et eenan e e e e e eeeeeannnnnaeeseeennns 47
L0 T 47
EXAIMIPLE. ..ttt ettt e et e e e e ana e e s e nneeeeeennes 47
UL SHEET ...ttt e e ettt e e e e e e et tnans e e e e e eeetannna e e eenna s eennaaeenes 48
EXAIMIPL. .ttt ettt e e e e e et e e s nneeeeeennes 48
UL SIGNAL. ettt e ettt e e e e e e ettt ee e e e e e eeeeetenanna e e e s eeeeeenennnnaeseenns 48
L0} 3 11 71 | £ RPNt 49
|5 21101 0) (TSSO PPPPPPPPT 49
UL_SMD ...ttt e e e e s seesaseeeeseeseeeeseseeseeeeeesaeeeseseeseseseesseees 49
L0} 3 11 71 | £ RPNt 49
L0 TS E 49
15 21101 0) (TSSOSO PPPPPPPR 50
UL_SYMBOLe.....eoeeeeeeeeeeeeeeee s se e e e es e eee e s eseeees e eeseeeeseeseseseeeeeseseeseseeseseeeeeeeesesaenes 50
L0} 3 11 71 | £ USRIt 51
A\ 0] (RPNt 51
|5 21101 0) (TSSO PP PPPPPPPPR 51
UL _TEXT ..ot eee e e e e e eee s e e e s e s eeeae s eeseeeeseeseeeeeaseesesesassaseeseseeseeeeseseaseseesesees 51
L0} 3 11 71 | £ J RPNt 51
A\ (0] (RPNt 52
|5 €211 01 0) (TSSOSO PPPPPPR 52
UL VARIANTDEFottt ettt e et s e e eaaa s e eaa e eaas 52
|5 21101 0) (TSSO PP PPPPPPPPPPPT 52
UL VARIANT ..ottt e e ettt e e e e e ea s eaa s eaaesenaeenns 52
|5 €211 01 0) (TSSOSO PPPPPPR 52
UL VIA ettt s et ees e eee e e e e eeeaeees s ees e e s esaeese e eeseeeeseeeseesaeeenaees 53
L0} 3 11 71 | £ USRIt 53
A\ o) (RPNt 53
EXAIMIPL. .ttt ettt e e e e e et e e s nneeeeeennes 54
UL WIRE... ittt s e et s et taae s e e ebba e s e taa e s aaaseaneeenneenns 54
L0} 3 11 71 | £ RPNt 54
WWITE SEYL.cceiiieiiiieeeteee ettt ettt e e e e s e sttt e e e e e e s s s ababaeeeeeeeeesnaaanannnnns 54
F N I T\ A1 S ()74 PN 54
|5 €211 01 0) (TSSOSO PPPPPPR 55
| LS] 531 (o) s L= RN 55
(@0e) T =1 0 1o B LT 510V (o) TSRS 56
AV N o t=10) (S DS il 0¥ 1 (o) o - J 56
05 €211 010 (<1 SO PP PPPPPPPPPPPPPPPPPPPIRE 56
| oTenTo) o N D LT 410} 1 (o) o TR 57
The special function MaiN().....cvveeeieriiieeieeiiiiee et e e erree e eerire e e e esraeeeseeeessssaennenneeees 57
EXAIMIPLE. ..ttt et e e et e e e et e e s nnee e e e ennes 57
(@] 57S) = 10 4 TP PP RPN PPPUPPPRRRPPRt 58
BItWISE OPETALOTS. ...ttt e e e e eeeensnaeeeeeeees 58
LOZICAL OPIATOTS. ceeeeiiiieeuiiiiiiiteeeeeeeeeeiitttteeeeeeesseeiaatteteeeeeeessssnssttaaaeeeessssssnssntaaeaeesssssannnnes 59

COMPATISOTN OPEIATOTS...ceeiiiiiiieiieiiieieeeeieeeeeeee ettt e e e ee e et e e et eeeeeeeeeeeeeeeeeeeteeeaeeeeeeeeeeeeeeeeeeeeeeeenes 59

EVAlUALION OPEIAOTS. ..cuuuiiieriiieeeeeeeeiiiittteeeeeeeeesiiitrteteeeeesesssaaataeeeeeesesssssanrsrtaaaeeseeseeeeeeeeees 59

ATTERMNETIC OPETALOTS. . .uuvviiiieetiieeiiiiiitteeee et e e esieeit et eeeeeeessstrtraeeeeesssssssassraeaeeeeeseeeeeeeeeeeseseees 60
R0 g 10T 0] 015 2 10 ¢ JH SRRSO PPPPPPPRRRPPPPPPRt 60
EoXDTESSIONIS. ¢ttt e e e e e eennaas 61
ATTtRMELIC EXPIESSION. .. uvuvtiieeieeieeiiiiitteee et e e ettt ee e e e e eesribtteeeeeeeessssnnaaaeeaeeeeessssnnsnnnnaaas 61
05 €211 010 (=TSO OO UPPPPPPPPPPPPPPPPPPRE 61
ASSINIMENT EXPIESSION. ...t e e e 61
05 €211 010 (=TSO PPPPPPPPPPPPPPPPPPPPIRE 61
STTINEG EXPISSION. ...ttt e e e e e e e e 61
05 211010 (<1 SO PP PPPPPPPPPPPPPPPPPPPRE 61
COMIMA EXPIOSSION. ... e e e e e e e e banneeeeeeee 62
|5 21101 0] (TSSO PPPPPPPTI 62
ConditioNal EXPIESSION....ctitiiiiiiriiiiiiititeeeeeeeeeriiiittee e e e e e e ettt e eeeeeessssiarbttaeeeeeesssasssseseeeeens 62
|5 21101 0) (TSSO PPPPPPPPT 62
FUNCHON Calliciiiiiiiiiiiiiiiiieee ettt ettt e e e e e s s s e e e e e e e e e eeeaaas 62
|5 €211 01 0) (TSSOSO PPPPPPR 62
STATEITIEIIES. ...t e e e e e e e e e 62
COMPOUNA SEALEIMENE. ...uuuiiiiiiiieeeeeeeereiiiiietteeeeeeeessreeareeeeeeeesssssarrateeeeeeesssssssnsrrrtaeeeeesseseeeeees 63
EXPIeSSION StATEIMIETIIT. . uuuieeieeeeeeeeeeeeeeee e e e e e e et eanae e e e e eeeeen 63
CONLIOL STALEIMIEIITS. . .uuvvrritieeeeeieeeiiiieteeee et e e eeeeibateeeeeeeeeesssatrreaeeeeeesessssssssttaaeeeeesssassseeeeeeees 63
DIEAK. ¢ttt e e e e e s sttt e e e e e e e sttt aeeeeee e e e s abaaaeeaae 63
COTIEITIUIC. ¢eetteeeteeteeeteeeeeeeteeeteeeeeeeeeeeeee et ee et eeteeeeeteeees et e s et s s e s e e s s ss s s s s s s s st sssssssssssesssnnssmnsennnnanes 64
(o Lo T 174 11 [T U ST PTUURPPPPPPPPPPPPP 64
EXAIMIPLE. ..ttt ettt e et e e et e e e nnee e e e eanee 64
(o) OO PPPPPPPPPP 64
|5 €211 01 0) (TSSOSO PPPPPPR 65
11] TP PPPPPPPRRRN 65
1S 11 5 o TS 65
SWEECR. ettt ettt e e e e e e ettt et e e e e e e e ettt e e e et b et aaananaaa s 66
|5 €211 01 0) (TSSOSO PPPPPPR 66
WHLE. ettt e ettt et e e e e e e sttt e e e e e e e s e s asaaaeeeaaeeaaas 67
EXAIMIPLE. ..ttt ettt e et e e e e ana e e s e nneeeeeennes 67
BUILEITIS. ¢ e teeee ettt ettt e e e e e e ettt e e e e e e s ettt e e e e e e e eeeeas 67
BUIIEIN COMSEANES. c.eeeeiiiiiiiieeeeeeeeeeittt et e e e e e ettt et e e e s sttt e e e e e e e s s s s s seseeeeeeeeaaeaaens 67
BUILtIN VATIADIES.eeeiiiiieiiieeeee et e e e e ettt e e e e e e s s s e e e e eeee 68
BUItIN FUNCHOMS. ..eettiiiiiiieeet ettt e e e e s e sttt e e e e e e e e e eeeas 68
Character FUNCHONS. ...utiiiiiiiieiiiitteeee ettt e e e e e e sttt e e e e e e e s ssaabbaaaeeeeeseeeas 71
§T-T0 () F USROS RPPRPPRRt 72
CRharacCter CAtEZOTIOS. . eeieueirieieeiiieee ettt e ettt e s ettt e e e iree e e e earte e e s seabeteeeeenneeeeseennnnnneaneee 72
EXAIMIPL. ..ttt ettt e s et e e e et e e s nnee e e e eanes 72
1o T (O T 72
File Handling FUNCIONS. ...cccoouuiiiiiiiiiee ettt e e s 73
JR1 (ST e L0) 4 (@ TR PR 73
EXAIMIPLE. ..ttt et e e et e e e et e e s nnee e e e ennes 74
11 134 (o] 01 () O UP 74
INOte fOr WINAOWS USETS.....ceeutieeuiieeeitieeeiieeeitte ettt e et eeeeitteeeateeesabeeeeabebeeeeeseaaseeeeeeeaaans 74
EXAIMIPL. ..ttt ettt e s et e e e et e e s nnee e e e eanes 74
Filename FUNCHIONS.oeeiiiiiiieeeee ettt ettt e e e e e e sttt e e e e e e s e s s s asbabaaeeeeessssannnnnes 75
EXAIMIPLE. ..ttt et e e et e e e et e e s nnee e e e ennes 75

FIledata FUINCTIONS . . e ettt ettt e e e e e e e e et eeenaenns 75

EXAIMIPLE. ..ttt ettt e et e e et e e e nnee e e e eanee 75

File INPUL FUNCHOMS.eetiiiiiiieeeeiieee ettt ettt e et e e st e e e e eanre e e s emneeeeeeeeas 76
F51 (V<L U O T RPN 76
EXAIMIPLE. ..ttt et e e et e e et e e s e nnee e e e ennes 76
Mathematical FUNCHIOMNS.ceeeeiiiiiiiiieeeeieeeiieteeee ettt e e e e e e st s e e e e e e e e e eeeas 76
EITOT MESSAZES. . uuniiiiiiiiiiiiiiiiii ittt e e e e e e e e s e e aa e 77
Absolute, Maximum and Minimum FUNCHONS.cevvviviiiiieeeeeeeeeeeiiiceeeeeeeeeeeeevrneeeesenaanes 77
EXAIMIPL. ..ttt ettt e s et e e e et e e s nnee e e e eanes 78
ROUNAING FUNCHIOMS.vteeiiiiiieeeeiiiee ettt ettt e et e e e et e e s et e e e s enreeeeeeenreeeeeeeas 78
EXAIMIPLE. ..ttt et e e et e e et e e s nnee e e e eanes 78
TrigONOMEtriC FUNCHOMS. coiiiiiiiiiiiiiiieeeieeeiiee ettt et e e e e e e e e e eneeaees 78
@00 0E] 21 1 & J PO UTUPPPPPPRRRRPRt 79
0 PP PPPPPR PN 79
|5 21101 0) (TSSO PPPPPPPPT 79
EXponential FUNCHIOMS.uueeiiiiieiiieeiiittteeee ettt e e e e e s e s e e e e e e e 79
|5 €211 01 0) (TSSOSO PPPPPPR 79
MiSCellaneous FUNCLIONS.uuuitiietiiiieiiiiiteeee ettt e e e e s et e e e e e e s ssiirrareeeeeeeeeeeeeeeens 79
CoNfigUIation PaTamELeIS. .. .uuieeieriurieeeeeiireeeeeriteeeeerirteeeessrreeessssreeesssssseeesssssnseeeesssssssssnnnes 80
|5 21101 0) (TSSO PP PPPPPPPR 81
COUTETY () +tvvvvvvtrunnnnnnnenereeeeeeeeeeeeeeaaeeeeeeaeeeeeeeeeeeaeeeaeeaeeeaeeee e et eeeaeeaee et e e eeeeeeeeeessnaa s eeeeennananneeeeeees 81
|5 €211 01 0) (TSSOSO PPPPPPR 81
Lo« L () F 81
@00 0E] 21 1 & J U OUTUPPPPPRRRRRPRt 82
16 | E Lea o (AU N T) TS PPPPRPRRRN 82
JANZUAZE () eeeeeeeeeeeeiiiiittee et ettt e e e e e ettt e e e e e s ettt e e e e e e e e et ta e e e e e e e e s e e naaaeeeeaeeeeas 82
|5 €211 01 0) (TSSOSO PPPPPPR 83
LOOKUP () ettt ettt ettt e e e e e ettt et e e e e e e s sttt aeeeeeeeessaansssbtaaeeeeeseensnnrnne 83
EXAIMIPLE. ..ttt ettt e e e e et e e s e nnee e e e ennes 84
0L 1 (<] T () PO PP PUPPPPRRRRRRPIRt 85
@00 0E] 21 1 1 J U OUTUPPPPPRRRRRPRt 85
103 4 X () TN 85
SOTtING @ SINELE ATTAY...eeeeeeiiieeiiiiiiiiiteeteeeeeeteeeee e et e e e esaateteeeeeeessssasabeeaeeaeebeaaaaaaaanes 85
SOTtING A SET Of AITAYS....uuvieeeieiiiieeieriiieeeeeeiieeeeeriteeeesstaeeeessarteeesssssssnnnsssseaeeeeaeaeessesnnns 86
= L U] () T 86
SYSEEITL() ceeeeeeteeeeeteeeteeeeteteteeeteeeteeteeeeeeeeteeeteeeeeeeee ettt ee e ettt ettt eete ettt eettteet ettt ettetteteeteeeeeeeeeeeeeeeeeesnns 87
INPUL/OULPUL TOAITECTION.vveeeieiiiieeeeiitee ettt e ettt e et e e st e e e e e e e s e eeeeeeeeees 87
Background @XECULION.ueiiiiiiiiiiiiiiieee ettt e e e e e eeree e e e e e 87
15 21101 0) (TSSO PPPPPPPT 88
Ut CONVETSIONIS. ¢eeeeiiiitiiiiiieiititietttttteeetetteeeteteeteeeeeeeteeeeeeeeteeeeeeeeeeeeeeeeeeetmsmmnnnsseeeemrsnnaaeeeeeees 88
|5 €211 01 0) (TSSOSO PPPPPPR 89
(S 770) 4 Q) 2T N et o] s 3OO PPPPPPPPPPN 89
ya i<l o 40} o () FET T 89
|05 211010 (TSSO PPPPPPPPT 89
TEEEERE() e eeeeeeieeiieeiie ittt ettt et ettt et e e e et e aaaaaeeeaeeeeetaaaaa e eeeeabaaaeeeaeees 90
|5 €211 01 0) (TSSOSO PPPPPPR 90
(S 8 0 1] A () PR PP PP PTPPPPPPPPPRRR 91
|5 €211 01 0) (TSSOSO PPPPPPR 91
Printing FUNCHIOMS. ceevutttttiiiiiiiiiiiiitiitititittiteteeeteeette ettt eeeeteeeteeeeeeeteeeee et e e e e aeaaaaeseeeeessnnaaeeeeeees 92
19051016) F USRS PUPRRR 92

FOITNAT STTITIE . . e e e e e e e eaaas 92

FOTINAT SPECITIETS. . veeiiieiiiiereeeiiiee e ettt ee ettt e e et e e e e ettt e e s s abbeeesssabaeeeeesessssssnnnnssnnnnnaeens 92

CONVETSION tYPE ChATACTETS. . .uuuveviiiieeeeeeeeeiiiitteeee et e eertrtt e e e e e e e s st sss e e e e e e eeeeeaaeas 93
Flag CRaraCtersS. . .uiiiiiii ettt ettt e e e e e e et e e e e e e e e e eeeeeeeeeeeebaaaaaaaas 93
WiALH SPECITIETS. .eeeiuiiiiieieeiiteee ettt e e et e e e s s ta e e e e ssbbeeeessssneaeeseesssnsnnnes 93
PreCISION SPECIIETS. . .uviiiieeiiiieeieiiiiee ettt e et e e ettt eeeate e e e s areeeeessnbtaeeseeessesssssnnnssnnes 94
Default PreCiSion VAIUES.ccuviiieiriiiieeeeiiteeeeeiitee e ettt e e s e siaeeeeesatreeeesssesssssnnnsssnsnneeees 94
How precision specification (.n) affects CONVErSiON.........cccvieiirriiieeeiriiiieeeeeeeeeeeeeiens 94
Binary zero Characters.......ccoiiiiiiiiii i 94
|5 21101 0) (TSSO PPPPPPPPT 95
3905 1016 1 () FS ST UPUPPPPR SRR 95
FOITNAT STIITIE . .. e e e e e e eaaas 95
Binary zero Characters.......cciiiiiiiiiii i 95
|5 €211 01 0) (TSSOSO PPPPPPR 95
STTINZ FUNCEIOMIS. ¢ e e e et b e e e e e e eeennnees 95
8 (e 01 o (T 96
|5 €211 01 0) (TSSOSO PPPPPPR 96
SEIJOIMI() 1ot eeeeerrruuiiieeeeeeeeeteeuut i aeeeeeeeeeetreaaaaaaeeeeeaesssssssnssssseesessssssssssnnseseeeessssnsessssnnesesssnssessnnnns 96
15 21101 0) (TSSOSO PPPPPPPR 97
] 8 4 (3 01 () TR 97
|05 211010 (TSSO PPPPPPPPT 97
8 40702 o TP 97
|5 21101 0) (TSSO PP PPPPPPPPR 98
8 5 4 01 () TP 98
|05 €211 010 (TSSO PPPPPPPT 98
18 0 4510 o (O F T 98
|5 €211 01 0) (TSSOSO PPPPPPR 99
SEESPLIT() +vveeeeeteeereietiteee et et e e ettt et e e e e e ettt e e e e e e e e ssaatbbeteeeeeeeesaaasbbteeaeeeeeeesanarbttaaaeeeaeeeeens 99
|5 21101 0) (TSSO PP PPPPPPPPPPPT 99
18 511 4 () FT N 99
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 100
8 -1 015 () TN 100
|05 21101 0) (TSSO OO P PRSP PPPPPPPPPO 100
0 4 10 Y« L () FUT RPN 100
|05 21101 0) (TSSO PSPPSR PPPPPPPPPO 101
0 4 10) () TN 101
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 101
SEIUPT () +vvvvvvverennnnnnnnnnnneueeeueeeeeeaaeeeeeaeeeeaeaaeeeaeaaaeaeaeeeeeeeeaaeeaaeeeeeeseaeeaeeeseeeeeeaeeaaeaeesbeansnnaeeeeanees 101
|05 21101 0) (TSSO PO PTT R PPPPPPPPPO 101
18 0.1 o) FETT T 102
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 102
TIME FUNCHIOMS. c.. ittt ettt e e e e e s e nere et e e e e e eeeeeeeeeeannnnnes 102
15100 1<] () TR 103
|5 21101 0) (TSSO PO PSP P PR PPPPPPPPPO 103
18000130 051 () F TN 103
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 103
TIME CONMVETSIONS. ¢etitiiiiiiiiiiiiitteett ettt et e e e e e et e e e e e e e enrareeteeeeeeeeaeeeeeeeeeeeeeeseenennes 103
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 105
ODJECE FUNCHIONS. ceetteieiiiiiiiieeee et e ettt e e e e e ettt et e e e e e e s sttt teeeeeeesesssassbrtaeeeeeeseeeaeeeees 105
1324 10111 o1 () F OO PO PPPPPPPPN 105

|05 21101 0) (TSSO PO P TR PPPPPPPPPO 105

ITEETOUP () +vvvvvreerrnnnnnnnnnnneetueeeeeeeeeeeeeeeeeeaeeeeaeaeaeaaeaaeeeaeaaaseasaaaesesaasesseassssnsssesssssssssssnnaaneeeeensnnns 106

Identifying the conteXt MENU ODJECE ...cccuviiiiieiiiiieieeiieee et e e e e s 106
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 106
SEEGTOUP () eeeeerreenunrrrttteeeee ettt e et e e et ettt e e e s e r b et et e e e e e s nnrb et e e eeeeeesnnrrraaeeeeeeeeeeas 107
EXAIMIPL. ..ttt e et e s e e e e nneeeeeas 107
LS 2=V g =10 L& () F TR 107
|05 21101 0) (TSSO PO PPPPPPPPPO 108
A7z 1 =1 L (TN 108
|05 21101 0) (TSSO OO P PRSP PPPPPPPPPO 108
XIVIL FUTICEIOTIS ¢ettttttttteteeteuneeettetteeeteeeseetaeeeseaeseeasaeeaeeaeseesaeeaeassssassssssaasssssseessssssssnnnnnnsnnaanneas 108
xmlattribute(), XMIAttrIDULES () .euuuniiieiiiieiiee et e e e e e e eaae e aaas 108
|05 21101 0) (TSSO PO PPPPPPPPPO 109
xmlelement(), XMIEIEMENES () .uuuuiiiiiiiiiiiiiiiieeeeiee e eee e e e e et eeeesaeeeeesraaeeeraans 109
|05 21101 0) (TSSO OO P PRSP PPPPPPPPPO 110
KINEAZS () e eveeeeeeeeeeriiitttteee e et e ettt e et e e e s sttt et e e eeeeesesaaabbtteeeeeesssasaasbbteeeeeeeeeeeeeeeeeeeeeeeenes 110
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 111
b4 001 LTSy <1 () FUTT TN 111
|05 21101 0) (TSSO PSPPI PPPPPPPPPO 112
BUItIN StAtEIMENES. c.eieieiiiiiiiiieee et ettt e e ettt e e e e e e s ettt e e e e e e s s s s sssseeeeeeeeeas 112
|5 YoF: U c L TP 113
Check if there is @ DOATd.......c.uviiiiieiiiiieiciiee et e e e e are e e e e 113
Accessing board from a SCheMALIC.......c.uviiiiriiiiieiieiiee e 113
|05 21101 0) (TSSO OO P PRSP PPPPPPPPPO 113
L6 AT TSR L1 o (TR 113
Check if there iS @ dEVICE SEL......ciiiieiiiieiiriiiieeiiriiee et e ettt e e esrre e e e e e e e e e e ssssannsannes 114
EXAIMIPL. ..ttt e e et e s e e e e nneeeeeas 114
103 =1 174 (PP 114
Check if there is @ IIDIary.......cceieeciiiiiieiiiiieeeee e 115
|5 21101 0) (TSSO PO PSP P PR PPPPPPPPPO 115
L]0 011 L () U PPPPRRRR 115
FlE IMIOAES....etteeeeieeeieeteeeee ettt ettt e e e e e e sttt e e e e e e s s e ssbbbbeeeeeeeeaeeeeeeaeaes 115
Nested OULPUL STATEIMENES. ..eeeeiiireeiiiiriteeeeeeeeereiirtreeeeeeeeeeasatrrrteeeeeessssssrsssreeeeeeeeeeesessenes 116
|05 21101 0) (TSSO PO PTT P PPPPPPPPPO 116
PACKAZE () uuveereeteeeteeeeeiittt et et e e e e ettt e e e e e e es ettt e e e e eeeessaaatbbataeeeeeeeeasanbbtaaaaeeeeeeenaannanes 116
Check if there is @ PACKAZE.......uviiiiiiiiiiiieiiiee et ere e e s s e e e 116
EXAIMIPL. ..ttt et e et e s e e e e nnaeeeeas 117
SCREIMIATIC() tuuntiieeeiiie et et ettt e et e et e et e eeaaeeeaaeetanneesanseesansesnansssanneesnnnsesanseesnnssnnees 117
Check if there is @ SCheMAtIC.......uviiiiiiiiiieietee et e e 117
Accessing schematic from a board..........ccoooeiiiiiiiiiiiinii e 117
Access the CUITENT SHEET......cciiiiiiiiiiiiiieeee et 118
|05 21101 0) (TSRO PSPPSR PPPPPPPO 118
] TS« () RPN 118
Check if there iS @ SHEEL......ciiieiiiiiiiiiiiee e e e e eee s 118
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 118
5374 0010701 [FOU TP PPPPPPPN 119
Check if there is @ SYMDOL.......ccciiiiiiciiiiiiiieee e e e e e e e e e e e 119
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 119
1D E=1 (o} o4 3OO U UPPPTORRURPRPPPPPRPPRE 119
Predefined Dialogs......ccvviiiieiiiieeieeiieee ettt e ettt e e et e e e s stte e e e stre e e s s sabreeeesnbreeeeennnraeeas 120

(a1 o3 DA e 0) o174 () F PR UUPPTORRRRPRPPPPPRPPRE 120

|05 21101 0) (TSSO PSPPI PPPPPPPPPO 120

dlgFileOpen(), dIgFIleSave().....cuueeueiiiiiieeiiieeiitteeee ettt e e e e e e e e e e e e e e eeeas 120
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 121
AIGIMESSAZEBOX () -uvvvvreeeeeeeerriiiiiiiiteeeeteesrriitttteeeeeeeesaairbtteeeeeeeesasssnnrtaaaeeeeesssssssasssasssssseeeeens 121
|05 21101 0) (TSSO PO PP PPPPPPPPPO 122
DiAAlOZ ODJECES. ..ettiietiiieeiiiiiteeee et e ettt e e e e e e e ettt et e e e eeesssaabbbteeeeeeesssssnnssaeaaeeeeessssnnnnnes 122
a1 oL @1 | F TP PPPPPPPPPRPN 123
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 123
AIGCRECKBOX. .. ettttteiiiieeiiettt ettt e ettt e e e e e s s s bbbt e e e e e e eesesassbbaaaeeeeeseeeeeeeeaes 123
EXAIMIPL. ..ttt e et e s e e e e nneeeeeas 124
AIGCOMDOBOX.eetiieieiiieee ettt ettt e e sttt e e e e e e e eeeeeas 124
EXAIMIPL. ..ttt ettt e e e e e nneeeeeas 124
a1 o3 DT 1 (o -SSP PPPPPPP 125
05 €211 010 (<1 ST U TP OUPPPPPPUPPPPPPPPPPIR 125
AlEGTIALAYOUL. .. ieeeteeeee ettt eee e e ettt e e e e e e e s e bbbbeeeeeeesssssanbbbeeeeeeesssssssnnsssaeaeeeanes 126
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 126
ALEGTOUP. ettt ettt ettt e e e e e ettt e e e e e e e s bb b teeeeeeeeesssanssneaaeeeeessnsannnnes 126
EXAIMIPL. ..ttt e e e et e e e e e nneeeeeas 127
AIGHBOXLAYOUL. ..ceeieuiiiieeeeeiiteee et ettt e e ettt e e et e e s e are et e e s nbeeeeeesnrereeeeeeeeeeeeeans 127
EXAIMIPL. ..ttt e e e e e e e e nneeeeeas 127
AIGINEEQIL. e eeeeeeee ettt ettt e e e e e s e e s e e e e e e e eae 127
EXAIMIPL. ..ttt e e et ee e s e e e nneeeeeas 127
AIGLADEL. ...ttt et e e et e e e e e s et e e e e e e e e e e e e e e e e e e eeeeeeas 128
|05 21101 0) (TSSO PSPPI PPPPPPPPPO 128
(a1 o BT 120) OO U PO PPPPPPPPPPP 128
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 129
a1 o I T A4 1< OO PPPPPPPPN 129
|05 21101 0) (TSSO TSP PPPPPPPPPO 130
AIGPUSHBULLON.ettiiiiiieiiiiieee ettt e e e e e e et ee e e e e e s e s s seeeeeeeeeeas 130
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 131
AIGRAAIOBULLON. ..ceeiiiiieeiiiiiiieeeee ettt e e e e e e ettt et e e e e e e e e eiabbbbeeeeeeeeesssanssreaaeeeeesssssnnnnes 131
|05 21101 0) (TSSO OO P PRSP PPPPPPPPPO 132
AIGREAIEIL....eeeeeeeeieeeeiiiieteee ettt e e e e e e sttt et e e e e s s s s e e e e e eeeas 132
|05 21101 0) (TSSO PSPPSR PPPPPPPPPO 132
Al PACITIE .« eeeeeeeeieee ettt e e e e ettt e e e e e s s sttt e e e e e e e e esaaaeaeeeeeaeeaaens 132
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 133
ALESPINBOX. ccceiiieiiiittteee ettt ettt e e e s e e ettt e e e e e e s s et e e e e e e e e e eaeaeas 133
|05 21101 0) (TSSO PO PTT R PPPPPPPPPO 133
a1 o] U g (el s DO O PPPPPPPP 133
EXAIMIPL. ..ttt e e et e s e e e e nneeeeeas 134
AIGSEINZEQIt. . eeeieieeieeeee ettt e e s et e e e e e e e e e eeas 134
EXAIMIPL. ..ttt e e et e s e e e e nneeeeeas 134
AIGTADPAGE.ceeiiiiieeieete ettt e et e e et e e s e e e e e e nnae 134
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 135
AIGTADWIAGEL....eeeeeiieeeiiiieeeeee ettt e e e e e e ettt e e e e e s s s s sasbbbtaeeeeeesssssansnnes 135
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 135
a1 o O (i Y L SO OO PPPPPPPPPPN 136
|05 21101 0) (TSSO PO P TR PPPPPPPPPO 136
AIETEXEVIEW ...ttt ettt e ettt e e e e e s e sttt e e e e e e e s s sasbbbbaaeeeeeesssssannasasseseseeeeens 136

EXAIMIPL. ..ttt e e et e s e e e e nneeeeeas 137

AIGVBOXLAYOUL. ..ceeeeiieeeeiiiieee ettt ettt ettt e ettt e e et e e e ettt e e s e seeeeeeeeeeeeeeeeeeas 137

EXAIMIPL. ..ttt e et e s e e e nneeeeeas 137
Layout INfOTationN.ccoiutiiiiiiiiitiee ettt ettt e et e st e st e e st e s aeeeeee 137
GIid LaYOUL CONEEXL....utteeerurieeeiiiiiieeeeaiitteeeeeiiteeeeeabrteeeeenreeeeseanreeeeeesnneneeseeesssnsnnnnnnns 137
HOTiZontal Layout CONTEXL.....uuttiteiiiirriiiiiiitteeeeeeeeeiiiittteeeeeeesssiisteeeeeeeeseeeeeeeeeeaeeeeeeeenes 138
Vertical LayOUt CONTEXL.....uuiiiiiiiirieereeeeieeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeseeereeereermmresessrmmneens 138
MiXING LAYOUL COMEOXES. ..uuiee e e e e e s s e s e s s eseaeesaasaasaaaaasaasaaaasaananns 138
DIl FUNCLIOMNS. ...ettiiiiiiieeiiiiiitieeeee ettt ee e e e e e sttt e e e e e e s s sisabteeeeeeeessssannsssaeeeeeaeeeeees 138
ALGACCEPE() ueeeeettteeeeee ettt ettt e e e e e e ettt et e e e e e s e s bbbt e aeeeeesessasnbbtaaaeeeeeeeeeeeeeaes 138
|05 21101 0) (TSSO PP PP PPPPPPPO 139
AIGREAISPIAY () eeeenevrreereeiireeeeeiiiieeeeectteeeesrtteeeessabteeeesseaaeeesssabaeeesssseeessasssssssseeaaaeaeeseesennnns 139
EXAIMIPL. ..ttt ettt e e e e e nneeeeeas 140
AIGRESEL() -eveteeeeeeeeeeiiiiittee et e e e ettt e et e e e ettt e e e e e e e s ababeeeeeeeeesasassbsbaaeeeeesassasassssseeeeees 140
EXAIMIPL. ..ttt e et e e e s e e e nneeeeeas 140
AIGREJECE() - uvveeeeeiiieee ettt ettt et e ettt e e et e e e e e arbe e e s emnreeeeeamrreeeeeeeeeeens 140
EXAIMIPL. ..ttt e e e et e s e e e nneeeeeas 141
dlgSelectionChanged ()c..eoureeiiiiiiiiee ittt e s e e e e e e e 141
EXAIMIPL. ..ttt e e e et e e e e e nneeeeeas 142
ESCAPE CRATACLET....ceiiiiiiieeeeiiiiiee ettt ettt e et e e e et e e e et e e e s ee e e e e eeeeeeeeeseannns 142
A Complete EXAMPLE........coiiiiiiiiiiiiiiiiet ettt e e e e e e e 142

SUPPOTTEd HTML aZS..cciiueiiiiiiiiiiieeeeiitee ettt ettt et e e eirre e e s et ee e s s emeeeeeeeenrreeeeeeas 143

EAGLE User Language Version 6.5.0

User Language

The EAGLE User Language can be used to access the EAGLE data structures and to create a
wide variety of output files.

To use this feature you have to write a User Language Program (ULP), and then execute it.

The following sections describe the EAGLE User Language in detail:

Syntax lists the rules a ULP file has to follow
Data Types defines the basic data types
Object Types defines the EAGLE objects

Definitions shows how to write a definition
Operators lists the valid operators
Expressions shows how to write expressions
Statements defines the valid statements
Builtins lists the builtin constants, functions etc.
. shows how to implement a graphical frontent to a
Dialogs ULP

Writing a ULP

A User Language Program is a plain text file which is written in a C-like syntax. User
Language Programs use the extension .ulp. You can create a ULP file with any text editor
(provided it does not insert any additional control characters into the file) or you can use
the builtin text editor.

A User Language Program consists of two major items, definitions and statements.

Definitions are used to define constants, variables and functions to be used by statements.
A simple ULP could look like this:

#usage "Add the characters in the word 'Hello'\n"
"Usage: RUN sample.ulp"
// Definitions:
string hello = "Hello";
int count(string s)
{
int ¢ = 0;
for (int 1 = 0; s[i]; ++1i)
c += s[i];
return c;
}
// Statements:
output("sample") {
printf("Count is: %d\n", count(hello));
}

If the #usage directive is present, its value will be used in the Control Panel to display a
description of the program.

Page 1

EAGLE User Language Version 6.5.0

If the result of the ULP shall be a specific command that shall be executed in the editor
window, the exit () function can be used to send that command to the editor window.

Executing a ULP

User Language Programs are executed by the RUN command from an editor window's
command line.

A ULP can return information on whether it has run successfully or not. You can use the
exit () function to terminate the program and set the return value.

A return value of 0 means the ULP has ended "normally" (i.e. successfully), while any other
value is considered as an abnormal program termination.

The default return value of any ULP is 0.

When the RUN command is executed as part of a script file, the script is terminated if the
ULP has exited with a return value other than 0.

A special variant of the exit () function can be used to send a command to the editor
window as a result of the ULP

Syntax

The basic building blocks of a User Language Program are

» Whitespace
e Comments

* Directives

» Keywords
o Identifiers

e Constants
¢ Punctuators

All of these have to follow certain syntactical rules, which are described in their respective
sections.

Whitespace

Before a User Language Program can be executed, it has to be read in from a file. During
this read in process, the file contents is parsed into tokens and whitespace.

Any spaces (blanks), tabs, newline characters and comments are considered whitespace and
are discarded.

The only place where ASCII characters representing whitespace are not discarded is within
literal strings, like in
string s = "Hello World";

Page 2

EAGLE User Language Version 6.5.0

where the blank character between '0' and 'W' remains part of the string.

If the final newline character of a line is preceded by a backslash (\), the backslash and
newline character are both discarded, and the two lines are treated as one line:

"Hello \
World"

is parsed as "Hello World"

Comments

When writing a User Language Program it is good practice to add some descriptive text,
giving the reader an idea about what this particular ULP does. You might also want to add
your name (and, if available, your email address) to the ULP file, so that other people who
use your program could contact you in case they have a problem or would like to suggest
an improvement.

There are two ways to define a comment. The first one uses the syntax

/* some comment text */

which marks any characters between (and including) the opening /* and the closing */ as
comment. Such comments may expand over more than one lines, as in

/* This is a
multi line comment
*/
but they do not nest. The first */ that follows any /* will end the comment.

The second way to define a comment uses the syntax

int i; // some comment text

which marks any characters after (and including) the // and up to (but not including) the
newline character at the end of the line as comment.

Directives

The following directives are available:

#include

#require
#usage

#include

A User Language Program can reuse code in other ULP files through the #include
directive. The syntax is

Page 3

EAGLE User Language Version 6.5.0

#include "filename"

The file filename is first looked for in the same directory as the current source file (that is
the file that contains the #include directive). If it is not found there, it is searched for in
the directories contained in the ULP directory path.

The maximum include depth is 10.

Each #include directive is processed only once. This makes sure that there are no
multiple definitions of the same variables or functions, which would cause errors.

Portability note

[Wpy If filename contains a directory path, it is best to always use the forward slash as
a directory separator (even under Windows!). Windows drive letters should be
avoided. This way a User Language Program will run on all platforms.

#require

Over time it may happen that newer versions of EAGLE implement new or modified User
Language features, which can cause error messages when such a ULP is run from an older
version of EAGLE. In order to give the user a dedicated message that this ULP requires at
least a certain version of EAGLE, a ULP can contain the #require directive. The syntax is

#require version

The version must be given as a real constant of the form
V.RRrr

where V is the version number, RR is the release number and rr is the (optional) revision
number (both padded with leading zeros if they are less than 10). For example, if a ULP
requires at least EAGLE version 4.11r06 (which is the beta version that first implemented
the #require directive), it could use

#require 4.1106

The proper directive for version 5.1.2 would be
#require 5.0102

#usage

Every User Language Program should contain information about its function, how to use it
and maybe who wrote it.
The directive

#usage text [, text...]

implements a standard way to make this information available.

Page 4

EAGLE User Language Version 6.5.0

If the #usage directive is present, its text (which has to be a string constant) will be used
in the Control Panel to display a description of the program.

In case the ULP needs to use this information in, for example, a digMessageBox(), the text
is available to the program through the builtin constant usage.

Only the #usage directive of the main program file (that is the one started with the RUN
command) will take effect. Therefore pure include files can (and should!) also have
#usage directives of their own.

It is best to have the #usage directive at the beginning of the file, so that the Control Panel
doesn't have to parse all the rest of the text when looking for the information to display.

If the usage information shall be made available in several langauges, the texts of the
individual languages have to be separated by commas. Each of these texts has to start with
the two letter code of the respective language (as delivered by the language() function),
followed by a colon and any number of blanks. If no suitable text is found for the language
used on the actual system, the first given text will be used (this one should generally be
English in order to make the program accessible to the largest number of users).

Example

"en: A sample ULP\n"
"Implements an example that shows how to use the EAGLE User

Language\n"

"Usage: RUN sample.ulp\n"

"Author: john@home.org",

"de: Beispiel eines ULPs\n"

"Implementiert ein Beispiel das zeigt, wie man die EAGLE User
Language benutzt\n"
"Aufruf: RUN sample.ulp\n"
"Author: john@home.org"

#usage

Keywords

The following keywords are reserved for special purposes and must not be used as normal
identifier names:

break
case
char
continue
default

Page 5

EAGLE User Language Version 6.5.0

switch
void
while

In addition, the names of builtins and object types are also reserved and must not be used
as identifier names.

Identifiers

An identifier is a name that is used to introduce a user defined constant, variable or
function.

Identifiers consist of a sequence of letters (a b c..., A B C...), digits (1 2 3...) and
underscores (_). The first character of an identifier must be a letter or an underscore.

Identifiers are case-sensitive, which means that

int Number, number;

would define two different integer variables.

The maximum length of an identifier is 100 characters, and all of these are significant.

Constants

Constants are literal data items written into a User Language Program. According to the
different data types, there are also different types of constants.

* Character constants
* Integer constants

* Real constants

* String constants

Character Constants

A character constant consists of a single character or an escape sequence enclosed in single
quotes, like

lal

1 \n 1
The type of a character constant is char.

Integer Constants

Depending on the first (and possibly the second) character, an integer constant is assumed
to be expressed in different base values:

Page 6

EAGLE User Language Version 6.5.0

first second constant interpreted as
0 1-7 octal (base 8)

0 X, X hexadecimal (base 16)
1-9 decimal (base 10)

The type of an integer constant is int.

Examples
16 decimal
020 octal

Ox10 hexadecimal

Real Constants

A real constant follows the general pattern
[-1int.fracle|E[+]exp]

which stands for

* optional sign

* decimal integer

* decimal point

* decimal fraction

* e or E and a signed integer exponent

You can omit either the decimal integer or the decimal fraction (but not both). You can omit
either the decimal point or the letter e or E and the signed integer exponent (but not both).

The type of an real constant is real.

Examples

Constant Value
23.45e6 23.45x1076

.0 0.0

0. 0.0

1. 1.0

-1.23 -1.23

2e-5 2.0x107-5
3E+10 3.0x10710

.09E34 0.09x10" 34

String Constants

A string constant consists of a sequence of characters or escape sequences enclosed in
double quotes, like

"Hello world\n"

Page 7

EAGLE User Language Version 6.5.0

The type of a string constant is string.
String constants can be of any length (provided there is enough free memory available).

String constants can be concatenated by simply writing them next to each other to form
larger strings:

string s = "Hello" " world\n";

It is also possible to extend a string constant over more than one line by escaping the
newline character with a backslash (\):

string s = "Hello \
world\n";

Escape Sequences

An escape sequence consists of a backslash (\), followed by one or more special characters:

Sequence Value

\a audible bell

\b backspace

\f form feed

\n new line

\r carriage return

\t horizontal tab

\V vertical tab

\\ backslash

\' single quote

\" double quote

\O 0 = up to 3 octal digits
\xH H = up to 2 hex digits

Any character following the initial backslash that is not mentioned in this list will be treated
as that character (without the backslash).

Escape sequences can be used in character constants and string constants.

Examples

1 \n 1

"A tab\tinside a text\n"
"Ring the bell\a\n"

Punctuators

The punctuators used in a User Language Program are

[] Brackets
() Parentheses

Page 8

EAGLE User Language Version 6.5.0

{} Braces

, Comma

; Semicolon
Colon

= Equal sign
Other special characters are used as operators in a ULP

Brackets

Brackets are used in array definitions

int aill;

in array subscripts

n = ail[2];

and in string subscripts to access the individual characters of a string

string s = "Hello world";
char c = s[2];

Parentheses

Parentheses group expressions (possibly altering normal operator precedence), isolate
conditional expressions, and indicate function calls and function parameters:

d=c* (a+ b);

if (d == z) ++x;
func();
void func2(int n) { ... }
Braces
Braces indicate the start and end of a compound statement:
if (d == z) {
++X;
func();
}

and are also used to group the values of an array initializer:
int aill = { 1, 2, 3 };

Page 9

EAGLE User Language Version 6.5.0

Comma

The comma separates the elements of a function argument list or the parameters of a

function call:

int func(int n, real r, string s) { ... }
int i = func(1l, 3.14, "abc");

It also delimits the values of an array initializer:
int aill = { 1, 2, 3 };

and it separates the elements of a variable definition:

int 1, j, k;

Semicolon

The semicolon terminates a statement, as in

i=a+ b;

and it also delimits the init, test and increment expressions of a for statement:

for (int n=0; n < 3; ++n) {
func(n);

}

Colon

The colon indicates the end of a label in a switch statement:

switch (c) {
case 'a': printf("It was an 'a'\n"); break;
case 'b': printf("It was a 'b'\n"); break;
default: printf("none of them\n");
}

Equal Sign

The equal sign separates variable definitions from initialization lists:
int i = 10;

char c[] ={ 'a', 'b', 'c' };

It is also used as an assignment operator.

Page 10

EAGLE User Language Version 6.5.0

Data Types

A User Language Program can define variables of different types, representing the different
kinds of information available in the EAGLE data structures.

The four basic data types are

char for single characters
int for integral values
real for floating point values

string for textual information
Besides these basic data types there are also high level Object Types, which represent the
data structures stored in the EAGLE data files.

The special data type void is used only as a return type of a function, indicating that this
function does not return any value.

char

The data type char is used to store single characters, like the letters of the alphabet, or
small unsigned numbers.

A variable of type char has a size of 8 bit (one byte), and can store any value in the range
0..255.

See also Operators, Character Constants

int
The data type int is used to store signed integral values, like the coordinates of an object.

A variable of type int has a size of 32 bit (four byte), and can store any value in the range
-2147483648..2147483647.

See also Integer Constants

real

The data type real is used to store signed floating point values, like the grid distance.

A variable of type real has a size of 64 bit (eight byte), and can store any value in the
range +2.2e-308. .+1.7e+308 with a precision of 15 digits.

See also Real Constants

string

The data type string is used to store textual information, like the name of a part or net.

Page 11

EAGLE User Language Version 6.5.0

A variable of type string is not limited in it's size (provided there is enough memory
available).

Variables of type string are defined without an explicit size. They grow automatically as
necessary during program execution.

The elements of a string variable are of type int and can be accessed individually by
using [index]. The first character of a string has the index 0:

string s = "Layout";
printf("Third char is: %c\n", s[2]);
This would print the character 'y '. Note that s[2] returns the third character of s!

A lossless conversion to char is possible for standard ASCII strings:

string s = "Layout";
char c = s[2];

See also Operators, Builtin Functions, String Constants

Implementation details
The data type string is actually implemented like native C-type zero terminated strings.
Looking at the following variable definition

string s = "abcde";

s[4] is the character 'e', and s[5] is the character '\0Q"', or the integer value 0x00.
This fact may be used to determine the end of a string without using the strilen()
function, as in

for (int i = 0; s[i]; ++1i) {
// do something with s[i]

}
It is also perfectly ok to "cut off" part of a string by "punching" a zero character into it:
string s = "abcde";
s[3] = 0;

This will result in s having the value "abc". Note that everything following the zero
character will actually be gone, and it won't come back by restoring the original character.
The same applies to any other operation that sets a character to 0, for instance --s[3].

Type Conversions

The result type of an arithmetic expression, such as a + b, where a and b are different
arithmetic types, is equal to the "larger" of the two operand types.

Arithmetic types are char, int and real (in that order). So if, e.g. a is of type int and b
is of type real, the result of the expression a + b would be real.

Page 12

EAGLE User Language Version 6.5.0

See also Typecast

Typecast

The result type of an arithmetic expression can be explicitly converted to a different
arithmetic type by applying a typecast to it.

The general syntax of a typecast is

type(expression)

where type is one of char, int or real, and expression is any arithmetic expression.

When typecasting a real expression to int, the fractional part of the value is truncated!

See also Type Conversions

Object Types

The EAGLE data structures are stored in three binary file types:
* Library (*.1br)
e Schematic (*.sch)
e Board (*.brd)

These data files contain a hierarchy of objects. In a User Language Program you can access
these hierarchies through their respective builtin access statements:

library(L) { ... }
schematic(S) { ... }
board(B) { ... }

These access statements set up a context within which you can access all of the objects
contained in the library, schematic or board.

The properties of these objects can be accessed through members.
There are two kinds of members:

e Data members
* Loop members

Data members immediately return the requested data from an object. For example, in

board(B) {
printf("%ss\n", B.name);

}

the data member name of the board object B returns the board's name.
Data members can also return other objects, as in

board(B) {
printf("%f\n", B.grid.size);
}

Page 13

EAGLE User Language Version 6.5.0

where the board's grid data member returns a grid object, of which the size data member
then returns the grid's size.

Loop members are used to access multiple objects of the same kind, which are contained
in a higher level object:

board(B) {
B.elements(E) {
printf("%-8s %-8s\n", E.name, E.value);
}
}

This example uses the board's elements() loop member function to set up a loop through all
of the board's elements. The block following the B.elements (E) statement is executed in
turn for each element, and the current element can be referenced inside the block through
the name E.

Loop members process objects in alpha-numerical order, provided they have a name.

A loop member function creates a variable of the type necessary to hold the requested
objects. You are free to use any valid name for such a variable, so the above example might
also be written as

board(MyBoard) {
MyBoard.elements(TheCurrentElement) {
printf("%-8s %-8s\n", TheCurrentElement.name, TheCurrentElement.value);
}
}

and would do the exact same thing. The scope of the variable created by a loop member
function is limited to the statement (or block) immediately following the loop function call.

Object hierarchy of a Library:

LIBRARY
GRID
LAYER
DEVICESET

DEVICE
GATE
PACKAGE
CONTACT
PAD
SMD
CIRCLE
HOLE
RECTANGLE
FRAME
DIMENSION
TEXT
WIRE
POLYGON
WIRE
SYMBOL
PIN

Page 14

CIRCLE
ECTANGLE
RAME
DIMENSION
TEXT
WIRE
POLYGON
WIRE

Object hierarchy of a Schematic:

SCHEMATIC
GRID
LAYER
LIBRARY
ATTRIBUTE
VARTANTDEF
PART
ATTRIBUTE
VARIANT
SHEET
CIRCLE
RECTANGLE
FRAME
DIMENSION
TEXT
WIRE
POLYGON
WIRE
INSTANCE
ATTRIBUTE
BUS
SEGMENT
LABEL
TEXT
WIRE
WIRE

NET
SEGMENT
JUNCTION
PINREF
TEXT
WIRE

EAGLE User Language Version 6.5.0

Change note from version 5 to version 6, compatibility

 Since version 6 the instance is in the hierarchy no longer below the part but below

the sheet.

* The part is no longer below the sheet, but below the schematic.

For compatibility reasons the access by the according member functions is further

supported, but the behaviour of the Object Functions reflects the new hierarchy.

Page 15

Object hierarchy of a Board:

BOARD

GRID
AYER
LIBRARY
ATTRIBUTE

—

VARTANTDEF

RECTANGLE
FRAME
DIMENSION
TEXT

ATTRIBUTE

VARTIANT
SIGNAL

CONTACTREF

POLYGON
WIRE
IA

WIRE

<<

UL_ARC

Data members

anglel
angle2
cap
layer
radius
width
x1, yl
X2, y2
XC, ycC

real (start angle, 0.0...359.9)
real (end angle, 0.0...719.9)
int (CAP_...)

int

int

int

int (starting point)

int (end point)

int (center point)

See also UL_WIRE

Constants

CAP_FLAT
CAP_ROUND

Note

flat arc ends
round arc ends

EAGLE User Language Version 6.5.0

Start and end angles are defined mathematically positive (i.e. counterclockwise), with
anglel < angle2. In order to assure this condition, the start and end point of an UL_ARC

Page 16

EAGLE User Language Version 6.5.0

may be exchanged with respect to the UL _WIRE the arc has been derived from.

Example

board(B) {
B.wires (W) {
if (W.arc)
printf("Arc: (%f %), (%f %f), (%f %f)\n",
u2zmm(W.arc.x1), u2mm(W.arc.yl), u2mm(W.arc.x2), u2mm(W.arc.y2),
u2zmm(W.arc.xc), u2mm(W.arc.yc));

}
}

UL _AREA

Data members
x1, yl int (lower left corner)
X2, y2 int (upper right corner)
See also UL_BOARD, UL_DEVICE, UL_PACKAGE, UL_SHEET, UL_SYMBOL

A UL _AREA is an abstract object which gives information about the area covered by an
object. For a UL PACKAGE or UL SYMBOL in a UL_ELEMENT or UL _INSTANCE context,
respectively, the area is given in absolute drawing coordinates, including the offset of the
element or instance.

Example

board(B) {
printf("Area: (%f %f), (%f %f)\n",
u2mm(B.area.x1), u2mm(B.area.yl), u2mm(B.area.x2), u2mm(B.area.y2));
}

UL_ATTRIBUTE

Data members

constant int (O=variable, i.e. allows overwriting, 1=constant - see note)
defaultvalue string (see note)

display int (ATTRIBUTE DISPLAY FLAG ...)

name string

text UL _TEXT (see note)

value string

See also UL_DEVICE, UL _PART, UL_INSTANCE, UL_ELEMENT

Constants
ATTRIBUTE DISPLAY FLAG OFF nothing is displayed

Page 17

EAGLE User Language Version 6.5.0

ATTRIBUTE DISPLAY FLAG VALUE value is displayed
ATTRIBUTE DISPLAY FLAG NAME name is displayed
A UL _ATTRIBUTE can be used to access the attributes that have been defined in the library
for a device, or assigned to a part in the schematic or board.

Note

display contains a bitwise or'ed value consisting of ATTRIBUTE_DISPLAY FLAG ...
and defines which parts of the attribute are actually drawn. This value is only valid if
display is used in a UL INSTANCE or UL_ELEMENT context.

In a UL_ELEMENT context constant only returns an actual value if {/b annotation is
active, otherwise it returns 0.

The defaultvalue member returns the value as defined in the library (if different from
the actual value, otherwise the same as value). In a UL_ELEMENT context
defaultvalue only returns an actual value if f/b annotation is active, otherwise an empty
string is returned.

The text member is only available in a UL_INSTANCE or UL_ELEMENT context and
returns a UL_TEXT object that contains all the text parameters. The value of this text object
is the string as it will be displayed according to the UL _ATTRIBUTE's 'display' parameter. If
called from a different context, the data of the returned UL_TEXT object is undefined.

For global attributes only name and value are defined.

Example

schematic(SCH) {
SCH.parts(P) {
P.attributes(A) {
printf("%s = %s\n", A.name, A.value);
}
}
}
schematic(SCH) {
SCH.attributes(A) { // global attributes
printf("%s = %s\n", A.name, A.value);
}
}

UL _BOARD

Data members
alwaysvectorfont int (ALWAYS VECTOR FONT ..., see note)

area UL_ARFA
description string
grid UL_GRID
headline string

Page 18

EAGLE User Language Version 6.5.0

name string (see note)
verticaltext int (VERTICAL TEXT ...)

Loop members

attributes() UL_ATTRIBUTE (see note)
circles() UL_CIRCLE
classes() UL_CLASS
dimensions() UL_DIMENSION
elements () UL_ELEMENT
frames() UL_FRAME
holes() UL_HOLE
layers() UL_LAYER
libraries() UL_LIBRARY
polygons () UL_POLYGON
rectangles() UL_RECTANGLE
signals() UL_SIGNAL
texts() UL_TEXT
variantdefs() UL_VARIANTDEF
wires() UL_WIRE

See also UL _LIBRARY, UL SCHEMATIC

Constants

alwaysvectorfont is set in the user interface
dialog
alwaysvectorfont is set persistent in this board

ALWAYS VECTOR_FONT GUI

ALWAYS VECTOR FONT_ PERSISTEN
T

VERTICAL TEXT UP reading direction for vertical texts: up
VERTICAL TEXT DOWN reading direction for vertical texts: down

Note

The value returned by alwaysvectorfont can be used in boolean context or can be
masked with the ALWAYS VECTOR FONT ... constants to determine the source of this

setting, as in

if (B.alwaysvectorfont) {
// alwaysvectorfont is set in general

}
if (B.alwaysvectorfont & ALWAYS VECTOR FONT GUI) {

// alwaysvectorfont is set in the user interface

}

The name member returns the full file name, including the directory.

The attributes () loop member loops through the global attributes.

Example
board(B) {

Page 19

EAGLE User Language Version 6.5.0

B.elements(E) printf("Element: %s\n", E.name);
B.signals(S) printf("Signal: %s\n", S.name);
}

UL BUS

Data members

name string (BUS NAME LENGTH)
Loop members

segments() UL _SEGMENT
See also UL_SHEET

Constants

BUS NAME LENG max. length of a bus name (obsolete - as from version 4 bus names
TH can have any length)

Example

schematic(SCH) {
SCH.sheets(SH) {
SH.busses(B) printf("Bus: %s\n", B.name);
}
}

UL _CIRCLE

Data members
layer int
radius int
width int
X, Y int (center point)
See also UL_BOARD, UL_PACKAGE, UL_SHEET, UL_SYMBOL

Example

board(B) {
B.circles(C) {
printf("Circle: (%f %f), r=
u2mm(C.x), u2mm(C.y)
}

}

%d, w=%d\n",
, u2mm(C.radius), u2mm(C.width));

UL_CLASS

Data members

Page 20

EAGLE User Language Version 6.5.0

clearance[number] int (see note)

drill int
name string (see note)
number int
width int

See also Design Rules, UL_NET,FL_SIGNAL, UL_SCHEMATIC, UL_BOARD

Note

The clearance member returns the clearance value between this net class and the net
class with the given number. If the number (and the square brackets) is ommitted, the net
class's own clearance value is returned. If a number is given, it must be between O and the
number of this net class.

If the name member returns an empty string, the net class is not defined and therefore not
in use by any signal or net.

Example

board(B) {
B.signals(S) {
printf("%-10s %d %s\n", S.name, S.class.number, S.class.name);
}
}

UL_CONTACT

Data members
name string (CONTACT NAME LENGTH)

pad UL_PAD

signal string

smd UL_SMD

X, VY int (center point, see note)

Loop members
polygons() UL_POLYGON (of arbitrary pad shapes)
wires() UL_WIRE (of arbitrary pad shapes)
See also UL _PACKAGE, UL _PAD, UL_SMD, UL_CONTACTREF, UL_PINREF

Constants

CONTACT _NAME LENG max. recommended length of a contact name (used in formatted
TH output only)

Note

The signal data member returns the signal this contact is connected to (only available in
a board context).

Page 21

EAGLE User Language Version 6.5.0

The coordinates (X, Y) of the contact depend on the context in which it is called:

« if the contact is derived from a UL_LIBRARY context, the coordinates of the contact
will be the same as defined in the package drawing
* in all other cases, they will have the actual values from the board

Example

library(L) {
L.packages(PAC) {
PAC.contacts(C) {
printf("Contact: '%s', (%f %f)\n",
C.name, u2mm(C.x), u2mm(C.y));
}

}
}

UL _CONTACTREF

Data members
contact UL_CONTACT
element UL_ELEMENT
route int (CONTACT ROUTE ...)
routetag string (see note)
See also UL_SIGNAL, UL PINREF

Constants

CONTACT ROUTE _ALL must explicitly route to all contacts
CONTACT ROUTE_ANY may route to any contact

Note

If route has the value CONTACT _ROUTE_ANY, the routetag data member returns an
additional tag which describes a group of contactrefs belonging to the same pin.

Example

board(B) {
B.signals(S) {
printf("Signal '%s'\n", S.name);
S.contactrefs(C) {
printf("\t%s, %s\n", C.element.name, C.contact.name);
}
}
}

Page 22

EAGLE User Language Version 6.5.0

UL _DEVICE

Data members
activetechnology string (see note)

area UL_ARFA
description string

headline string

library string

name string (DEVICE NAME LENGTH)
package UL_PACKAGE (see note)

prefix string (DEVICE PREFIX LENGTH)
technologies string (see note)

value string ("On" or "Off")

Loop members
attributes() UL_ATTRIBUTE (see note)
gates() UL_GATE

See also UL _DEVICESET, UL _LIBRARY, UL_PART

Constants

DEVICE NAME LENGTH Max recommended length of a device name (used in formatted
- - output only)

DEVICE PREFIX LENG max. recommended length of a device prefix (used in formatted
TH output only)

All members of UL_DEVICE, except for name and technologies, return the same values
as the respective members of the UL_DEVICESET in which the UL_DEVICE has been
defined. The name member returns the name of the package variant this device has been
created for using the PACKAGE command. When using the description text keep in
mind that it may contain newline characters ('\n").

Note

The value returned by the activetechnology member depends on the context in which
it is called:

« if the device is derived from the deviceset that is currently edited in the library editor
window, the active technology, set by the TECHNOLOGY command, will be returned

« if the device is derived from a UL_PART, the actual technology used by the part will
be returned

» otherwise an empty string will be returned.

The package data member returns the package that has been assigned to the device
through a PACKAGE command. It can be used as a boolean function to check whether a
package has been assigned to a device (see example below).

The value returned by the technologies member depends on the context in which it is
called:

Page 23

EAGLE User Language Version 6.5.0

» if the device is derived from a UL_DEVICESET, technologies will return a string
containing all of the device's technologies, separated by blanks

« if the device is derived from a UL_PART, only the actual technology used by the part
will be returned.

The attributes() loop member takes an additional parameter that specifies for which
technology the attributes shall be delivered (see the second example below).

Examples

library(L) {
L.devicesets(S) {
S.devices (D) {
if (D.package)
printf("Device: %s, Package: %s\n", D.name, D.package.name);
D.gates(G) {
printf("\t%s\n", G.name);
}
}
}
}

library(L) {
L.devicesets(DS) {
DS.devices(D) {
string tI[];

int n = strsplit(t, D.technologies, ' ');
for (int 1 = 0; i < n; i++) {
D.attributes(A, t[i]) {
printf("%s = %s\n", A.name, A.value);
}
}
}
}

UL_DEVICESET

Data members
activedevice UL_DEVICE (see note)

area UL_AREA

description string

headline string (see note)

library string

name string (DEVICE_NAME LENGTH)
prefix string (DEVICE PREFIX LENGTH)
value string ("On" or "Off")

Loop members
devices() UL _DEVICE
gates() UL_GATE

Page 24

EAGLE User Language Version 6.5.0

See also UL_DEVICE, UL_LIBRARY, UL PART

Constants

DEVICE NAME LENGTH max. recommended length of a device name (used in formatted
- — output only)

DEVICE PREFIX LENG max. recommended length of a device prefix (used in formatted

TH output only)

Note

If a deviceset is currently edited in a library editor window, the activedevice member
returns the active device, selected by a PACKAGE command. It can be used as a boolean
function to check the availability of such an activedevice (see example below).

The description member returns the complete descriptive text as defined with the
DESCRIPTION command, while the headline member returns only the first line of the
description, without any HTML tags. When using the description text keep in mind that
it may contain newline characters ('\n").

Example

library(L) {
L.devicesets(D) {
printf("Device set: %s, Description: %s\n", D.name, D.description);
D.gates(G) {
printf("\t%s\n", G.name);
}
}
}

if (deviceset)
deviceset (DS) {
if (DS.activedevice)
printf("Active Device: %s\n", DS.activedevice.name);
}

UL_DIMENSION

Data members
dtype int (DIMENSION ...)
layer int
extlength int
extoffset int
extwidth int
precision int
ratio int
size int

Page 25

EAGLE User Language Version 6.5.0

unit int (GRID UNIT ...)
visible int (unit, O=off, 1=0n)
width int

x1, vyl int (first reference point)

X2, y2 int (second reference point)
x3, y3 int (alignment reference point)

Loop members
texts() UL _TEXT
wires() UL WIRE
See also UL BOARD, UL _GRID, UL _PACKAGE, UL_SHEET, UL_SYMBOL

Constants

DIMENSION PARALLEL linear dimension with parallel measurement line
DIMENSION HORIZONTAL Egzar dimension with horizontal measurement
DIMENSION VERTICAL linear dimension with vertical measurement line
DIMENSION RADIUS radial dimension

DIMENSION DIAMETER diameter dimension

DIMENSION ANGLE angle dimension

DIMENSION LEADER an arbitrary pointer

Note

The texts() and wires() loop members loop through all the texts and wires the
dimension consists of.

Example

board(B) {
B.dimensions (D) {
printf("Dimension: (%f %f), (%f %f
u2mm(D.x1), u2mm(D.yl), m
u2mm(D.y3));
}
}

), (% %f)\n",
m(D.x2), u2mm(D.y2), u2mm(D.x3),

UL_ELEMENT

Data members

angle real (0.0...359.9)
attributel[] string (see note)

column string (see note)

locked int

mirror int

name string (ELEMENT NAME LENGTH)
package UL_PACKAGE

Page 26

EAGLE User Language Version 6.5.0

populate int (0=do not populate, 1=populate)
row string (see note)

smashed int (see note)

spin int

value string (ELEMENT VALUE LENGTH)
X, Y int (origin point)

Loop members
attributes() UL_ATTRIBUTE
texts() UL_TEXT (see note)
variants() UL_VARIANT

See also UL BOARD, UL_CONTACTREF

Constants

ELEMENT NAME LENG max. recommended length of an element name (used in
TH formatted output only)

ELEMENT VALUE LEN max. recommended length of an element value (used in
GTH formatted output only)

Note

The attribute[] member can be used to query a UL_ELEMENT for the value of a given
attribute (see the second example below). The returned string is empty if there is no
attribute by the given name, or if this attribute is explicitly empty.

The texts () member only loops through those texts of the element that have been
detached using SMASH, and through the visible texts of any attributes assigned to this
element. To process all texts of an element (e.g. when drawing it), you have to loop
through the element's own texts () member as well as the texts () member of the
element's package.

angle defines how many degrees the element is rotated counterclockwise around its
origin.
The column and row members return the column and row location within the frame in the

board drawing. If there is no frame in the drawing, or the element is placed outside the
frame, a ' ?"' (question mark) is returned.

The smashed member tells whether the element is smashed. This function can also be used
to find out whether there is a detached text parameter by giving the name of that
parameter in square brackets, as in smashed["VALUE"]. This is useful in case you want to
select such a text with the MOVE command by doing MOVE R5>VALUE. Valid parameter
names are "NAME" and "VALUE", as well as the names of any user defined attributes. They
are treated case insensitive, and they may be preceded by a '>"' character.

Examples

board(B) {
B.elements(E) {

Page 27

EAGLE User Language Version 6.5.0

printf("Element: %s, (%f %f), Package=%s\n",
E.name, u2mm(E.x), u2mm(E.y), E.package.name);
}

}

board(B) {
B.elements(E) {
if (E.attribute["REMARK"])
printf("%ss: %s\n", E.name, E.attribute["REMARK"]);
}

}

UL_FRAME

Data members
columns int (-127...127)

rows int (-26...26)

border int (FRAME BORDER .. .)
layer int

x1, yl int (lower left corner)

X2, y2 int (upper right corner)
Loop members
texts() UL_TEXT
wires() UL WIRE
See also UL_BOARD, UL _PACKAGE, UL_SHEET, UL_SYMBOL

Constants

FRAME BORDER BOTTOM bottom border is drawn
FRAME BORDER RIGHT right border is drawn

FRAME BORDER TOP top border is drawn

FRAME_BORDER LEFT left border is drawn

Note

border contains a bitwise or'ed value consisting of FRAME BORDER . .. and defines

which of the four borders are actually drawn.

The texts() and wires() loop members loop through all the texts and wires the frame
consists of.

Example

board(B) {
B.frames(F) {
printf("Frame: (%f %f), (%f)\n",
u2mm(F.x1), u2mm(F.yl), u2mm(F.x2), u2mm(F.y2));
}

}

% T

Page 28

EAGLE User Language Version 6.5.0

UL_GATE

Data members
addlevel int (GATE_ADDLEVEL ...)

name string (GATE_NAME LENGTH)
swaplevel int

symbol UL_SYMBOL

X, Y int (origin point, see note)

See also UL_DEVICE

Constants

GATE_ADDLEVEL MUST must
GATE_ADDLEVEL CAN can
GATE_ADDLEVEL NEXT next

GATE_ADDLEVEL_REQUEST request

GATE_ADDLEVEL_ALWAYS always

GATE _NAME LENGT max. recommended length of a gate name (used in formatted
H output only)

Note

The coordinates of the origin point (x, y) are always those of the gate's position within the
device, even if the UL_GATE has been derived from a UL_INSTANCE.

Example

library(L) {
L.devices(D) {
printf("Device: %s, Package: %s\n", D.name, D.package.name);
D.gates(G) {
printf("\t%s, swaplevel=%d, symbol=%s\n",
G.name, G.swaplevel, G.symbol.name);
}

}
}

UL_GRID

Data members
distance real

dots int (0=lines, 1=dots)
multiple int

on int (O=off, 1=o0n)
unit int (GRID UNIT ...)

unitdist int (GRID UNIT ...)
See also UL_BOARD, UL_LIBRARY, UL_SCHEMATIC, Unit Conversions

Page 29

EAGLE User Language Version 6.5.0

Constants
GRID UNIT MIC microns
GRID UNIT MM millimeter

GRID UNIT MIL mil
GRID UNIT INCH inch

Note

unitdist returns the grid unit that was set to define the actual grid size (returned by
distance), while unit returns the grid unit that is used to display values or interpret
user input.

Example

board(B) {
printf("Gridsize=%f\n", B.grid.distance);

}

UL _HOLE

Data members
diameter[layer] int (see note)

drill int
drillsymbol int
X, Y int (center point)

See also UL_BOARD, UL _PACKAGE

Note

diameter[] is only defined vor layers LAYER TSTOP and LAYER BSTOP and returns the
diameter of the solder stop mask in the given layer.

drillsymbol returns the number of the drill symbol that has been assigned to this drill
diameter (see the manual for a list of defined drill symbols). A value of @ means that no
symbol has been assigned to this drill diameter.

Example

board(B) {
B.holes(H) {
printf("Hole: (%f %f), drill=%f\n",
u2mm(H.x), u2mm(H.y), u2mm(H.drill));
}

}

Page 30

EAGLE User Language Version 6.5.0

UL _INSTANCE

Data members
angle real (0, 90, 180 and 270)
column string (see note)

gate UL_GATE

mirror int

name string (INSTANCE NAME_LENGTH)
part UL_PART

row string (see note)

sheet int (O=unused, >0=sheet number)

smashed int (see note)
value string (PART _VALUE LENGTH)
X, Y int (origin point)

Loop members
attributes() UL_ATTRIBUTE (see note)
texts() UL_TEXT (see note)
xrefs() UL_GATE (see note)

See also UL _PINREF

Constants

INSTANCE_NAME LEN max. recommended length of an instance name (used in

GTH formatted output only)

PART VALUE LENGTH mMmaX: recomm.ended length of a part value (instances do not have
— — a value of their own!)

Note

The attributes () member only loops through those attributes that have been explicitly
assigned to this instance (including smashed attributes).

The texts () member only loops through those texts of the instance that have been
detached using SMASH, and through the visible texts of any attributes assigned to this
instance. To process all texts of an instance, you have to loop through the instance's own
texts () member as well as the texts () member of the instance's gate's symbol. If
attributes have been assigned to an instance, texts () delivers their texts in the form as
they are currently visible.

The column and row members return the column and row location within the frame on
the sheet on which this instance is invoked. If there is no frame on that sheet, or the
instance is placed outside the frame, a ' ?"' (question mark) is returned. These members
can only be used in a sheet context.

The smashed member tells whether the instance is smashed. This function can also be
used to find out whether there is a detached text parameter by giving the name of that
parameter in square brackets, as in smashed ["VALUE"]. This is useful in case you want to
select such a text with the MOVE command by doing MOVE R5>VALUE. Valid parameter

Page 31

EAGLE User Language Version 6.5.0

names are "NAME", "VALUE", "PART" and "GATE", as well as the names of any user defined
attributes. They are treated case insensitive, and they may be preceded by a '>" character.

The xrefs () member loops through the contact cross-reference gates of this instance.
These are only of importance if the ULP is going to create a drawing of some sort (for
instance a DXF file).

Example

schematic(S) {
S.parts(P) {
printf("Part: %s\n", P.name);
P.instances(I) {
if (I.sheet !'= 0)
printf("\t%s used on sheet %d\n", I.name, I.sheet);
}
}
}

UL_JUNCTION

Data members

diameter int

X, VY int (center point)
See also UL_SEGMENT

Example

schematic(SCH) {
SCH.sheets(SH) {
SH.nets(N) {
N.segments (SEG) {
SEG. junctions(J) {
printf("Junction: (%f %f)\n", u2mm(J.x), u2mm(J.y));

UL _LABEL

Data members
angle real (0.0...359.9)
layer int
mirror int
spin int
text UL_TEXT

Page 32

EAGLE User Language Version 6.5.0

X, Y int (origin point)

xref int (O=plain, 1=cross-reference)
Loop members

wires() UL_WIRE (see note)
See also UL _SEGMENT

Note

If xref returns a non-zero value, the wires () loop member loops through the wires that
form the flag of a cross-reference label. Otherwise it is an empty loop.

The angle, layer, mirror and spin members always return the same values as those of
the UL_TEXT object returned by the text member. The X and y members of the text return
slightly offset values for cross-reference labels (non-zero xref), otherwise they also return

the same values as the UL_LABEL.

xref is only meaningful for net labels. For bus labels it always returns O.

Example

sheet (SH) {
SH.nets(N) {
N.segments(S) {
S.labels(L) {
printf("Label: (%f %f) '%s'", u2mm(L.x), u2mm(L.y), L.text.value);
}
}
}
}

UL _LAYER

Data members

color int

fill int

name string (LAYER NAME LENGTH)
number int

used int (O=unused, 1=used)

visible int (0=off, 1=0n)
See also UL_BOARD, UL_LIBRARY, UL _SCHEMATIC

Constants

LAYER NAME LENGT max. recommended length of a layer name (used in formatted
H output only)

LAYER TOP layer numbers

LAYER BOTTOM

LAYER PADS

Page 33

LAYER VIAS
LAYER_UNROUTED
LAYER DIMENSION
LAYER TPLACE
LAYER BPLACE
LAYER_TORIGINS
LAYER_BORIGINS
LAYER_TNAMES
LAYER_BNAMES
LAYER TVALUES
LAYER BVALUES
LAYER _TSTOP
LAYER BSTOP
LAYER TCREAM
LAYER BCREAM
LAYER_TFINISH
LAYER BFINISH
LAYER TGLUE
LAYER BGLUE
LAYER TTEST
LAYER BTEST
LAYER_TKEEPOUT
LAYER BKEEPOUT
LAYER TRESTRICT
LAYER BRESTRICT
LAYER VRESTRICT
LAYER DRILLS
LAYER HOLES
LAYER_MILLING
LAYER_MEASURES
LAYER_DOCUMENT
LAYER REFERENCE
LAYER TDOCU
LAYER BDOCU
LAYER_NETS
LAYER BUSSES
LAYER_PINS
LAYER_SYMBOLS
LAYER NAMES
LAYER_VALUES
LAYER_INFO
LAYER GUIDE
LAYER_USER

Example
board(B) {

EAGLE User Language Version 6.5.0

lowest number for user defined layers (100)

Page 34

EAGLE User Language Version 6.5.0

B.layers(L) printf("Layer %3d %s\n", L.number, L.name);

}

UL_LIBRARY

Data members
description string (see note)

grid UL_GRID

headline string

name string (LIBRARY_ NAME_LENGTH, see note)
Loop members

devices() UL_DEVICE

devicesets() UL _DEVICESET

layers() UL_LAYER

packages () UL_PACKAGE

symbols() UL_SYMBOL

See also UL_BOARD, UL _SCHEMATIC

Constants
LIBRARY NAME LENG max. recommended length of a library name (used in formatted
TH output only)

The devices () member loops through all the package variants and technologies of all
UL _DEVICESET: in the library, thus resulting in all the actual device variations available.
The devicesets () member only loops through the UL _DEVICESETSs, which in turn can
be queried for their UL_DEVICE members.

Note

The description member returns the complete descriptive text as defined with the
DESCRIPTION command, while the headline member returns only the first line of the
description, without any HTML tags. When using the description text keep in mind that
it may contain newline characters ('\n"'). The description and headline information
is only available within a library drawing, not if the library is derived form a UL_BOARD or
UL _SCHEMATIC context.

If the library is derived form a UL_BOARD or UL _SCHEMATIC context, name returns the
pure library name (without path or extension). Otherwise it returns the full library file
name.

Example

library(L) {
L.devices(D) printf("Dev: %s\n", D.name);
L.devicesets(D) printf("Dev: %s\n", D.name);
L.packages(P) printf("Pac: %s\n", P.name);
L.symbols(S) printf("Sym: %s\n", S.name);

Page 35

EAGLE User Language Version 6.5.0

}
schematic(S) {
S.libraries(L) printf("Library: %s\n", L.name);

}

UL _NET

Data members
class UL_CLASS
column string (see note)
name string (NET NAME LENGTH)
row string (see note)
Loop members
pinrefs() UL_PINREF (see note)
segments() UL_SEGMENT (see note)
See also UL_SHEET, UL_SCHEMATIC

Constants

NET NAME LENGT max. recommended length of a net name (used in formatted output
H only)

Note

The pinrefs() loop member can only be used if the net is in a schematic context.
The segments () loop member can only be used if the net is in a sheet context.

The column and row members return the column and row locations within the frame on
the sheet on which this net is drawn. Since a net can extend over a certain area, each of
these functions returns two values, separated by a blank. In case of column these are the
left- and rightmost columns touched by the net, and in case of row it's the top- and
bottommost row.

When determining the column and row of a net on a sheet, first the column and then the
row within that column is taken into account. Here XREF labels take precedence over
normal labels, which again take precedence over net wires.

If there is no frame on that sheet, "? ?" (two question marks) is returned. If any part of
the net is placed outside the frame, either of the values may be '?"' (question mark). These
members can only be used in a sheet context.

Example

schematic(S) {
S.nets(N) {
printf("Net: %s\n", N.name);
// N.segments(SEG) will NOT work here!

}
}

Page 36

EAGLE User Language Version 6.5.0

schematic(S) {
S.sheets(SH) {
SH.nets(N) {
printf("Net: %s\n", N.name);
N.segments(SEG) {
SEG.wires (W) {
printf("\tWire: (%f %f) (%f %f)\n",
u2zmm(W.x1), u2mm(W.yl), u2mm(W.x2), u2mm(W.y2));

UL_PACKAGE

Data members

area UL_AREA

description stri

headline string

library strin

name string (PACKAGE NAME LENGTH)
Loop members

circles() UL_CIRCLE

contacts() UL_CONTACT

dimensions() UL_DIMENSION

frames() UL_FRAME

holes() UL_HOLE

polygons () UL_POLYGON (see note)

rectangles() UL_RECTANGLE

texts() UL_TEXT (see note)

wires() UL_WIRE (see note)

See also UL_DEVICE, UL_ELEMENT, UL_LIBRARY

Constants

PACKAGE_NAME LENG max. recommended length of a package name (used in formatted
TH output only)

Note

The description member returns the complete descriptive text as defined with the
DESCRIPTION command, while the headline member returns only the first line of the
description, without any HTML tags. When using the description text keep in mind that
it may contain newline characters ('\n").

If the UL_PACKAGE is derived from a UL _ELEMENT, the texts () member only loops
through the non-detached texts of that element.

Page 37

EAGLE User Language Version 6.5.0

If the UL _PACKAGE is derived from a UL_ELEMENT, polygons and wires belonging to
contacts with arbitrary pad shapes are available through the loop members polygons ()
and wires () of this contact.

Example

library(L) {
L.packages (PAC) {
printf("Package: %s\n", PAC.name);
PAC.contacts(C) {
if (C.pad)
printf("\tPad: %s, (%f %f)\n",
C.name, u2mm(C.pad.x), u2mm(C.pad.y));
else if (C.smd)
printf("\tSmd: %s, (%f %f)\n",
C.name, u2mm(C.smd.x), u2mm(C.smd.y));
}
}

}
board(B) {
B.elements(E) {
printf("Element: %s, Package: %s\n", E.name, E.package.name);
}
}

UL_PAD

Data members

angle real (0.0...359.9)
diameter[layer] int

drill int

drillsymbol int

elongation int

flags int (PAD_FLAG ...)

name string (PAD _NAME LENGTH)
shape[layer] int (PAD_SHAPE .. .)
signal string

X, VY int (center point, see note)

See also UL _PACKAGE, UL_CONTACT, UL_SMD

Constants

PAD FLAG STOP generate stop mask

PAD FLAG THERMALS generate thermals

PAD FLAG FIRST use special "first pad" shape
PAD SHAPE SQUARE square

PAD SHAPE ROUND round

PAD SHAPE OCTAGON octagon

Page 38

EAGLE User Language Version 6.5.0

PAD SHAPE LONG long
PAD SHAPE OFFSET offset

PAD NAME LENGT max. recommended length of a pad name (same as
H CONTACT _NAME LENGTH)

Note

The parameters of the pad depend on the context in which it is accessed:

+ if the pad is derived from a UL_LIBRARY context, the coordinates (x, Yy) and
angle will be the same as defined in the package drawing
* in all other cases, they will have the actual values from the board

The diameter and shape of the pad depend on the layer for which they shall be retrieved,
because they may be different in each layer depending on the Design Rules. If one of the
layers LAYER TOPR..LAYER BOTTOM, LAYER TSTOP or LAYER BSTOP is given as the
index to the diameter or shape data member, the resulting value will be calculated
according to the Design Rules. If LAYER PADS is given, the raw value as defined in the
library will be returned.

drillsymbol returns the number of the drill symbol that has been assigned to this drill
diameter (see the manual for a list of defined drill symbols). A value of @ means that no
symbol has been assigned to this drill diameter.

angle defines how many degrees the pad is rotated counterclockwise around its center.

elongation is only valid for shapes PAD SHAPE LONG and PAD SHAPE_OFFSET and
defines how many percent the long side of such a pad is longer than its small side. This
member returns O for any other pad shapes.

The value returned by flags must be masked with the PAD_FLAG ... constants to
determine the individual flag settings, as in

if (pad.flags & PAD FLAG STOP) {

}

Note that if your ULP just wants to draw the objects, you don't need to check these flags
explicitly. The diameter[] and shape[] members will return the proper data; for
instance, if PAD_FLAG STOP is set, diameter[LAYER TSTOP] will return 0, which
should result in nothing being drawn in that layer. The flags member is mainly for ULPs
that want to create script files that create library objects.

Example

library(L) {
L.packages(PAC) {
PAC.contacts(C) {
if (C.pad)
printf("Pad: '%s', (%f %f), d=%f\n",
C.name, u2mm(C.pad.x), u2mm(C.pad.y),

u2mm(C.pad.diameter[LAYER BOTTOM]));

}

Page 39

EAGLE User Language Version 6.5.0

UL_PART

Data members
attributel[] string (see note)

device UL_DEVICE

deviceset UL_DEVICESET

name string (PART NAME LENGTH)
populate int (0=do not populate, 1=populate)
value string (PART VALUE LENGTH)

Loop members
attributes() UL_ATTRIBUTE (see note)
instances() UL_INSTANCE (see note)
variants() UL_VARIANT

See also UL_SCHEMATIC, UL_SHEET

Constants

PART NAME LENGTH ™MaX recommended length of a part name (used in formatted
— — output only)

PART VALUE LENGT max. recommended length of a part value (used in formatted
H output only)

Note

The attribute[] member can be used to query a UL _PART for the value of a given
attribute (see the second example below). The returned string is empty if there is no
attribute by the given name, or if this attribute is explicitly empty.

When looping through the attributes () of a UL PART, only the name, value,
defaultvalue and constant members of the resulting UL ATTRIBUTE objects are
valid.

If the part is in a sheet context, the instances () loop member loops only through those
instances that are actually used on that sheet. If the part is in a schematic context, all
instances are looped through.

Example

schematic(S) {
S.parts(P) printf("Part: %s\n", P.name);
}

schematic(SCH) {
SCH.parts(P) {
if (P.attribute["REMARK"])

Page 40

EAGLE User Language Version 6.5.0

printf("%s: %s\n", P.name, P.attribute["REMARK"]);
}
}
Data members
angle real (0, 90, 180 and 270)
contact UL_CONTACT (deprecated, see note)

direction int (PIN DIRECTION ...)
function int (PIN_FUNCTION FLAG ...)

length int (PIN LENGTH ...)
name string (PIN NAME LENGTH)
net string (see note)

route int (CONTACT ROUTE ...)

swaplevel int
visible int (PIN VISIBLE FLAG ...)
X, Y int (connection point)
Loop members
circles() UL_CIRCLE
contacts() UL_CONTACT (see note)
texts() UL_TEXT
wires() UL_WIRE
See also UL_SYMBOL, UL_PINREF, UL _CONTACTREF

Constants

PIN DIRECTION NC not connected

PIN DIRECTION IN input

PIN DIRECTION OUT output (totem-pole)
PIN DIRECTION IO in/output (bidirectional)
PIN DIRECTION OC open collector

PIN DIRECTION PWR power input pin

PIN DIRECTION PAS passive

PIN DIRECTION HIZ high impedance output
PIN DIRECTION SUP supply pin

PIN FUNCTION FLAG NONE no symbol

PIN FUNCTION FLAG DOT inverter symbol
PIN FUNCTION FLAG CLK clock symbol
PIN LENGTH POINT no wire

PIN LENGTH SHORT 0.1 inch wire

PIN LENGTH MIDDLE 0.2 inch wire

PIN LENGTH LONG 0.3 inch wire
PIN NAME LENGT max. recommended length of a pin name (used in formatted output
H only)

PIN VISIBLE FLAG OFF noname drawn

Page 41

EAGLE User Language Version 6.5.0

PIN VISIBLE FLAG PAD pad name drawn

PIN VISIBLE FLAG PIN pin name drawn

CONTACT ROUTE_ALL must explicitly route to all contacts
CONTACT ROUTE_ANY may route to any contact

Note

The contacts () loop member loops through the contacts that have been assigned to the
pin through a CONNECT command. This only makes sense in a UL_DEVICE context (in
other cases the loop is empty).

The contact data member returns the contact that has been assigned to the pin through a
CONNECT command. This member is deprecated! It will work for backwards
compatibility and as long as only one pad has been connected to the pin, but will cause
a runtime error when used with a pin that is connected to more than one pad.

The route member also only makes sense in a UL _DEVICE context (in other cases set to
0).

The coordinates (and layer, in case of an SMD) of the contact returned by the contact
data member depend on the context in which it is called:

« if the pin is derived from a UL_PART that is used on a sheet, and if there is a
corresponding element on the board, the resulting contact will have the coordinates
as used on the board

 in all other cases, the coordinates of the contact will be the same as defined in the
package drawing

The name data member always returns the name of the pin as it was defined in the library,
with any '@"' character for pins with the same name left intact (see the PIN command for
details).

The texts loop member, on the other hand, returns the pin name (if it is visible) in the
same way as it is displayed in the current drawing type.

The net data member returns the name of the net to which this pin is connected (only
available in a UL_SCHEMATIC context).

Example

library(L) {
L.symbols(S) {
printf("Symbol: %s\n", S.name);
S.pins(P) {
printf("\tPin: %s, (%f %f)", P.name, u2mm(P.x), u2mm(P.y));
if (P.direction == PIN DIRECTION IN)
printf(" input");
if ((P.function & PIN FUNCTION FLAG DOT) != 0)
printf(" inverted");
printf("\n");
}

Page 42

EAGLE User Language Version 6.5.0

UL_PINREF

Data members
instance UL _INSTANCE
part UL_PART
pin UL_PIN
See also UL_SEGMENT, UL_CONTACTREF

Example

schematic(SCH) {
SCH.sheets(SH) {
printf("Sheet: %d\n", SH.number);
SH.nets(N) {
printf("\tNet: %s\n", N.name);
N.segments (SEG) {
SEG.pinrefs(P) {
printf("connected to: %s, %s, %s\n",
P.part.name, P.instance.name, P.pin.name);

UL_POLYGON

Data members
isolate int

layer int

orphans int (0O=off, 1=0n)

pour int (POLYGON POUR ...)
rank int

spacing int

thermals int (O=off, 1=0n)

width int

Loop members
contours() UL_WIRE (see note)
fillings() UL _WIRE
wires() UL_WIRE
See also UL _BOARD, UL _PACKAGE, UL_SHEET, UL_SIGNAL, UL _SYMBOL

Constants

POLYGON POUR SOLID solid
POLYGON POUR HATCH hatch
POLYGON POUR CUTOUT cutout

Page 43

EAGLE User Language Version 6.5.0

Note

The contours() and fillings () loop members loop through the wires that are used to
draw the calculated polygon if it is part of a signal and the polygon has been calculated by
the RATSNEST command. The wires () loop member always loops through the polygon
wires as they were drawn by the user. For an uncalculated signal polygon contours ()
does the same aswires (), and fillings() does nothing.

If the contours () loop member is called without a second parameter, it loops through all
of the contour wires, regardless whether they belong to a positive or a negative polygon. If
you are interested in getting the positive and negative contour wires separately, you can call
contours () with an additional integer parameter (see the second example below). The
sign of that parameter determines whether a positive or a negative polygon will be handled,
and the value indicates the index of that polygon. If there is no polygon with the given
index, the statement will not be executed. Another advantage of this method is that you
don't need to determine the beginning and end of a particular polygon yourself (by
comparing coordinates). For any given index, the statement will be executed for all the
wires of that polygon. With the second parameter 0 the behavior is the same as without a
second parameter.

Polygon width

When using the fillings () loop member to get the fill wires of a solid polygon, make
sure the width of the polygon is not zero (actually it should be quite a bit larger than zero,
for example at least the hardware resolution of the output device you are going to draw
on). Filling a polygon with zero width may result in enormous amounts of data, since
it will be calculated with the smallest editor resolution of 1/10000mm!

Partial polygons

A calculated signal polygon may consist of several distinct parts (called positive polygons),
each of which can contain extrusions (negative polygons) resulting from other objects being
subtracted from the polygon. Negative polygons can again contain other positive polygons
and so on.

The wires looped through by contours () always start with a positive polygon. To find out
where one partial polygon ends and the next one begins, simply store the (x1,y1)
coordinates of the first wire and check them against (x2,y2) of every following wire. As
soon as these are equal, the last wire of a partial polygon has been found. It is also
guaranteed that the second point (x2,y2) of one wire is identical to the first point (x1,y1) of
the next wire in that partial polygon.

To find out where the "inside" and the "outside" of the polygon lays, take any contour wire
and imagine looking from its point (x1,y1) to (x2,y2). The "inside" of the polygon is always
on the right side of the wire. Note that if you simply want to draw the polygon you won't
need all these details.

Page 44

Example
board(B) {

B.signals(S) {
S.polygons(P) {
int x0, y0, first = 1;
P.contours (W) {
if (first) {

a

new partial polygon is starting
W.x1;
W.yl;

// aé-something with the wire

if (first)

first = 0;

else if (W.x2 == x0 && W.y2 == y0) {
// this was the last wire of the partial polygon,
// so the next wire (if any) will be the first wire
// of the next partial polygon
first = 1;

board(B) {

B.signals(S) {
S.polygons(P) {
// handle only the "positive" polygons:
int i = 1;
int active;

do {

active
P.contours(W, i) {

active = 1;

// do something with the wire

}

i++;

= 0;

} while (active);

}
}
}

UL_RECTANGLE

Data members
angle
layer
x1, yl
X2, y2

real (0.0...359.9)

int

int (lower left corner)
int (upper right corner)

EAGLE User Language Version 6.5.0

Page 45

EAGLE User Language Version 6.5.0

See also UL BOARD, UL _PACKAGE, UL_SHEET, UL_SYMBOL

angle defines how many degrees the rectangle is rotated counterclockwise around its
center. The center coordinates are given by (x1+x2)/2 and (yl+y2)/2.

Example

board(B) {
B.rectangles(R) {
printf("Rectangle: (%f %f), (%f %f)\n",
u2mm(R.x1), u2mm(R.yl), u2mm(R.x2), u2mm(R.y2));
}

}

UL_SCHEMATIC

Data members

alwaysvectorfont int (ALWAYS VECTOR FONT ..., see note)
description string

grid UL_GRID

headline string

name string (see note)

verticaltext int (VERTICAL TEXT ...)

xreflabel string

Loop members
attributes() UL_ATTRIBUTE (see note)

classes() UL_CLASS
layers() UL_LAYER
libraries() UL_LIBRARY
nets() UL_NET
parts() UL_PART
sheets() UL_SHEET

variantdefs() UL_VARIANTDEF
See also UL_BOARD, UL_LIBRARY

Constants

ALWAYS VECTOR FONT GUI al.waysvectorfont is set in the user interface
- - - dialog

ALWAYS VECTOR FONT PERSISTEN alwaysvectorfont is set persistent in this

T schematic

VERTICAL TEXT UP reading direction for vertical texts: up

VERTICAL TEXT DOWN reading direction for vertical texts: down

Note

The value returned by alwaysvectorfont can be used in boolean context or can be

Page 46

EAGLE User Language Version 6.5.0

masked with the ALWAYS VECTOR FONT ... constants to determine the source of this
setting, as in

if (sch.alwaysvectorfont) {
// alwaysvectorfont is set in general

}
if (sch.alwaysvectorfont & ALWAYS VECTOR_FONT GUI) {

// alwaysvectorfont is set in the user interface

}

The name member returns the full file name, including the directory.

The xreflabel member returns the format string used to display cross-reference labels.

The attributes () loop member loops through the global attributes.

Example

schematic(S) {
S.parts(P) printf("Part: %s\n", P.name);
}

UL _SEGMENT

Loop members
junctions() UL_JUNCTION (see note)

labels() UL_LABEL

pinrefs() UL_PINREF (see note)

texts() UL_TEXT (deprecated, see note)
wires() UL_WIRE

See also UL_BUS, UL_NET

Note

The junctions() and pinrefs() loop members are only available for net segments.

The texts () loop member was used in older EAGLE versions to loop through the labels of
a segment, and is only present for compatibility. It will not deliver the text of cross-
reference labels at the correct position. Use the labels () loop member to access a
segment's labels.

Example

schematic(SCH) {
SCH.sheets(SH) {
printf("Sheet: %d\n", SH.number);
SH.nets(N) {
printf("\tNet: %s\n", N.name);
N.segments(SEG) {
SEG.pinrefs(P) {

Page 47

EAGLE User Language Version 6.5.0

printf("connected to: %s, %S, %s\n",
P.part.name, P.instance.name, P.pin.name);

UL _SHEET

Data members

area UL_AREA
description stri
headline strin
number int

Loop members
busses() UL_BUS
circles() UL_CIRCLE
dimensions() UL_DIMENSION
frames() UL_FRAME
instances() UL_INSTANCE
nets () UL_NET
polygons () UL_POLYGON
rectangles() UL_RECTANGLE
texts() UL_TEXT
wires() UL_WIRE

See also UL_SCHEMATIC

Example

schematic(SCH) {
SCH.sheets(S) {
printf("Sheet: %d\n", S.number);

}
}

UL_SIGNAL

Data members
airwireshidden int

class a_CLASS
name string (SIGNAL NAME LENGTH)

Loop members
contactrefs() UL_CONTACTREF
polygons () UL_POLYGON
vias () UL_VIA

Page 48

EAGLE User Language Version 6.5.0

wires() UL_WIRE
See also UL BOARD

Constants

SIGNAL NAME LENG max. recommended length of a signal name (used in formatted
TH output only)

Example

board(B) {
B.signals(S) printf("Signal: %s\n", S.name);
}

UL_SMD

Data members

angle real (0.0...359.9)
dx[layer], dy[layer] int (size)

flags int (SMD_FLAG ...)
layer int (see note)

name string (SMD NAME LENGTH)
roundness int (see note)

signal string

X, VY int (center point, see note)

See also UL _PACKAGE, UL_CONTACT, UL PAD

Constants

SMD FLAG_STOP generate stop mask

SMD FLAG_THERMALS generate thermals

SMD FLAG_CREAM generate cream mask

SMD NAME LENGT max. recommended length of an smd name (same as
H CONTACT_NAME_LENGTH)

Note

The parameters of the smd depend on the context in which it is accessed:

* if the smd is derived from a UL_LIBRARY context, the coordinates (X, Y), angle,
layer and roundness of the smd will be the same as defined in the package
drawing

« in all other cases, they will have the actual values from the board

If the dx and dy data members are called with an optional layer index, the data for that
layer is returned according to the Design Rules. Valid layers are LAYER TOB LAYER TSTOP
and LAYER TCREAM for an smd in the Top layer, and LAYER BOTTOM, LAYER BSTOP

Page 49

EAGLE User Language Version 6.5.0

and LAYER BCREAM for an smd in the Bottom layer, respectively.
angle defines how many degrees the smd is rotated counterclockwise around its center.

The value returned by flags must be masked with the SMD FLAG ... constants to
determine the individual flag settings, as in

if (smd.flags & SMD FLAG STOP) {

}

Note that if your ULP just wants to draw the objects, you don't need to check these flags
explicitly. The dx[] and dy[] members will return the proper data; for instance, if

SMD FLAG STOP is set, dX[LAYER TSTOP] will return 0, which should result in nothing
being drawn in that layer. The flags member is mainly for ULPs that want to create script
files that create library objects.

Example

library(L) {
L.packages(PAC) {
PAC.contacts(C) {
if (C.smd)
printf("Smd: '%s', (%f %f), dx=%f, dy=%f\n",
C.name, u2mm(C.smd.x), u2mm(C.smd.y), u2mm(C.smd.dx),
u2mm(C.smd.dy));
}
}
}

UL _SYMBOL

Data members

area UL_AREA

description string

headline string

library string

name string (SYMBOL_NAME_LENGTH)
Loop members

circles() UL_CIRCLE

dimensions() UL DIMENSION

frames() UL_FRAME

rectangles() UL _RECTANGLE

pins() UL_PIN

polygons () UL_POLYGON

texts() UL_TEXT (see note)

wires() UL_WIRE

See also UL_GATE, UL_LIBRARY

Page 50

EAGLE User Language Version 6.5.0

Constants

SYMBOL NAME LENG max. recommended length of a symbol name (used in formatted
TH output only)

Note

If the UL_SYMBOL is derived from a UL INSTANCE, the texts () member only loops
through the non-detached texts of that instance.

Example

library(L) {
L.symbols(S) printf("Sym: %s\n", S.name);
}

UL _TEXT

Data members

align int (ALIGN ...)
angle real (0.0...359.9)
font int (FONT ...)
layer int
linedistance int

mirror int

ratio int

size int

spin int

value string

X, Y int (origin point)

Loop members
wires() UL_WIRE (see note)
See also UL_BOARD, UL _PACKAGE, UL_SHEET, UL_SYMBOL

Constants

FONT VECTOR vector font

FONT PROPORTIONAL proportional font
FONT FIXED fixed font

ALIGN BOTTOM LEFT bottom/left aligned

ALIGN BOTTOM CENTER bottom/center aligned
ALIGN BOTTOM RIGHT bottom/right aligned

ALIGN CENTER LEFT center/left aligned
ALIGN CENTER centered

ALIGN CENTER RIGHT center/right aligned
ALIGN TOP LEFT top/left aligned

Page 51

EAGLE User Language Version 6.5.0

ALIGN TOP CENTER top/center aligned
ALIGN TOP RIGHT top/right aligned
Note

The wires () loop member always accesses the individual wires the text is composed of
when using the vector font, even if the actual font is not FONT VECTOR.

If the UL_TEXT is derived from a UL_ELEMENT or UL _INSTANCE context, the member
values will be those of the actual text as located in the board or sheet drawing.

Example

board(B) {
B.texts(T) {
printf("Text: %s\n", T.value);
}
}

UL_VARIANTDEF

Data members
name string
See also UL_VARIANT, UL_SCHEMATIC, UL _BOARD

Example

schematic(SCH) {
SCH.variantdefs (VD) {
printf("Variant: '%s'\n", VD.name);
}
}

UL_VARIANT

Data members

populate int (0=do not populate, 1=populate)
value string

technology string
variantdef UL_VARIANTDEF
See also UL VARIANTDEF, UL _PART, UL_ELEMENT

Example

schematic(SCH) {
SCH.parts(P) {
P.variants(V) {

Page 52

EAGLE User Language Version 6.5.0

printf("%s: %spopulate\n", V.variantdef.name, V.populate ? "" : "do not

");
}
}
}

UL VIA

Data members
diameter[layer] int

drill int

drillsymbol int

end int

flags int (VIA FLAG ...)
shape[layer] int (VIA SHAPE ...)
start int

X, Y int (center point)

See also UL_SIGNAL

Constants

VIA FLAG STOP always generate stop mask
VIA SHAPE SQUARE square

VIA SHAPE ROUND round
VIA SHAPE OCTAGON octagon
Note

The diameter and shape of the via depend on the layer for which they shall be retrieved,
because they may be different in each layer depending on the Design Rules. If one of the
layers LAYER TOP..LAYER BOTTOM, LAYER TSTOP or LAYER BSTOP is given as the
index to the diameter or shape data member, the resulting value will be calculated
according to the Design Rules. If LAYER VIAS is given, the raw value as defined in the via
will be returned.

Note that diameter and shape will always return the diameter or shape that a via would
have in the given layer, even if that particular via doesn't cover that layer (or if that layer
isn't used in the layer setup at all).

start and end return the layer numbers in which that via starts and ends. The value of
start will always be less than that of end.

drillsymbol returns the number of the drill symbol that has been assigned to this drill
diameter (see the manual for a list of defined drill symbols). A value of @ means that no
symbol has been assigned to this drill diameter.

Page 53

EAGLE User Language Version 6.5.0

Example

board(B) {
B.signals(S) {
S.vias(V)
printf(
}
}
}

{
"Via: (%f %f)\n", u2mm(V.x), u2mm(V.y));

UL_WIRE

Data members

arc UL_ARC

cap int (CAP_...)

curve real

layer int

style int WIRE STYLE ...)

width int

x1, yl int (starting point)

X2, y2 int (end point)
Loop members

pieces() UL_WIRE (see note)
See also UL BOARD, UL PACKAGE, UL_SEGMENT, UL_SHEET, UL_SIGNAL, UL _SYMBOL,
UL ARC

Constants

CAP_FLAT flat arc ends
CAP_ROUND round arc ends
WIRE STYLE CONTINUOUS continuous

WIRE STYLE LONGDASH long dash

WIRE STYLE SHORTDASH short dash

WIRE STYLE DASHDOT dash dot
Wire Style

A UL_WIRE that has a style other than WIRE STYLE CONTINUOUS can use the pieces()
loop member to access the individual segments that constitute for example a dashed wire.
If pieces () is called for a UL WIRE with WIRE STYLE CONTINUOUS, a single segment
will be accessible which is just the same as the original UL_WIRE. The pieces () loop
member can't be called from a UL_WIRE that itself has been returned by a call to

pieces () (this would cause an infinite recursion).

Arcs at Wire level

Arcs are basically wires, with a few additional properties. At the first level arcs are treated

Page 54

EAGLE User Language Version 6.5.0

exactly the same as wires, meaning they have a start and an end point, a width, layer and
wire style. In addition to these an arc, at the wire level, has a cap and a curve parameter.
cap defines whether the arc endings are round or flat, and curve defines the "curvature" of
the arc. The valid range for curve is -360..+360, and its value means what part of a full
circle the arc consists of. A value of 90, for instance, would result in a 90° arc, while 180
would give you a semicircle. The maximum value of 360 can only be reached theoretically,
since this would mean that the arc consists of a full circle, which, because the start and end
points have to lie on the circle, would have to have an infinitely large diameter. Positive
values for curve mean that the arc is drawn in a mathematically positive sense (i.e.
counterclockwise). If curve is 0, the arc is a straight line ("no curvature"), which is actually
a wire.

The cap parameter only has a meaning for actual arcs, and will always return CAP_ROUND
for a straight wire.

Whether or not an UL _WIRE is an arc can be determined by checking the boolean return
value of the arc data member. If it returns 0, we have a straight wire, otherwise an arc. If
arc returns a non-zero value it may be further dereferenced to access the UL_ARC specific
parameters start and end angle, radius and center point. Note that you may only need these
additional parameters if you are going to draw the arc or process it in other ways where the
actual shape is important.

Example

board(B) {
B.wires (W) {
printf("Wire: (%f %f) (%f %f)\n",
u2mm(W.x1), u2mm(W.yl), u2mm(W.x2), u2mm(W.y2));
}

}

Definitions

The data items to be used in a User Language Program must be defined before they can be
used.

There are three kinds of definitions:

» Constant Definitions
e Variable Definitions
* Function Definitions

The scope of a constant or variable definition goes from the line in which it has been
defined to the end of the current block, or to the end of the User Language Program, if the
definition appeared outside any block.

The scope of a function definition goes from the closing brace (}) of the function body to
the end of the User Language Program.

Page 55

EAGLE User Language Version 6.5.0

Constant Definitions

Constants are defined using the keyword enum, as in

enum { a, b, ¢ };

which would define the three constants a, b and ¢, giving them the values 0, 1 and 2,
respectively.

Constants may also be initialized to specific values, like

enum { a, b =5, ¢ };

where a would be 0, b would be 5 and ¢ would be 6.

Variable Definitions

The general syntax of a variable definition is

[numeric] type identifier [= initializer][, ...];

where type is one of the data or object types, identifier is the name of the variable,
and initializer is a optional initial value.

Multiple variable definitions of the same type are separated by commas ().

If identifier is followed by a pair of brackets ([]), this defines an array of variables of
the given type. The size of an array is automatically adjusted at runtime.

The optional keyword numeric can be used with string arrays to have them sorted
alphanumerically by the sort() function.

, in case of a

By default (if no initializer is present), data variables are set to O (or
string), and object variables are "invalid".

Examples
int i; defines an int variable named 1
string s = "Hello"; ﬁafér{elso%'Strlng variable named s and initializes it to

defines three real variables named a, b and ¢, initializing b to

real a, b = 1.0, c; the value 1.0

int n[] = { 1, 2, 3 defines an array of int, initializing the first three elements to
}s; 1,2 and 3

:;mgg%; . string defines a string array that can be sorted alphanumerically
UL WIRE w; defines a UL_WIRE object named w

The members of array elements of object types can't be accessed directly:
UL SIGNAL signals[];

UL SIGNAL s = signals[0];

Page 56

EAGLE User Language Version 6.5.0

printf("%s", s.name);

Function Definitions

You can write your own User Language functions and call them just like the Builtin
Functions.

The general syntax of a function definition is

type identifier(parameters)

{

statements

}

where type is one of the data or object types, identifier is the name of the function,
parameters is a list of comma separated parameter definitions, and statements is a
sequence of statements.

Functions that do not return a value have the type void.

A function must be defined before it can be called, and function calls can not be recursive
(a function cannot call itself).

The statements in the function body may modify the values of the parameters, but this will
not have any effect on the arguments of the function call.

Execution of a function can be terminated by the return statement. Without any return
statement the function body is executed until it's closing brace (}).

A call to the exit () function will terminate the entire User Language Program.

The special function main ()

If your User Language Program contains a function called main (), that function will be
explicitly called as the main function, and it's return value will be the return value of the
program.

Command line arguments are available to the program through the global Builtin Variables
argc and argv.

Example

int CountDots(string s)
{

int dots = 0;

for (int i = 0; s[i]; ++i)

if (s[i] == "'.")
++dots;

return dots;
}
string dotted = "This.has.dots...";
output("test") {

printf("Number of dots: %d\n",

Page 57

EAGLE User Language Version 6.5.0

CountDots(dotted));

Operators

The following table lists all of the User Language operators, in order of their precedence
(Unary having the highest precedence, Comma the lowest):

Unary 1
Multiplicative * / %
Additive + -

Shift << >>
Relational < <= > >=
Equality = l=
Bitwise AND
Bitwise XOR
Bitwise OR
Logical AND
Logical OR
Conditional
Assignment
Comma "
Associativity is left to right for all operators, except for Unary, Conditional and Assignment,
which are right to left associative.

1l |?):':|g'|—| >

*
1
N
Il
oP
1}
+
1l

-= &: N= |= <K= >>=

The normal operator precedence can be altered by the use of parentheses.

Bitwise Operators

Bitwise operators work only with data types char and int.

Unary

~ Bitwise (1's) complement
Binary

<< Shift left

>> Shift right

& Bitwise AND

” Bitwise XOR

| Bitwise OR
Assignment

&= Assign bitwise AND
= Assign bitwise XOR
|= Assign bitwise OR
<<= Assign left shift
>>= Assign right shift

Page 58

EAGLE User Language Version 6.5.0

Logical Operators

Logical operators work with expressions of any data type.

Unary

! Logical NOT
Binary

& Logical AND
| | Logical OR

Using a st ring expression with a logical operator checks whether the string is empty.
Using an Object Type with a logical operator checks whether that object contains valid data.

Comparison Operators
Comparison operators work with expressions of any data type, except Object Types.

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to
== Equal to

= Not equal to

Evaluation Operators

Evaluation operators are used to evaluate expressions based on a condition, or to group a
sequence of expressions and have them evaluated as one expression.

?: Conditional
, Comma
The Conditional operator is used to make a decision within an expression, as in

int a;
// ...code that calculates 'a'
string s = a ? "True" : "False";

which is basically the same as

int a;
string s;
// ...code that calculates 'a'
if (a)
s = "True";
else
s = "False";

but the advantage of the conditional operator is that it can be used in an expression.

The Comma operator is used to evaluate a sequence of expressions from left to right, using
the type and value of the right operand as the result.

Page 59

EAGLE User Language Version 6.5.0

Note that arguments in a function call as well as multiple variable declarations also use

commas as delimiters, but in that case this is not a comma operator!

Arithmetic Operators

Arithmetic operators work with data types char, int and real (except for ++, - -, % and

%=).

Unary

+ Unary plus

- Unary minus

++ Pre- or postincrement
-- Pre- or postdecrement
Binary

* Multiply

/ Divide

% Remainder (modulus)
+ Binary plus

- Binary minus
Assignment

= Simple assignment

*= Assign product

/= Assign quotient

%= Assign remainder (modulus)
+= Assign sum

-= Assign difference
See also String Operators

String Operators

String operators work with data types char, int and string. The left operand must

always be of type string.
Binary

+ Concatenation
Assignment

= Simple assignment
+= Append to string

The + operator concatenates two strings, or adds a character to the end of a string and

returns the resulting string.

The += operator appends a string or a character to the end of a given string.

See also Arithmetic Operators

Page 60

EAGLE User Language Version 6.5.0

Expressions

An expression can be one of the following:

» Arithmetic Expression
» Assignment Expression
» String Expression

* Comma Expression

* Conditional Expression
» Function Call

Expressions can be grouped using parentheses, and may be recursive, meaning that an
expression can consist of subexpressions.

Arithmetic Expression

An arithmetic expression is any combination of numeric operands and an arithmetic
operator or a bitwise operator.

Examples

a+b
C++
m<<1l1

Assignment Expression

An assignment expression consists of a variable on the left side of an assignment operator,
and an expression on the right side.

Examples
a = Xx + 42

b += ¢

s = "Hello"

String Expression

A string expression is any combination of string and char operands and a string operator.

Examples

s + ".brd"
t + 'x'

Page 61

EAGLE User Language Version 6.5.0

Comma Expression

A comma expression is a sequence of expressions, delimited by the comma operator

Comma expressions are evaluated left to right, and the result of a comma expression is the
type and value of the rightmost expression.

Example

i++, j++, k++

Conditional Expression

A conditional expression uses the conditional operator to make a decision within an
expression.

Example

int a;

// ...code that calculates 'a'
string s = a ? "True" : "False";

Function Call

A function call transfers the program flow to a user defined function or a builtin function.
The formal parameters defined in the function definition are replaced with the values of the
expressions used as the actual arguments of the function call.

Example
int p = strchr(s, 'b');

Statements

A statement can be one of the following:

e Compound Statement
e Control Statement

» Expression Statement
* Builtin Statement

e Constant Definition

» Variable Definition

Statements specify the flow of control as a User Language Program executes. In absence of

Page 62

EAGLE User Language Version 6.5.0

specific control statements, statements are executed sequentially in the order of appearance
in the ULP file.

Compound Statement

A compound statement (also known as block) is a list (possibly empty) of statements
enclosed in matching braces ({}). Syntactically, a block can be considered to be a single
statement, but it also controls the scoping of identifiers. An identifier declared within a
block has a scope starting at the point of declaration and ending at the closing brace.

Compound statements can be nested to any depth.

Expression Statement

An expression statement is any expression followed by a semicolon.

An expression statement is executed by evaluating the expression. All side effects of this
evaluation are completed before the next statement is executed. Most expression
statements are assignments or function calls.

A special case is the empty statement, consisting of only a semicolon. An empty statement
does nothing, but it may be useful in situations where the ULP syntax expects a statement
but your program does not need one.

Control Statements

Control statements are used to control the program flow.

Iteration statements are

do...while
for
while

Selection statements are

if...else
switch

Jump statements are

break
continue
return

break

The break statement has the general syntax

break;

Page 63

EAGLE User Language Version 6.5.0

and immediately terminates the nearest enclosing do...while, for, switch or while
statement. This also applies to loop members of object types.

Since all of these statements can be intermixed and nested to any depth, take care to ensure
that your break exits from the correct statement.

continue

The continue statement has the general syntax

continue;

and immediately transfers control to the test condition of the nearest enclosing do...while,
while, or for statement, or to the increment expression of the nearest enclosing for
statement.

Since all of these statements can be intermixed and nested to any depth, take care to ensure
that your continue affects the correct statement.

do...while

The do...while statement has the general syntax

do statement while (condition);

and executes the statement until the condition expression becomes zero.

The condition is tested after the first execution of statement, which means that the
statement is always executed at least one time.

If there is no break or return inside the statement, the statement must affect the
value of the condition, or condition itself must change during evaluation in order to
avoid an endless loop.

Example

string s = "Trust no one!";
int i = -1;
do {

++1i;

} while (s[i]);

for

The for statement has the general syntax

for ([init]; [test]; [inc]) statement

and performs the following steps:

Page 64

EAGLE User Language Version 6.5.0

—

. If an initializing expression init is present, it is executed.

2. If a test expression is present, it is executed. If the result is nonzero (or if there is
no test expression at all), the statement is executed.

3. If an 1nc expression is present, it is executed.

4. Finally control returns to step 2.

If there is no break or return inside the statement, the inc expression (or the
statement) must affect the value of the test expression, or test itself must change
during evaluation in order to avoid an endless loop.

The initializing expression 1nit normally initializes one or more loop counters. It may also
define a new variable as a loop counter. The scope of such a variable is valid until the end
of the active block.

Example

string s = "Trust no one!";
int sum = 0;
for (int i = 0; s[i]; ++i)
sum += s[i]; // sums up the characters in s

if...else

The if..else statement has the general syntax

if (expression)
t statement
[else
f statement]

The conditional expression is evaluated, and if its value is nonzero the t statement is
executed. Otherwise the f statement is executed in case there is an else clause.

An else clause is always matched to the last encountered if without an else. If this is
not what you want, you need to use braces to group the statements, as in

if (a == 1) {
if (b == 1)
printf("a == 1 and b == 1\n");

else
printf("a != 1\n");

return

A function with a return type other than void must contain at least one return statement
with the syntax

return expression;

Page 65

EAGLE User Language Version 6.5.0
where expression must evaluate to a type that is compatible with the function's return
type. The value of expression is the value returned by the function.

If the function is of type void, a return statement without an expression can be used
to return from the function call.

switch

The switch statement has the general syntax

switch (sw exp) {
case case _exp: case statement

taéfault: def statement]
}

and allows for the transfer of control to one of several case-labeled statements, depending
on the value of sw_exp (which must be of integral type).

Any case statement can be labeled by one or more case labels. The case exp of each
case label must evaluate to a constant integer which is unique within it's enclosing
switch statement.

There can also be at most one default label.

After evaluating sw_exp, the case exp are checked for a match. If a match is found,
control passes to the case statement with the matching case label.

If no match is found and there is a default label, control passes to def statement.
Otherwise none of the statements in the switch is executed.

Program execution is not affected when case and default labels are encountered.
Control simply passes through the labels to the following statement.

To stop execution at the end of a group of statements for a particular case, use the break
statement.

Example

string s = "Hello World";
int vowels 0, others = 0;

for (int i = 0; s[i]; ++i)
switch (toupper(s[il])) {
case 'A':
case 'E':
case 'I':
case '0':
case 'U': ++vowels;

break;
default: ++others;

printf("There are %d vowels in '%s'\n", vowels, s);

Page 66

EAGLE User Language Version 6.5.0

while

The while statement has the general syntax

while (condition) statement

and executes the statement as long as the condition expression is not zero.

The condition is tested before the first possible execution of statement, which means
that the statement may never be executed if condition is initially zero.

If there is no break or return inside the statement, the statement must affect the
value of the condition, or condition itself must change during evaluation in order to
avoid an endless loop.

Example
string s = "Trust no one!";
int i = 0;
while (s[i])
++1i;

Builtins

Builtins are Constants, Variables, Functions and Statements that provide additional
information and allow for data manipulations.

* Builtin Constants
* Builtin Variables

* Builtin Functions

e Builtin Statements

Builtin Constants

Builtin constants are used to provide information about object parameters, such as
maximum recommended name length, flags etc.

Many of the object types have their own Constants section which lists the builtin constants
for that particular object (see e.g. UL_PIN).

The following builtin constants are defined in addition to the ones listed for the various
object types:

EAGLE VERSION EAGLE program version number (int)

EAGLE RELEASE EAGLE program release number (int)

EAGLE SIGNATUR a string containing EAGLE program name, version and copyright
E information

EAGLE PATH a string containing the complete path of the EAGLE executable
EAGLE DIR a string containing the directory of the EAGLE installation

Page 67

EAGLE User Language Version 6.5.0

($EAGLEDIR)

a string containing the user's home directory when starting EAGLE
($HOME)

a string containing a signature of the operating system (e.g. Mac...,
Windows... or Linux)

REAL EPSILON t'h=e nlnrgmum positive real number such that 1.0 + REAL EPSILON
REAL MAX the largest possible real value

the smallest possible (positive!) real value

EAGLE HOME

0S_SIGNATURE

REAL_MIN the smallest representable number is -REAL MAX
INT MAX the largest possible int value

INT MIN the smallest possible int value

PI the value of "pi" (3.14..., real)

usage a string containing the text from the #usage directive

These builtin constants contain the directory paths defined in the directories dialog, with
any of the special variables ($HOME and $EAGLEDIR) replaced by their actual values. Since
each path can consist of several directories, these constants are string arrays with an
individual directory in each member. The first empty member marks the end of the path:

path lbr[] Libraries

path drul] Design Rules

path ulp[] User Language Programs

path scr[] Scripts

path cam[] CAM Jobs

path epf[] Projects

When using these constants to build a full file name, you need to use a directory separator,
as in

string s = path lbr[0] + '/' + "mylib.lbr";

The libraries that are currently in use through the USE command:

used libraries[]

Builtin Variables

Builtin variables are used to provide information at runtime.

int argc number of arguments given to the RUN command
arguments given to the RUN command (argv[0] is the full ULP file

string argv|[] name)

Builtin Functions

Builtin functions are used to perform specific tasks, like printing formatted strings, sorting
data arrays or the like.

You may also write your own functions and use them to structure your User Language
Program.

Page 68

EAGLE User Language Version 6.5.0

The builtin functions are grouped into the following categories:

e Character Functions

» File Handling Functions
» Mathematical Functions
» Miscellaneous Functions
* Network Functions

* Printing Functions

» String Functions

* Time Functions

* Object Functions

¢ XML Functions

Alphabetical reference of all builtin functions:

* abs
e acos
asin
e atan
. il
et

HE

[]
N 0 |0
= |=h |
=
%)
—t

e clrgrou

e exit

 fdlsignature()
filedir
fileerror
fileext
fileglob

ilename

fileread

o filesetext()
» filesize()

i

Page 69

EAGLE User Language Version 6.5.0

islower()
isprint()
ispunct
isspace

isupper

t

—

round
setgrou
setvariant

ort
rintf

w»n |\ |\n
~—t
§:1
(7]

trch
trjoin

©n [|«
fy
.
(D

triw
strrchr
trrstr
strsplit
trstr

2]
—

i

i

trtod
trtol

:

2]

Strxstr
system
t2da

il

Page 70

EAGLE User Language Version 6.5.0

+ t2dayofweek()
* t2hour()

* t2minute()

e t2month()

* t2second()

* t2string()

e t2year
e tan()

ime
* tolower()

* toupper

e trunc()

e u2inch()

* u2mic()

e u2mil

e u2mm()

» variant()

» xmlattribute()

» xmlattributes()
» xmlelement()

* xmlelements()
» xmltags()

o xmltext()

L]
~t |t

Character Functions

Character functions are used to manipulate single characters.

The following character functions are available:

e isalnum()
 isalpha()
e iscntrl()

* isdigit()

» isgraph()
» islower()
* isprint()
* ispunct()
» isspace()

e isupper
» isxdigit()
* tolower()

e toupper

Page 71

EAGLE User Language Version 6.5.0

is...()

Function
Check whether a character falls into a given category.
Syntax
int isalnum(char
int isalpha(char
int iscntrl(char
int isdigit(char
int isgraph(char
int islower(char
int isprint(char
int ispunct(char
int isspace(char
int isupper(char
int isxdigit(char
Returns
The is. .. functions return nonzero if the given character falls into the category, zero
otherwise.

OO 00000000
) = = = = = = = '

N N NE wE wE wE wE wE wE wE wa

.
’

Character categories

isalnum letters (A to Z or a to z) or digits (0 to 9)

isalpha letters (A to Z or a to z)

iscntrl delete characters or ordinary control characters (0x7F or 0x00 to Ox1F)
isdigit digits (0 to 9)

isgraph printing characters (except space)

islower lowercase letters (a to z)

isprint printing characters (0x20 to Ox7E)

ispunct punctuation characters (iscntrl or isspace)

space, tab, carriage return, new line, vertical tab, or formfeed (0x09 to
0x0D, 0x20)

isupper uppercase letters (A to Z)

isxdigit hex digits (O to9,Ato F,ato f)

isspace

Example

char ¢ = 'A';
if (isxdigit(c))

printf("%sc is hex\n", c);
else

printf("%sc is not hex\n", c);

to...()

Function

Page 72

EAGLE User Language Version 6.5.0

Convert a character to upper- or lowercase.
Syntax
char tolower(char c);
char toupper(char c);
Returns
The tolower function returns the converted character if C is uppercase. All other
characters are returned unchanged.
The toupper function returns the converted character if C is lowercase. All other
characters are returned unchanged.

See also strupr, strlwr

File Handling Functions

Filename handling functions are used to work with file names, sizes and timestamps.

The following file handling functions are available:

 fileerror()
+ fileglob()
o filedir()

o fileext()

» filename()
 fileread()
 filesetext()
 filesize()
 filetime()

See output() for information about how to write into a file.

fileerror()

Function
Returns the status of I/O operations.
Syntax
int fileerror();
Returns
The fileerror function returns O if everything is ok.

See also output, printf, fileread

fileerror checks the status of any I/0 operations that have been performed since the
last call to this function and returns 0 if everything was ok. If any of the I/0 operations has
caused an error, a value other than 0 will be returned.

You should call fileerror before any I/0 operations to reset any previous error state,
and call it again after the I/O operations to see if they were successful.

Page 73

EAGLE User Language Version 6.5.0

When fileerror returns a value other than 0 (thus indicating an error) a proper error
message has already been given to the user.

Example

fileerror();
output("file.txt", "wt") {
printf("Test\n");

if (fileerror())
exit(1l);

fileglob()

Function
Perform a directory search.
Syntax
int fileglob(string &array[], string pattern);
Returns
The fileglob function returns the number of entries copied into array.

See also dlgFileOpen(), digFileSave()

fileglob performs a directory search using pattern.

pattern may contain '*' and '?"' as wildcard characters. If pattern ends witha '/ ",
the contents of the given directory will be returned.

Names in the resulting array that end with a ' /' are directory names.
The array is sorted alphabetically, with the directories coming first.

The special entries '. ' and '.."' (for the current and parent directories) are never
returned in the array.

If pattern doesn't match, or if you don't have permission to search the given directory, the
resulting array will be empty.

Note for Windows users

[Wpy The directory delimiter in the array is always a forward slash. This makes sure
M User Language Programs will work platform independently. In the pattern the
backslash ('\ ') is also treated as a directory delimiter.

Sorting filenames under Windows is done case insensitively.
Example

string all;
int n = fileglob(a, "*.brd");

Page 74

EAGLE User Language Version 6.5.0

Filename Functions

Function
Split a filename into its separate parts.
Syntax
string filedir(string file);
string fileext(string file);
string filename(string file);
string filesetext(string file, string newext);
Returns
filedir returns the directory of file (including the drive letter under Windows).
fileext returns the extension of file.
filename returns the file name of file (including the extension).
filesetext returns file with the extension set to newext.

See also Filedata Functions

Example

if (board) board(B) {
output(filesetext(B.name, ".out")) {

}

Filedata Functions

Function
Gets the timestamp and size of a file.
Syntax
int filesize(string filename);
int filetime(string filename);
Returns
filesize returns the size (in byte) of the given file.
filetime returns the timestamp of the given file in a format to be used with the
time functions.

See also time, Filename Functions

Example

board(B)
printf("Board: %s\nSize: %d\nTime: %s\n",
B.name, filesize(B.name),
t2string(filetime(B.name)));

Page 75

EAGLE User Language Version 6.5.0

File Input Functions

File input functions are used to read data from files.

The following file input is available:

* fileread()

See output() for information about how to write into a file.

fileread()

Function
Reads data from a file.
Syntax
int fileread(dest, string file);
Returns
fileread returns the number of objects read from the file.
The actual meaning of the return value depends on the type of dest.

See also lookup, strsplit, fileerror

If dest is a character array, the file will be read as raw binary data and the return value
reflects the number of bytes read into the character array (which is equal to the file size).

If dest is a string array, the file will be read as a text file (one line per array member) and
the return value will be the number of lines read into the string array. Newline characters
will be stripped.

If dest is a string, the entire file will be read into that string and the return value will be
the length of that string (which is not necessarily equal to the file size, if the operating
system stores text files with "cr/1f" instead of a "newline" character).

Example

char b[];

int nBytes = fileread(b, "data.bin");
string lines[];

int nLines = fileread(lines, "data.txt");
string text;

int nChars = fileread(text, "data.txt");

Mathematical Functions

Mathematical functions are used to perform mathematical operations.

The following mathematical functions are available:

e abs()
e acos()

Page 76

EAGLE User Language Version 6.5.0

[]
SREEEREELE
~CREBBEEE

3
[
o

2138 B,
i
[aW

L]
%]
—
—

L[]
g |
[
EE
(@]

Error Messages
If the arguments of a mathematical function call lead to an error, the error message will
show the actual values of the arguments. Thus the statements

-1.0;
sqrt(2 * x);

real x
real r

will lead to the error message

Invalid argument in call to 'sqrt(-2)'

Absolute, Maximum and Minimum Functions

Function

Absolute, maximum and minimum functions.
Syntax

type abs(type x);

type max(type x, type y);

type min(type x, type y);
Returns

abs returns the absolute value of X.

max returns the maximum of X and Y.

min returns the minimum of X and Y.

The return type of these functions is the same as the (larger) type of the arguments.
type must be one of char, int or real.

Page 77

EAGLE User Language Version 6.5.0

Example

real x = 2.567, y = 3.14;
printf("The maximum is %f\n", max(x, y));

Rounding Functions

Function
Rounding functions.
Syntax
real ceil(real x);
real floor(real x);
real frac(real x);
real round(real x);
real trunc(real x);
Returns
ceil returns the smallest integer not less than X.
floor returns the largest integer not greater than X.
frac returns the fractional part of X.
round returns X rounded to the nearest integer.
trunc returns the integer part of X.

Example

real x = 2.567;
printf("The rounded value of %f is %f\n", x, round(x));

Trigonometric Functions

Function
Trigonometric functions.

Syntax
real acos(real Xx);
real asin(real x);
real atan(real x);
real cos(real x);
real sin(real x);
real tan(real x);

Returns
acos returns the arc cosine of X.
asin returns the arc sine of X.
atan returns the arc tangent of X.
cos returns the cosine of X.
sin returns the sine of X.

Page 78

EAGLE User Language Version 6.5.0

tan returns the tangent of X.

Constants
PI the value of "pi" (3.14...)

Note

Angles are given in radian.

Example

real x = PI / 2;
printf("The sine of %f is %f\n", x, sin(x));

Exponential Functions

Function
Exponential Functions.

Syntax
real exp(real x);
real log(real Xx);
real loglO(real x);
real pow(real x, real y);
real sqrt(real Xx);

Returns
exp returns the exponential e to the power of X.
log returns the natural logarithm of X.
10910 returns the base 10 logarithm of X.
pow returns the value of X to the power of y.
sqrt returns the square root of X.

Example

real x = 2.1;
printf("The square root of %f is %f\n", X, sqrt(x));
printf("The 3rd root of %f is %f\n", x, pow(x, 1.0/3));

Miscellaneous Functions

Miscellaneous functions are used to perform various tasks.

The following miscellaneous functions are available:

* counts y!)

Page 79

EAGLE User Language Version 6.5.0

« exitQ)

+ fdlsignature()
» language()

* lookup()

* palette()

* sort()

o status()

» system()

» Configuration Parameters
¢ Unit Conversions

Configuration Parameters

Function
Store and retrieve configuration parameters.

Syntax
string cfgget(string name[, string default]);
void cfgset(string name, string value);

Returns
cfgget returns the value of the parameter stored under the given name. If no such
parameter has been stored, yet, the value of the optional default is returned (or an
empty string, if no default is given).

The cfgget function retrieves values that have previously been stored with a call to
cfgset().

The cfgset function sets the parameter with the given name to the given value.

The valid characters for name are ‘A'-'Z', 'a'-'z"', '0'-'9"', '."and ' ".
Parameter names are case sensitive.

The parameters are stored in the user's eaglerc file. To ensure that different User Language
Programs don't overwrite each other's parameters in case they use the same parameter
names, it is recommended to put the name of the ULP at the beginning of the parameter
name. For example, a ULP named mytool.ulp that uses a parameter named MyParam
could store that parameter under the name

mytool.MyParam

Because the configuration parameters are stored in the eaglerc file, which also contains all
of EAGLE's other user specific parameters, it is also possible to access the EAGLE
parameters with cfgget () and cfgset (). In order to make sure no ULP parameters
collide with any EAGLE parameters, the EAGLE parameters must be prefixed with
"EAGLE:", as in

EAGLE:Option.XrefLabelFormat

Note that there is no documentation of all of EAGLE's internal parameters and how they are

Page 80

EAGLE User Language Version 6.5.0

stored in the eaglerc file. Also, be very careful when changing any of these parameters! As
with the eaglerc file itself, you should only manipulate these parameters if you know what
you are doing! Some EAGLE parameters may require a restart of EAGLE for changes to take
effect.

In the eaglerc file the User Language parameters are stored with the prefix "ULP: ".
Therefore this prefix may be optionally put in front of User Language parameter names, as
in

ULP:mytool.MyParam

Example

string MyParam = cfgget("mytool.MyParam", "SomeDefault");
MyParam = "OtherValue";
cfgset("mytool.MyParam", MyParam);

country()
Function
Returns the country code of the system in use.
Syntax
string country();
Returns

country returns a string consisting of two uppercase characters that identifies the
country used on the current system. If no such country setting can be determined, the
default "US" will be returned.

See also language

Example

dlgMessageBox("Your country code is: " + country());

exit()

Function

Exits from a User Language Program.
Syntax

void exit(int result);

void exit(string command);

See also RUN

The exit function terminates execution of a User Language Program.
If an integer result is given it will be used as the return value of the program.

Page 81

EAGLE User Language Version 6.5.0

If a string command is given, that command will be executed as if it were entered into the
command line immediately after the RUN command. In that case the return value of the
ULP is set to EXIT SUCCESS.

Constants

EXIT SUCCESS return value for successful program execution (value 0)
EXIT FAILURE return value for failed program execution (value -1)

fdlsignature()

Function

Calculates a digital signature for Premier Farnell's Design Link.
Syntax

string fdlsignature(string s, string key);

The fdlsignature function is used to calculate a digital signature when accessing
Premier Farnell's Design Link interface.

language()

Function
Returns the language code of the system in use.

Syntax
string language();

Returns
language returns a string consisting of two lowercase characters that identifies the
language used on the current system. If no such language setting can be determined,
the default "en" will be returned.

See also country

The language function can be used to make a ULP use different message string,
depending on which language the current system is using.

In the example below all the strings used in the ULP are listed in the string array I18N[],
preceeded by a string containing the various language codes supported by this ULP. Note
the vtab characters used to separate the individual parts of each string (they are important
for the Lookup function) and the use of the commas to separate the strings. The actual
work is done in the function tr (), which returns the translated version of the given string.
If the original string can't be found in the I18N array, or there is no translation for the
current language, the original string will be used untranslated.

The first language defined in the I18N array must be the one in which the strings used
throughout the ULP are written, and should generally be English in order to make the
program accessible to the largest number of users.

Page 82

EAGLE User Language Version 6.5.0

Example

string I18N[] = {
"en\v"
"de\v"
"it\v"

"I18N Demo\v"
"Beispiel fir Internationalisierung\v"
"Esempio per internazionalizzazione\v"

5Hello world!\v"
"Hallo Welt!\v"
"Ciao mondo!\v"

0K\ "
n +0k\v n
"+Approvazione\v"

n—Cancel\v"

"-Abbrechen\v"

"-Annullamento\v"

};
int Language = strstr(I18N[0], language()) / 3;
string tr(string s)

{
string t

= lookup(I18N, s, Language, '\v');
return t 7 t

1S
¥
dlgDialog(tr("I18N Demo")) {

dlgHBoxLayout dlgSpacing(350);

dlgLabel(tr("Hello world!"));

dlgHBoxLayout {
dlgPushButton(tr("+0k")) dlgAccept();
dlgPushButton(tr("-Cancel")) dlgReject();
}

}s

lookup()

Function
Looks up data in a string array.

Syntax
string lookup(string array[], string key, int field index[,
char separator]);
string lookup(string array[], string key, string field name[,
char separator]);

Returns
Lookup returns the value of the field identified by field index or field name.
If the field doesn't exist, or no string matching key is found, an empty string is
returned.

Page 83

EAGLE User Language Version 6.5.0

See also fileread, strsplit

An array that can be used with Lookup () consists of strings of text, each string
representing one data record.

Each data record contains an arbitrary number of fields, which are separated by the
character separator (defaultis '\t"', the tabulator). The first field in a record is used as
the key and is numbered 0.

All records must have unique key fields and none of the key fields may be empty -
otherwise it is undefined which record will be found.

If the first string in the array contains a "Header" record (i.e. a record where each field
describes its contents), using Lookup with a field name string automatically determines
the index of that field. This allows using the Lookup function without exactly knowing
which field index contains the desired data.

It is up to the user to make sure that the first record actually contains header information.

If the key parameter in the call to Lookup () is an empty string, the first string of the
array will be used. This allows a program to determine whether there is a header record
with the required field names.

If a field contains the separator character, that field must be enclosed in double quotes
(asin "abc;def", assuming the semicolon ('; ') is used as separator). The same applies
if the field contains double quotes ("), in which case the double quotes inside the field have
to be doubled (as in "abc; ""def"";ghi", which would be abc; "def";ghi).

It is best to use the default "tab" separator, which doesn't have these problems (no
field can contain a tabulator).

Here's an example data file (' ; ' has been used as separator for better readability):

Name ;Manufacturer;Code;Price
7400;Intel;I-01-234-97;%$0.10
68HC12;Motorola;M68HC1201234;$3.50

Example

string OrderCodes[];
if (fileread(OrderCodes, "ordercodes") > 0) {
if (lookup(OrderCodes, "", "Code", ';')) {
schematic(SCH) {
SCH.parts(P) {
string OrderCode;
// both following statements do exactly the same:

OrderCode = lookup(OrderCodes, P.device.name, "Code", ';');
OrderCode = lookup(OrderCodes, P.device.name, 2, ';');
}
}
}
else

dlgMessageBox("Missing 'Code' field in file 'ordercodes');

}

Page 84

EAGLE User Language Version 6.5.0

palette()

Function
Returns color palette information.
Syntax
int palette(int index[, int typel);
Returns
The palette function returns an integer ARGB value in the form Oxaarrggbb, or the
type of the currently used palette (depending on the value of index).

The palette function returns the ARGB value of the color with the given index (which
may be in the range 0.PALETTE_ENTRIES-1). If type is not given (or is - 1) the palette
assigned to the current editor window will be used. Otherwise type specifies which color
palette to use (PALETTE BLACK, PALETTE WHITE or PALETTE COLORED).

The special value -1 for index makes the function return the type of the palette that is
currently in use by the editor window.

If either index or type is out of range, an error message will be given and the ULP will be
terminated.

Constants

PALETTE TYPES the number of palette types (3)
PALETTE BLACK the black background palette (0)
PALETTE WHITE the white background palette (1)

PALETTE COLORED the colored background palette (2)
PALETTE ENTRIES the number of colors per palette (64)

sort()

Function
Sorts an array or a set of arrays.
Syntax
void sort(int number, arrayl[, array2,...]);

The sort function either directly sorts a given arrayl, or it sorts a set of arrays (starting
with array?2), in which case arrayl is supposed to be an array of int, which will be used
as a pointer array.

In any case, the number argument defines the number of items in the array(s).

Sorting a single array

If the sort function is called with one single array, that array will be sorted directly, as in
the following example:

string A[];

Page 85

EAGLE User Language Version 6.5.0

int n = 0;

A[n++] = "World";

A[n++] = "Hello";

A[n++] = "The truth is out there...";

sort(n, A);
for (int i = 0; 1 < n; ++1)
printf(A[i]);

Sorting a set of arrays

If the sort function is called with more than one array, the first array must be an array of
int, while all of the other arrays may be of any array type and hold the data to be sorted.
The following example illustrates how the first array will be used as a pointer:
numeric string Nets[], Parts[], Instances[], Pins[];
int n = 0;
int index[];
schematic(S) {
S.nets(N) N.pinrefs(P) {
Nets[n] = N.name;
Parts[n] = P.part.name;
Instances[n] = P.instance.name;
Pins[n] = P.pin.name;
++N;

}
sort(n, index, Nets, Parts, Instances, Pins);
for (int i = 0; 1 < n; ++1)
printf("%-8s %-8s %-8s %-8s\n",
Nets[index[i]], Parts[index[i]],
Instances[index[i]], Pins[index[i]]);

}

The idea behind this is that one net can have several pins connected to it, and in a netlist
you might want to have the net names sorted, and within one net you also want the part
names sorted and so on.

Note the use of the keyword numeric in the string arrays. This causes the strings to be
sorted in a way that takes into account a numeric part at the end of the strings, which leads
to IC1, IC2,... IC9, IC10 instead of the alphabetical order IC1, IC10, IC2,...IC9.

When sorting a set of arrays, the first (index) array must be of type int and need not be
initialized. Any contents the index array might have before calling the sort function will
be overwritten by the resulting index values.

status()

Function

Displays a status message in the status bar.
Syntax

void status(string message);

Page 86

EAGLE User Language Version 6.5.0

See also dlgMessageBox()

The status function displays the given message in the status bar of the editor window in
which the ULP is running.

system()

Function
Executes an external program.
Syntax
int system(string command);
Returns
The system function returns the exit status of the command. This is typically 0 if
everything was ok, and non-zero in case of an error.

The system function executes the external program given by the command string, and
waits until the program ends.

Input/Output redirection

If the external program shall read its standard input from (or write its standard output to) a
particular file, input/output needs to be redirected.

On Linux and Mac OS X this is done by simply adding a '<' or '>" to the
. command line, followed by the desired file name, as in

e

‘ system("program < infile > outfile");

which runs program and makes it read from infile and write to outfile.
¥py On Windows you have to explicitly run a command processor to do this, as in

q

system("cmd.exe /c program < infile > outfile");

(on DOS based Windows systems use command . com instead of cmd. exe).

Background execution

The system function waits until the given program has ended. This is useful for programs
that only run for a few seconds, or completely take over the user's attention.

If an external program runs for a longer time, and you want the system call to return
' immediately, without waiting for the program to end, you can simply add an '&" to
Gt the command string under Linux and Mac OS X, as in

system("program &");

Page 87

EAGLE User Language Version 6.5.0

¥py Under Windows you need to explicitly run a command processor to do this, as in

q

system("cmd.exe /c start program");

(on DOS based Windows systems use command . com instead of cmd. exe).
Example

int result = system("simulate -f filename");

This would call a simulation program, giving it a file which the ULP has just created. Note
that simulate here is just an example, it is not part of the EAGLE package!

If you want to have control over what system commands are actually executed, you can
write a wrapper function that prompts the user for confirmation before executing the
command, like

int MySystem(string command)

if (dlgMessageBox("!0k to execute the following command?<p><tt>" + command +
II</tt>II’ II&YesII’ II&NOII) == 0)
return system(command);
return -1;

}

int result = MySystem("simulate -f filename");

Unit Conversions

Function
Converts internal units.
Syntax
real u2inch(int n);
real u2mic(int n);
real u2mil(int n);
real u2mm(int n);
int inch2u(real n);
int mic2u(real n);
int mil2u(real n);
int mm2u(real n);
Returns
u2inch returns the value of n in inch.
u2mic returns the value of n in microns (1/1000mm).
u2mil returns the value of n in mil (1/1000inch).
u2mm returns the value of n in millimeters.
inch2u returns the value of n (which is in inch) as internal units.
mic2u returns the value of n (which is in microns) as internal units.
mil2u returns the value of n (which is in mil) as internal units.
mm2u returns the value of n (which is in millimeters) as internal units.

Page 88

EAGLE User Language Version 6.5.0

See also UL_GRID

EAGLE stores all coordinate and size values as int values with a resolution of
1/320000mm (0.003125u). The above unit conversion functions can be used to convert
these internal units to the desired measurement units, and vice versa.

Example

board(B) {
B.elements(E) {
printf("%s at (
u2mm(E.x
}

}

%f, %f)\n", E.name,
), u2mm(E.y));

Network Functions

Network functions are used to access remote sites on the Internet.

The following network functions are available:

* neterror()
® netget()
® netpost()

neterror()

Function
Returns the error message of the most recent network function call.
Syntax
string neterror(void);
Returns
neterror returns a textual message describing the error that occurred in the most
recent call to a network function.
If no error has occurred, the return value is an empty string.

See also netget, netpost

The neterror function should be called after any of the other network functions has
returned a negative value, indicating that an error has occurred. The return value of
neterror is a textual string that can be presented to the user.

Example

string Result;
if (netget(Result, "http://www.cadsoft.de/cgi-bin/http-test?see=me&hear=them")
>= 0) {

// process Result

}

Page 89

EAGLE User Language Version 6.5.0

else
dlgMessageBox(neterror());

netget()

Function

Performs a GET request on the network.
Syntax

int netget(dest, string url[, int timeout]);
Returns

netget returns the number of objects read from the network.

The actual meaning of the return value depends on the type of dest.

In case of an error, a negative value is returned and neterror() may be called to
display an error message to the user.

See also netpost, neterror, fileread

The netget function sends the given url to the network and stores the result in the dest
variable.

If no network activity has occurred for timeout seconds, the connection will be
terminated. The default timeout is 20 seconds.

The url must contain the protocol to use (HTTB HTTPS or FTP) and can contain
name=value pairs of parameters, as in

http://www.cadsoft.de/cgi-bin/http-test?see=me&hear=them
ftp://ftp.cadsoft.de/eagle/userfiles/README

If a user id and password is required to access a remote site, these can be given as

https://userid:password@www.secret-site.com/...

If dest is a character array, the result will be treated as raw binary data and the return
value reflects the number of bytes stored in the character array.

If dest is a string array, the result will be treated as text data (one line per array member)
and the return value will be the number of lines stored in the string array. Newline
characters will be stripped.

If dest is a string, the result will be stored in that string and the return value will be the
length of the string. Note that in case of binary data the result is truncated at the first
occurrence of a byte with the value 0x00.

If you need to use a proxy to access the Internet with HTTP or HTTPS, you can set that up
in the "Configure" dialog under "Help/Check for Update" in the Control Panel.

Example

string Result;
if (netget(Result, "http://www.cadsoft.de/cgi-bin/http-test?see=me&hear=them")
>= 0) {

Page 90

EAGLE User Language Version 6.5.0

// process Result

}

else
dlgMessageBox(neterror());

netpost()

Function
Performs a POST request on the network.
Syntax
int netpost(dest, string url, string data[, int timeout[,
string content type] 1);
Returns
netpost returns the number of objects read from the network.
The actual meaning of the return value depends on the type of dest.
In case of an error, a negative value is returned and neterror() may be called to
display an error message to the user.

See also netget, neterror, fileread

The netpost function sends the given data to the given url on the network and stores
the result in the dest variable.

If no network activity has occurred for timeout seconds, the connection will be
terminated. The default timeout is 20 seconds.

If content type is given, it overwrites the default content type of "text/html;
charset=utf-8".

The url must contain the protocol to use (HTTP or HTTPS).

If a user id and password is required to access a remote site, these can be given as

https://userid:password@www.secret-site.com/...

If dest is a character array, the result will be treated as raw binary data and the return
value reflects the number of bytes stored in the character array.

If dest is a string array, the result will be treated as text data (one line per array member)
and the return value will be the number of lines stored in the string array. Newline
characters will be stripped.

If dest is a string, the result will be stored in that string and the return value will be the
length of the string. Note that in case of binary data the result is truncated at the first
occurrence of a byte with the value 0x00.

If you need to use a proxy to access the Internet with HTTP or HTTPS, you can set that up
in the "Configure" dialog under "Help/Check for Update" in the Control Panel.

Example

string Data = "see=me\nhear=them";
string Result;

Page 91

EAGLE User Language Version 6.5.0

if (netpost(Result, "http://www.cadsoft.de/cgi-bin/http-test", Data) >= 0) {
// process Result

}

else
dlgMessageBox(neterror());

Printing Functions

Printing functions are used to print formatted strings.

The following printing functions are available:

 printf()
 sprintf()

printf()

Function
Writes formatted output to a file.
Syntax
int printf(string format[, argument, ...]);
Returns
The printf function returns the number of characters written to the file that has
been opened by the most recent output statement.

In case of an error, printf returns - 1.

See also sprintf, output, fileerror

Format string

The format string controls how the arguments will be converted, formatted and printed.
There must be exactly as many arguments as necessary for the format. The number and
type of arguments will be checked against the format, and any mismatch will lead to an
error message.

The format string contains two types of objects - plain characters and format specifiers:

* Plain characters are simply copied verbatim to the output
» Format specifiers fetch arguments from the argument list and apply formatting to
them

Format specifiers
A format specifier has the following form:
% [flags] [width] [.prec] type

Each format specification begins with the percent character (%). After the % comes the

Page 92

EAGLE User Language Version 6.5.0

following, in this order:

 an optional sequence of flag characters, [flags]
* an optional width specifier, [width]

 an optional precision specifier, [.prec]

 the conversion type character, type

Conversion type characters

signed decimal int

unsigned octal int

unsigned decimal int

unsigned hexadecimal int (with a, b,...)

unsigned hexadecimal int (with A, B,...)

signed real value of the form [-]dddd.dddd
signed real value of the form [-]d.dddde[+]ddd
same as €, but with E for exponent

signed real value in either e or f form, based on given value and precision
same as g, but with E for exponent if e format used
single character

character string

the % character is printed

L oo mmd XX < O Q

Flag characters

The following flag characters can appear in any order and combination.

" the formatted item is left-justified within the field; normally, items are right-justified

"+ asigned, positive item will always start with a plus character (+); normally, only
negative items begin with a sign
a signed, positive item will always start with a space character; if both "+" and "
are specified, "+" overrides " "

Width specifiers

The width specifier sets the minimum field width for an output value.

Width is specified either directly, through a decimal digit string, or indirectly, through an
asterisk (*). If you use an asterisk for the width specifier, the preceding argument (which
must be an int) to the one being formatted (with this format specifier) determines the
minimum output field width.

In no case does a nonexistent or small field width cause truncation of a field. If the result of
a conversion is wider than the field width, the field is simply expanded to contain the
conversion result.

At least n characters are printed. If the output value has less than n characters, the
output is padded with blanks (right-padded if " - " flag given, left-padded otherwise).

Page 93

EAGLE User Language Version 6.5.0

At least n characters are printed. If the output value has less than n characters, it is
filled on the left with zeros.

« The argument list supplies the width specifier, which must precede the actual
argument being formatted.

On

Precision specifiers

A precision specifier always begins with a period (.) to separate it from any preceding
width specifier. Then, like width, precision is specified either directly through a decimal
digit string, or indirectly, through an asterisk (*). If you use an asterisk for the precision
specifier, the preceding argument (which must be an int) to the one being formatted (with
this format specifier) determines the precision.

none Precision set to default.

.0 For int types, precision is set to default; for real types, no decimal point is printed.
n characters or n decimal places are printed. If the output value has more than n

.n characters the output might be truncated or rounded (depending on the type
character).

. The argument list supplies the precision specifier, which must precede the actual
argument being formatted.

Default precision values

douxX 1

eEf 6

gG all significant digits
C no effect

S print entire string

How precision specification (. n) affects conversion

.n specifies that at least n characters are printed. If the input argument has less
douxX than n digits, the output value is left-padded with zeros. If the input argument has
more than n digits, the output value is not truncated.

oEf .n specifies that n characters are printed after the decimal point, and the last digit
printed is rounded.

gG .n specifies that at most n significant digits are printed.

C .n has no effect on the output.

S .n specifies that no more than n characters are printed.

Binary zero characters

Unlike sprintf, the printf function can print binary zero characters (0x00).

char ¢ = 0x00;
printf("sc", c);

Page 94

EAGLE User Language Version 6.5.0

Example

int i = 42;

real r = 3.14;

char c = 'A';

string s = "Hello";
printf("Integer: %8d\n", 1i);
printf("Hex: %8X\n", 1);
printf("Real: %8f\n", r);
printf("Char: %-8c\n", c);
printf("String: %-8s\n", s);

sprintf()

Function
Writes formatted output into a string.
Syntax
int sprintf(string result, string format[, argument, ...]);
Returns
The sprintf function returns the number of characters written into the result
string.

In case of an error, sprintf returns - 1.

See also printf

Format string
See printf.

Binary zero characters

Note that sprintf can not return strings with embedded binary zero characters (0x00). If
the resulting string contains a binary zero character, any characters following that zero
character will be dropped. Use printf if you need to output binary data.

Example

string result;
int number = 42;
sprintf(result, "The number is %d", number);

String Functions

String functions are used to manipulate character strings.

The following string functions are available:

Page 95

EAGLE User Language Version 6.5.0

o strrchr()
o strrstr()
* strsplit()
o strstr()
strsub

L

Function

Scans a string for the first occurrence of a given character.
Syntax

int strchr(string s, char c[, int index]);
Returns

The strchr function returns the integer offset of the character in the string, or -1 if
the character does not occur in the string.

See also strrchr, strstr

If index is given, the search starts at that position. Negative values are counted from the
end of the string.

Example
string s = "This is a string";
char c = 'a';

int pos = strchr(s, c);
if (pos >= 0)

printf("The character %c is at position %d\n", c, pos);
else

printf("The character was not found\n");

strjoin()

Function

Joins a string array to form a single string.
Syntax

string strjoin(string array[], char separator);
Returns

Page 96

EAGLE User Language Version 6.5.0
The strjoin function returns the combined entries of array.

See also strsplit, lookup, fileread

strjoin joins all entries in array, delimited by the given separator and returns the
resulting string.

If separator is the newline character ('\n") the resulting string will be terminated with
a newline character. This is done to have a text file that consists of N lines (each of which is
terminated with a newline) and is read in with the fileread() function and split into an
array of N strings to be joined to the original string as read from the file.

Example
string al[] = { "Field 1", "Field 2", "Field 3" };
string s = strjoin(a, ':'");

strlen()

Function
Calculates the length of a string.
Syntax
int strlen(string s);
Returns
The strlen function returns the number of characters in the string.

Example

string s = "This is a string";
int 1 = strlen(s);
printf("The string is %d characters long\n", 1);

striwr()

Function
Converts uppercase letters in a string to lowercase.
Syntax
string strlwr(string s);
Returns
The strlwr function returns the modified string. The original string (given as
parameter) is not changed.

See also strupr, tolower

Page 97

EAGLE User Language Version 6.5.0

Example

string s = "This Is A String";
string r = strlwr(s);
printf("Prior to strlwr: %s - after strlwr: %s\n", s, r);

strrchr()

Function

Scans a string for the last occurrence of a given character.
Syntax

int strrchr(string s, char c[, int index]);
Returns

The strrchr function returns the integer offset of the character in the string, or -1 if
the character does not occur in the string.

See also strchr, strrstr

If index is given, the search starts at that position. Negative values are counted from the
end of the string.

Example
string s = "This is a string";
char ¢ = 'a';
int pos = strrchr(s, c);
if (pos >= 0)
printf("The character %c is at position %d\n", c, pos);
else

printf("The character was not found\n");

strrstr()

Function

Scans a string for the last occurrence of a given substring.
Syntax

int strrstr(string sl, string s2[, int index]);
Returns

The strrstr function returns the integer offset of the first character of s2 in s1, or
- 1 if the substring does not occur in the string.

See also strstr, strrchr

If index is given, the search starts at that position. Negative values are counted from the
end of the string.

Page 98

EAGLE User Language Version 6.5.0

Example
string sl = "This is a string", s2 = "is a";
int pos = strrstr(sl, s2);
if (pos >= 0)

printf("The substring starts at %d\n", pos);
else

printf("The substring was not found\n");

strsplit()

Function

Splits a string into separate fields.
Syntax

int strsplit(string &array[], string s, char separator);
Returns

The strsplit function returns the number of entries copied into array.

See also strjoin, lookup, fileread

strsplit splits the string s at the given separator and stores the resulting fields in the
array.

If separator is the newline character ('\n") the last field will be silently dropped if it is
empty. This is done to have a text file that consists of N lines (each of which is terminated
with a newline) and is read in with the fileread() function to be split into an array of N
strings. With any other separator an empty field at the end of the string will count, so
"a:b:c:" will result in 4 fields, the last of which is empty.

Example

string all;
int n = strsplit(a, "Field 1:Field 2:Field 3", ':');

strstr()

Function

Scans a string for the first occurrence of a given substring.
Syntax

int strstr(string sl, string s2[, int index]);
Returns

The strstr function returns the integer offset of the first character of s2 in s1, or -1
if the substring does not occur in the string.

See also strrstr, strchr, strxstr

If index is given, the search starts at that position. Negative values are counted from the

Page 99

end of the string.

Example

string sl = "This is a string", s2 = "is a";
int pos = strstr(sl, s2);

if (pos >= 0)

printf("The substring starts at %d\n", pos);
else
printf("The substring was not found\n");

strsub()

Function

Extracts a substring from a string.
Syntax

string strsub(string s, int start[,
Returns

EAGLE User Language Version 6.5.0

int lengthl]);

The strsub function returns the substring indicated by the start and length

value.

The value for Length must be positive, otherwise an empty string will be returned. If
length is ommitted, the rest of the string (beginning at start) is returned.

If start points to a position outside the string, an empty string is returned.

Example

string s = "This is a string";
string t = strsub(s, 4, 7);
printf("The extracted substring is: %s\n", t);

strtod()

Function

Converts a string to a real value.
Syntax

real strtod(string s);
Returns

The strtod function returns the numerical representation of the given string as a
real value. Conversion ends at the first character that does not fit into the format of
a real constant. If an error occurs during conversion of the string 0.0 will be

returned.

See also strtol

Page 100

EAGLE User Language Version 6.5.0

Example

string s = "3.1415";
real r = strtod(s);
printf("The value is %f\n", r);

strtol()

Function

Converts a string to an integer value.
Syntax

int strtol(string s);
Returns

The strtol function returns the numerical representation of the given string as an
int value. Conversion ends at the first character that does not fit into the format of
an integer constant. If an error occurs during conversion of the string 0 will be
returned.

See also strtod

Example

string s = "1234";
int i = strtol(s);
printf("The value is %d\n", 1i);

strupr()

Function
Converts lowercase letters in a string to uppercase.
Syntax
string strupr(string s);
Returns
The strupr function returns the modified string. The original string (given as
parameter) is not changed.

See also strlwr, toupper

Example
string s = "This Is A String";
string r = strupr(s);

printf("Prior to strupr: %s - after strupr: %s\n", s, r);

Page 101

EAGLE User Language Version 6.5.0

strxstr()

Function
Scans a string for the first occurrence of a given regular expression.
Syntax
int strxstr(string sl, string s2[, int index[, int &length]]);
Returns
The strxstr function returns the integer offset of the substring in s1 that matches
the regular expression in s2, or -1 if the regular expression does not match in the
string.

See also strstr, strchr, strrstr

If index is given, the search starts at that position. Negative values are counted from the
end of the string.

If Llength is given, the actual length of the matching substring is returned in that variable.

Regular expressions allow you to find a pattern within a text string. For instance, the regular
expression "i.*a" would find a sequence of characters that starts with an 'i', followed by any
character ('.") any number of times ('*'), and ends with an 'a'. It would match on "is a" as
well as "is this a" or "ia".

Details on regular expressions can be found, for instance, in the book Mastering Regular
Expressions by Jeffrey E. E Friedl.

Example

string sl = "This is a string", s2 = "i.*a";
int len = 0;

int pos = strxstr(sl, s2, 0, len);

if (pos >= 0)

printf("The substring starts at %d and is %d charcaters long\n", pos, len);
else
printf("The substring was not found\n");

Time Functions

Time functions are used to get and process time and date information.

The following time functions are available:

* t2day()
» t2dayofweek()

e t2hour()

* t2minute()
e t2month()
* t2second()
* t2string()

Page 102

EAGLE User Language Version 6.5.0

time()

Function
Gets the current system time.
Syntax
int time(void);
Returns
The time function returns the current system time as the number of seconds elapsed
since a system dependent reference date.

See also Time Conversions, filetime, timems()

Example

int CurrentTime = time();

timems()

Function
Gets the number of milliseconds since the start of the ULP.
Syntax
int timems(void);
Returns
The timems function returns the number of milliseconds since the start of the ULP

After 86400000 milliseconds (i.e. every 24 hours), the value starts at 0 again.
See also time

Example

int elapsed = timems();

Time Conversions

Function

Convert a time value to day, month, year etc.
Syntax

int t2day(int t);

Page 103

int
int
int
int
int
int

EAGLE User Language Version 6.5.0

t2dayofweek(int t);
t2hour(int t);
t2minute(int t);
t2month(int t);
t2second(int t);
t2year(int t);

string t2string(int t[, string format]);

Returns

t2day returns the day of the month (1..31)

t2dayofweek returns the day of the week (0=sunday..6)
t2hour returns the hour (0..23)

t2minute returns the minute (0..59)

t2month returns the month (0..11)

t2second returns the second (0..59)

t2year returns the year (including century!)

t2string returns a formatted string containing date and time

See also time

The t2string function without the optional format parameter converts the given time t
into a country specific string in local time.

If t2string is called with a format string, that format is used to determine what the
result should look like.

The following expressions can be used in a format string:

d

dd

ddd
dddd

M

MM
MMM
MMMM

hh

mm

SS

777

AP

the day as a number without a leading zero (1 to 31)

the day as a number with a leading zero (01 to 31)

the abbreviated localized day name (e.g. "Mon" to "Sun")

the long localized day name (e.g. "Monday" to "Sunday")

the month as a number without a leading zero (1-12)

the month as a number with a leading zero (01-12)

the abbreviated localized month name (e.g. "Jan" to "Dec")

the long localized month name (e.g. "January" to "December")

the year as a two digit number (00-99)

the year as a four digit number

the hour without a leading zero (0 to 23 or 1 to 12 if AM/PM display)
the hour with a leading zero (00 to 23 or 01 to 12 if AM/PM display)
the minute without a leading zero (0 to 59)

the minute with a leading zero (00 to 59)

the second without a leading zero (0 to 59)

the second with a leading zero (00 to 59)

the milliseconds without leading zeros (always O, since the given time only has a
one second resolution)

the milliseconds with leading zeros (always 000, since the given time only has a
one second resolution)

use AM/PM display (AP will be replaced by either "AM" or "PM")

Page 104

EAGLE User Language Version 6.5.0

ap use am/pm display (ap will be replaced by either "am" or "pm")

U display the given time as UTC (must be the first character; default is local time)
All other characters will be copied "as is". Any sequence of characters that are enclosed in
singlequotes will be treated as text and not be used as an expression. Two consecutive
single quotes (") are replaced by a single quote in the output.

Example

int t = time();
printf ("It is now %02d:%02d:%02d\n",
t2hour(t), t2minute(t), t2second(t));
printf("IS0 time is %s\n", t2string(t, "Uyyyy-MM-dd hh:mm:ss"));

Object Functions

Object functions are used to access common information about objects.

The following object functions are available:

* clrgroup(
* ingroup()

» setgroup()
* setvariant()
» variant()

clrgroup()

Function

Clears the group flags of an object.
Syntax

void clrgroup(object);

See also ingroup(), setgroup(), GROUP command

The clrgroup () function clears the group flags of the given object, so that it is no longer
part of the previously defined group.

When applied to an object that contains other objects (like a UL BOARD or UL_NET) the
group flags of all contained objects are cleared recursively, but with analogous limitations

like for setgroup().

Example

board(B) {
B.elements (E)
clrgroup(E);
}

Page 105

EAGLE User Language Version 6.5.0

ingroup()

Function
Checks whether an object is in the group.
Syntax
int ingroup(object);
Returns
The ingroup function returns a non-zero value if the given object is in the group.

See also clrgroup(), setgroup(), GROUP command

If a group has been defined in the editor, the ingroup () function can be used to check
whether a particular object is part of the group.

Objects with a single coordinate that are individually selectable in the current drawing (like
UL_TEXT, UL VIA, UL CIRCLE etc.) return a non-zero value in a call to ingroup () if that
coordinate is within the defined group.

A UL WIRE returns 0, 1, 2 or 3, depending on whether none, the first, the second or both
of its end points are in the group.

A UL_RECTANGLE and UL_FRAME returns a non-zero value if one or more of its corners
are in the group. The value has bit O set for the upper right corner, bit 1 for the upper left,
bit 2 for the bottom left, and bit 3 for the bottom right corner.

Higher ranking objects that have no coordinates (UL_NET, UL_SEGMENT, UL _SIGNAL,

UL _POLYGON) or that are actually not available as drawing objects (UL _SHEET,
UL_DEVICESET, UL_SYMBOL, UL _PACKAGE), return a non-zero value if one or more of the
objects within them are in the group. For details on the object hierarchies see Object Types.
UL_CONTACTREF and UL_PINREE though not having coordinates of their own, return a
non-zero value if the referenced UL_CONTACT or UL_PIN, respectively, is within the group.
For other not selectable objects like UL_GRID, UL _VARIANT or wires of a UL_TEXT or
UL_FRAME object, the behaviour of ingroup () is undefined and therefore should not be
used.

Identifying the context menu object

If the ULP is started from a context menu the selected object can be accessed by the group
mechansim (see RUN): A one element group is made from the selected object. So it can be
identified with ingroup() .

Example

output("group.txt") {
board(B) {
B.elements(E) {
if (ingroup(E))
printf("Element %s is in the group\n", E.name);
}

}

Page 106

EAGLE User Language Version 6.5.0

setgroup()

Function
Sets the group flags of an object.
Syntax
void setgroup(object[, int flags]);

See also clrgroup(), ingroup(), GROUP command

The setgroup () function sets the group flags of the given object, so that it becomes part
of the group.

If no flags are given, the object is added to the group as a whole (i.e. all of its selection
points, in case it has more than one).

If flags has a non-zero value, only the group flags of the given points of the object are set.
For a UL_WIRE this means that '1' sets the group flag of the first point, '2"' that of the
second point, and '3' sets both. Any previously set group flags remain unchanged by a call
to setgroup ().

When applied to an object that contains other objects (like a UL BOARD or UL_NET) the
group flags of all contained objects are set recursively with following limitations:

It's not the case for UL_LIBRARY and UL _SCHEMATIC. Subordinate objects that are not
selectable or not inidividually selectable are not flagged (e.g. UL _GRID or UL VARIANT
objects or wires of UL_TEXT or UL _FRAME objects).

For details on the object hierarchies see Object Types.

Example

board(B) {
B.elements(E)
setgroup(E);

setvariant()

Function

Sets the current assembly variant.
Syntax

int setvariant(string name);

See also variant(), UL_VARIANTDEF, VARIANT command

The setvariant () function sets the current assembly variant to the one given by name.
This can be used to loop through all of the parts and "see" their data exactly as defined in
the given variant.

Page 107

EAGLE User Language Version 6.5.0

name must reference a valid assembly variant that is contained in the current drawing.
This function returns a non-zero value if the given assembly variant exists, zero otherwise.

The assembly variant that has been set by a call to setvariant() is only active until the
User Language Program returns. After that, the variant in the drawing will be the same as
before the start of the ULP

Example

if (setvariant("My variant")) {
// do something ...

else

// error: unknown variant

variant()

Function

Query the current assembly variant.
Syntax

string variant(void);

See also setvariant(), UL_VARIANTDEF, VARIANT command

The variant () function returns the name of the current assembly variant. If no variant is
currently selected, the empty string (' ') is returned.

Example

string CurrentVariant = variant();

XML Functions

XML functions are used to process XML (Extensible Markup Language) data.

The following XML functions are available:

» xmlattribute()

» xmlattributes()
» xmlelement()

» xmlelements()
» xmltags()

o xmltext()

xmlattribute(), xmlattributes()

Function

Page 108

EAGLE User Language Version 6.5.0

Extract the attributes of an XML tag.

Syntax
string xmlattribute(string xml, string tag, string attribute);
int xmlattributes(string &array[], string xml, string tag);

See also xmlelement(), xmltags(), xmltext()

The xmlattribute function returns the value of the given attribute from the given
tag within the given xml code. If an attribute appears more than once in the same tag, the
value of its last occurrence is taken.

The xmlattributes function stores the names of all attributes from the given tag within
the given xml code in the array and returns the number of attributes found. If an
attribute appears more than once in the same tag, its name appears only once in the
array.

The tag is given in the form of a path.

If the given xml code contains an error, the result of any XML function is empty, and a
warning dialog is presented to the user, giving information about where in the ULP and
XML code the error occurred. Note that the line and column number within the XML code
refers to the actual string given to this function as the xml parameter.

Example

// XML contains the following data:
<root>
<body abc="def" xyz="123">
</body>
</root>
//
string s[];
int n = xmlattributes(s, XML, "root/body");
Result: { "abc", "xyz" }
string s = xmlattribute(XML, "root/body", "xyz");
Result: "123"

xmlelement(), xmlelements()

Function
Extract elements from an XML code.
Syntax
string xmlelement(string xml, string tag);
int xmlelements(string &array[], string xml, string tag);

See also xmltags(), xmlattribute(), xmltext()

The xmlelement function returns the complete XML element of the given tag within the
given Xxml code. The result still contains the element's outer XML tag, and can thus be used

Page 109

EAGLE User Language Version 6.5.0

for further processing with the other XML functions. Any whitespace within plain text parts
of the element is retained. The overall formatting of the XML tags within the element may

be different than the original xml code, though.

If there is more than one occurrence of tag within xml, the first one will be returned. Use

xmlelements if you want to get all occurrences.

The xmlelements function works just like xmlelement, but returns all occurrences of
elements with the given tag. The return value is the number of elements stored in the
array.

The tag is given in the form of a path.

If the given xml code contains an error, the result of any XML function is empty, and a
warning dialog is presented to the user, giving information about where in the ULP and
XML code the error occurred. Note that the line and column number within the XML code
refers to the actual string given to this function as the xml parameter.

Example

// XML contains the following data:
<root>
<body>
<contents>
<string>Some text 1l</string>
<any>anything 1l</any>
</contents>
<contents>
<string>Some text 2</string>
<any>anything 2</any>
</contents>
<appendix>
<string>Some text 3</string>
</appendix>
</body>
</root>
//
string s = xmlelement (XML, "root/body/appendix");
Result: " <appendix>\n <string>Some text 3</string>\n </appendix>\n"
string s[];
int n = xmlelements(s, XML, "root/body/contents");
Result: { " <contents>\n <string>Some text 1l</string>\n <any>anything
l</any>\n </contents>\n",
" <contents>\n <string>Some text 2</string>\n <any>anything
2</any>\n </contents>\n"

}

xmltags()

Function
Extract the list of tag names within an XML code.
Syntax
int xmltags(string &array[], string xml, string tag);

Page 110

See also xmlelement(), xmlattribute(), xmltext()

EAGLE User Language Version 6.5.0

The xmltags function returns the names of all the tags on the top level of the given tag
within the given xml code. The return value is the number of tag names stored in the

array.

Each tag name is returned only once, even if it appears several times in the XML code.

The tag is given in the form of a path.

If the given xml code contains an error, the result of any XML function is empty, and a
warning dialog is presented to the user, giving information about where in the ULP and
XML code the error occurred. Note that the line and column number within the XML code
refers to the actual string given to this function as the xml parameter.

Example

// XML contains the following data:
<root>
<body>
<contents>
<string>Some text 1l</string>
<any>anything l</any>
</contents>
<contents>
<string>Some text 2</string>
<any>anything 2</any>
</contents>
<appendix>
<string>Some text 3</string>
</appendix>
</body>
</root>
//
string s[];
int n = xmltags(s, XML, "root/body");
Result: { "contents", "appendix" }
int n = xmltags(s, XML, "");
Result: "root"

xmltext()

Function

Extract the textual data of an XML element.

Syntax

string xmltext(string xml, string tag);

See also xmlelement(), xmlattribute(), xmltags()

The xmltext function returns the textual data from the given tag within the given xml

code.

Any tags within the text are stripped, whitespace (including newline characters) is retained.

Page 111

EAGLE User Language Version 6.5.0

The tag is given in the form of a path.

If the given xml code contains an error, the result of any XML function is empty, and a
warning dialog is presented to the user, giving information about where in the ULP and
XML code the error occurred. Note that the line and column number within the XML code
refers to the actual string given to this function as the xml parameter.

Example

// XML contains the following data:
<root>
<body>
Some text.
</body>
</root>

//
string s = xmltext(XML, "root/body");
Result: "\n Some text.\n "

Builtin Statements

Builtin statements are generally used to open a certain context in which data structures or
files can be accessed.

The general syntax of a builtin statement is

name (parameters) statement

where name is the name of the builtin statement, parameters stands for one or more
parameters, and statement is the code that will be executed inside the context opened by
the builtin statement.

Note that statement can be a compound statement, as in

board(B) {
B.elements(E) printf("Element: %s\n", E.name);
B.Signals(S) printf("Signal: %s\n", S.name);
}

The following builtin statements are available:

* board()

o deviceset()
» library()

» output()

» package()

* schematic()
* sheet()

» symbol()

Page 112

EAGLE User Language Version 6.5.0

board()

Function
Opens a board context.
Syntax
board(identifier) statement

See also schematic, library

The board statement opens a board context if the current editor window contains a board
drawing. A variable of type UL_BOARD is created and is given the name indicated by
identifier.

Once the board context is successfully opened and a board variable has been created, the
statement is executed. Within the scope of the statement the board variable can be
accessed to retrieve further data from the board.

If the current editor window does not contain a board drawing, an error message is given
and the ULP is terminated.

ChecKk if there is a board

By using the board statement without an argument you can check if the current editor
window contains a board drawing. In that case, board behaves like an integer constant,
returning 1 if there is a board drawing in the current editor window, and 0 otherwise.

Accessing board from a schematic

If the current editor window contains a schematic drawing, you can still access that
schematic's board by preceding the board statement with the prefix project, as in

project.board(B) { ... }

This will open a board context regardless whether the current editor window contains a
board or a schematic drawing. However, there must be an editor window containing that
board somewhere on the desktop!

Example

if (board)
board(B) {
B.elements (E)
printf("Element: %s\n", E.name);

}

deviceset()

Function

Page 113

EAGLE User Language Version 6.5.0
Opens a device set context.
Syntax
deviceset(identifier) statement

See also package, symbol, library

The deviceset statement opens a device set context if the current editor window contains
a device drawing. A variable of type UL_DEVICESET is created and is given the name
indicated by identifier.

Once the device set context is successfully opened and a device set variable has been
created, the statement is executed. Within the scope of the statement the device set
variable can be accessed to retrieve further data from the device set.

If the current editor window does not contain a device drawing, an error message is given
and the ULP is terminated.

ChecKk if there is a device set

By using the deviceset statement without an argument you can check if the current
editor window contains a device drawing. In that case, deviceset behaves like an integer
constant, returning 1 if there is a device drawing in the current editor window, and 0
otherwise.

Example

if (deviceset)
deviceset (D) {
D.gates(G)
printf("Gate: %s\n", G.name);

}

library()

Function
Opens a library context.
Syntax
library(identifier) statement

See also board, schematic, deviceset, package, symbol

The library statement opens a library context if the current editor window contains a
library drawing. A variable of type UL_LIBRARY is created and is given the name indicated
by identifier.

Once the library context is successfully opened and a library variable has been created, the
statement is executed. Within the scope of the statement the library variable can be
accessed to retrieve further data from the library.

Page 114

EAGLE User Language Version 6.5.0

If the current editor window does not contain a library drawing, an error message is given
and the ULP is terminated.

Check if there is a library

By using the Library statement without an argument you can check if the current editor
window contains a library drawing. In that case, Library behaves like an integer constant,
returning 1 if there is a library drawing in the current editor window, and 0 otherwise.

Example

if (library)
library(L) {
L.devices (D)
printf("Device: %s\n", D.name);

}

output()

Function
Opens an output file for subsequent printf() calls.
Syntax
output(string filename[, string mode]) statement

See also printf, fileerror

The output statement opens a file with the given filename and mode for output through
subsequent printf() calls. If the file has been successfully opened, the statement is
executed, and after that the file is closed.

If the file cannot be opened, an error message is given and execution of the ULP is
terminated.

By default the output file is written into the Project directory.

File Modes

The mode parameter defines how the output file is to be opened. If no mode parameter is
given, the default is "wt".

append to an existing file, or create a new file if it does not exist

create a new file (overwriting an existing file)

open file in text mode

open file in binary mode

delete this file when ending the EAGLE session (only works together with

w)

force using this file name (normally *.brd, *.sch and *.lbr are rejected)

Mode characters may appear in any order and combination. However, only the last one of a

M O T+ 9

Page 115

EAGLE User Language Version 6.5.0

and w or t and b, respectively, is significant. For example a mode of "abtw" would open a
file for textual write, which would be the same as "wt".

Nested Output statements

output statements can be nested, as long as there are enough file handles available, and
provided that no two active output statements access the same file.

Example

void PrintText(string s)

{

printf("This also goes into the file: %s\n", s);

}

output("file.txt", "wt") {
printf("Directly printed\n");
PrintText("via function call");

}

package()

Function
Opens a package context.
Syntax
package(identifier) statement

See also library, deviceset, symbol

The package statement opens a package context if the current editor window contains a
package drawing. A variable of type UL_PACKAGE is created and is given the name
indicated by identifier.

Once the package context is successfully opened and a package variable has been created,
the statement is executed. Within the scope of the statement the package variable can
be accessed to retrieve further data from the package.

If the current editor window does not contain a package drawing, an error message is given
and the ULP is terminated.

Check if there is a package

By using the package statement without an argument you can check if the current editor
window contains a package drawing. In that case, package behaves like an integer
constant, returning 1 if there is a package drawing in the current editor window, and 0
otherwise.

Page 116

EAGLE User Language Version 6.5.0

Example

if (package)
package(P) {
P.contacts(C)
printf("Contact: %s\n", C.name);

}

schematic()

Function
Opens a schematic context.
Syntax
schematic(identifier) statement

See also board, library, sheet

The schematic statement opens a schematic context if the current editor window
contains a schematic drawing. A variable of type UL_SCHEMATIC is created and is given
the name indicated by identifier.

Once the schematic context is successfully opened and a schematic variable has been
created, the statement is executed. Within the scope of the statement the schematic
variable can be accessed to retrieve further data from the schematic.

If the current editor window does not contain a schematic drawing, an error message is
given and the ULP is terminated.

ChecKk if there is a schematic

By using the schematic statement without an argument you can check if the current
editor window contains a schematic drawing. In that case, schematic behaves like an
integer constant, returning 1 if there is a schematic drawing in the current editor window,
and 0 otherwise.

Accessing schematic from a board

If the current editor window contains a board drawing, you can still access that board's
schematic by preceding the schematic statement with the prefix project, as in

project.schematic(S) { ... }
This will open a schematic context regardless whether the current editor window contains a

schematic or a board drawing. However, there must be an editor window containing that
schematic somewhere on the desktop!

Page 117

EAGLE User Language Version 6.5.0

Access the current Sheet

Use the sheet statement to directly access the currently loaded sheet.

Example

if (schematic)
schematic(S) {
S.parts(P)
printf("Part: %s\n", P.name);

}

sheet()

Function
Opens a sheet context.
Syntax
sheet(identifier) statement

See also schematic

The sheet statement opens a sheet context if the current editor window contains a sheet
drawing. A variable of type UL_SHEET is created and is given the name indicated by
identifier.

Once the sheet context is successfully opened and a sheet variable has been created, the
statement is executed. Within the scope of the statement the sheet variable can be
accessed to retrieve further data from the sheet.

If the current editor window does not contain a sheet drawing, an error message is given
and the ULP is terminated.

ChecKk if there is a sheet

By using the sheet statement without an argument you can check if the current editor
window contains a sheet drawing. In that case, sheet behaves like an integer constant,
returning 1 if there is a sheet drawing in the current editor window, and 0 otherwise.

Example

if (sheet)
sheet (S) {
S.instances(I)
printf("Instance: %s\n", I.name);

}

Page 118

EAGLE User Language Version 6.5.0

symbol()

Function
Opens a symbol context.
Syntax
symbol(identifier) statement

See also library, deviceset, package

The symbol statement opens a symbol context if the current editor window contains a
symbol drawing. A variable of type UL_SYMBOL is created and is given the name indicated
by identifier.

Once the symbol context is successfully opened and a symbol variable has been created, the
statement is executed. Within the scope of the statement the symbol variable can be
accessed to retrieve further data from the symbol.

If the current editor window does not contain a symbol drawing, an error message is given
and the ULP is terminated.

Check if there is a symbol

By using the symbol statement without an argument you can check if the current editor
window contains a symbol drawing. In that case, symbol behaves like an integer constant,
returning 1 if there is a symbol drawing in the current editor window, and 0 otherwise.

Example

if (symbol)
symbol(S) {
S.pins(P)
printf("Pin: %s\n", P.name);

}

Dialogs
User Language Dialogs allow you to define your own frontend to a User Language Program.

The following sections describe User Language Dialogs in detail:

Predefined Dialogs describes the ready to use standard dialogs
Dialog Objects defines the objects that can be used in a dialog
. explains how to define the location of objects within a
Layout Information .
dialog
Dialog Functions describes special functions for use with dialogs

A Complete Example shows a complete ULP with a data entry dialog

Page 119

EAGLE User Language Version 6.5.0

Predefined Dialogs

Predefined Dialogs implement the typical standard dialogs that are frequently used for
selecting file names or issuing error messages.

The following predefined dialogs are available:

« dlgDirectory()
» dlgFileOpen()

+ dlgFileSave()

» dlgMessageBox()

See Dialog Objects for information on how to define your own complex user dialogs.

digDirectory()

Function
Displays a directory dialog.
Syntax
string dlgDirectory(string Title[, string Start])
Returns
The dlgDirectory function returns the full pathname of the selected directory.
If the user has canceled the dialog, the result will be an empty string.

See also dlgFileOpen

The dlgDirectory function displays a directory dialog from which the user can select a
directory.

Title will be used as the dialog's title.
If Start is not empty, it will be used as the starting point for the dlgDirectory.

Example

string dirName;
dirName = dlgDirectory("Select a directory", "");

digFileOpen(), digFileSave()

Function
Displays a file dialog.

Syntax
string dlgFileOpen(string Title[, string Start[, string
Filter]])
string dlgFileSave(string Title[, string Start[, string
Filter]])

Returns

Page 120

EAGLE User Language Version 6.5.0

The dlgFileOpen and dlgFileSave functions return the full pathname of the
selected file.
If the user has canceled the dialog, the result will be an empty string.

See also dlgDirectory

The dlgFileOpen and dlgFileSave functions display a file dialog from which the user
can select a file.

Title will be used as the dialog's title.

If Start is not empty, it will be used as the starting point for the file dialog. Otherwise the
current directory will be used.

Only files matching Filter will be displayed. If Filter is empty, all files will be
displayed.

Filter can be either a simple wildcard (as in "*.brd"), a list of wildcards (as in
“*.bmp *.jpg") or may even contain descriptive text, as in

"Bitmap files (*.bmp)".If the "File type" combo box of the file dialog shall contain
several entries, they have to be separated by double semicolons, as in

"Bitmap files (*.bmp);;Other images (*.jpg *.png)".

Example

string fileName;
fileName = dlgFileOpen("Select a file", "", "*.brd");

digMessageBox()

Function
Displays a message box.
Syntax
int dlgMessageBox(string Message[, button list])
Returns
The dlgMessageBox function returns the index of the button the user has selected.
The first button in button_1list has index 0.

See also status()

The dlgMessageBox function displays the given Message in a modal dialog and waits
until the user selects one of the buttons defined in button_ list.

If Message contains any HTML tags, the characters '<', '>' and '&' must be given as "&lIt;",
">" and "&", respectively, if they shall be displayed as such.

button list is an optional list of comma separated strings, which defines the set of
buttons that will be displayed at the bottom of the message box.

A maximum of three buttons can be defined. If no button 1list is given, it defaults to
n OK n .

Page 121

EAGLE User Language Version 6.5.0

The first button in button_list will become the default button (which will be selected if
the user hits ENTER), and the last button in the list will become the "cancel button", which
is selected if the user hits ESCape or closes the message box. You can make a different
button the default button by starting its name with a '+', and you can make a different
button the cancel button by starting its name with a ' - '. To start a button text with an

actual '+' or ' - ' it has to be escaped.

If a button text contains an '&', the character following the ampersand will become a
hotkey, and when the user hits the corresponding key, that button will be selected. To have
an actual '&' character in the text it has to be escaped.

The message box can be given an icon by setting the first character of Message to
'; ' - for an Information
"1 - for a Warning
':' - for an Error
If, however, the Message shall begin with one of these characters, it has to be escaped.

~—~= On Mac OS X only the character ' : ' will actually result in showing an icon. All
' others are ignored.

Example

if (dlgMessageBox("'!'Are you sure?", "&Yes", "&No") == 0) {
// let's do it!
}

Dialog Objects

A User Language Dialog is built from the following Dialog Objects:

dlgCell a grid cell context
dlgCheckBox a checkbox

dlgComboBox a combo box selection field
dlgDialog the basic container of any dialog
dlgGridLayout a grid based layout context
dlgGroup a group field

dlgHBoxLayout a horizontal box layout context
dlgIntEdit an integer entry field

dlglabel a text label

dlgListBox a list box

dlgListView a list view

dlgPushButton a push button
dlgRadioButton a radio button

dlgRealEdit a real entry field
dlgSpacing a layout spacing object
dlgSpinBox a spin box selection field
dlgStretch a layout stretch object

dlgStringEdit a string entry field

Page 122

EAGLE User Language Version 6.5.0

dlgTabPage a tab page
dlgTabWidget a tab page container
dlgTextEdit a text entry field
dlgTextView a text viewer field

dlgVBoxLayout a vertical box layout context

digCell

Function
Defines a cell location within a grid layout context.

Syntax
dlgCell(int row, int column[, int row2, int column2])
statement

See also dlgGridLavout, dleHBoxLayout, dlgVBoxLayout, Layout Information, A Complete
Example

The d1gCell statement defines the location of a cell within a grid layout context.

The row and column indexes start at 0, so the upper left cell has the index (0, 0).

With two parameters the dialog object defined by statement will be placed in the single
cell addresses by row and column. With four parameters the dialog object will span over
all cells from row/column to row2/column2.

By default a dlgCell contains a digHBoxLayout, so if the cell contains more than one
dialog object, they will be placed next to each other horizontally.

Example

string Text;

dlgGridLayout {
dlgCell(0, 0) dlgLabel("Cell 0,0");
dlgCell(1l, 2, 4, 7) dlgTextEdit(Text);
}

dlgCheckBox

Function
Defines a checkbox.
Syntax
dlgCheckBox(string Text, int &Checked) [statement]

See also dlgRadioButton, dlgGroup, Layout Information, A Complete Example

The dlgCheckBox statement defines a check box with the given Text.

If Text contains an '&"', the character following the ampersand will become a hotkey, and
when the user hits ALt+hotkey, the checkbox will be toggled. To have an actual '&"’

Page 123

EAGLE User Language Version 6.5.0

character in the text it has to be escaped.

dlgCheckBox is mainly used within a dlgGroup, but can also be used otherwise.
All check boxes within the same dialog must have different Checked variables!

If the user checks a dlgCheckBox, the associated Checked variable is set to 1, otherwise
it is set to 0. The initial value of Checked defines whether a checkbox is initially checked.
If Checked is not equal to 0, the checkbox is initially checked.

The optional statement is executed every time the dlgCheckBox is toggled.

Example

int mirror = 0;
int rotate = 1;
int flip = 0;

dlgGroup("Orientation") {
dlgCheckBox("&Mirror", mirror);
dlgCheckBox("&Rotate", rotate);
dlgCheckBox ("&Flip", flip);
}

digComboBox

Function
Defines a combo box selection field.
Syntax
dlgComboBox(string array[], int &Selected) [statement]

See also dlglistBox, dlgl.abel, Layout Information, A Complete Example

The dl1gComboBox statement defines a combo box selection field with the contents of the
given array.

Selected reflects the index of the selected combo box entry. The first entry has index 0.

Each element of array defines the contents of one entry in the combo box. None of the
strings in array may be empty (if there is an empty string, all strings after and including
that one will be dropped).

The optional statement is executed whenever the selection in the dlgComboBox
changes.

Before the statement is executed, all variables that have been used with dialog objects
are updated to their current values, and any changes made to these variables inside the
statement will be reflected in the dialog when the statement returns.

If the initial value of Selected is outside the range of the array indexes, it is set to 0.

Example

string Colors[] = { "red", "green", "blue", "yellow" };

Page 124

EAGLE User Language Version 6.5.0

int Selected = 2; // initially selects "blue"
dlgComboBox(Colors, Selected) dlgMessageBox("You have selected " +
Colors[Selected]);

digDialog

Function
Executes a User Language Dialog.
Syntax
int dlgDialog(string Title) block ;
Returns
The dlgDialog function returns an integer value that can be given a user defined
meaning through a call to the dlgAccept () function.
If the dialog is simply closed, the return value will be - 1.

See also dlgGridLayout, dlgHBoxLayout, dlgVBoxLayout, dlgAccept, digReset, dlgReject, A
Complete Example
The dlgDialog function executes the dialog defined by block. This is the only dialog

object that actually is a User Language builtin function. Therefore it can be used anywhere
where a function call is allowed.

The block normally contains only other dialog objects, but it is also possible to use other
User Language statements, for example to conditionally add objects to the dialog (see the
second example below).

By default a dlgDialog contains a digVBoxLayout, so a simple dialog doesn't have to
worry about the layout.

A dlgDialog should at some point contain a call to the dlgAccept () function in order
to allow the user to close the dialog and accept its contents.

If all you need is a simple message box or file dialog you might want to use one of the
Predefined Dialogs instead.

Examples

int Result = dlgDialog("Hello") {
dlgLabel("Hello world");
dlgPushButton("+0K") dlgAccept();
b

int haveButton = 1;

dlgDialog("Test") {
dlgLabel("Start")
if (haveButton)

dlgPushButton("Here") dlgAccept();

’

b

Page 125

EAGLE User Language Version 6.5.0

dlgGridLayout

Function

Opens a grid layout context.
Syntax

dlgGridLayout statement

See also dlgCell, digHBoxLayout, dlgVBoxLayout, Layout Information, A Complete
Example
The dlgGridLayout statement opens a grid layout context.

The only dialog object that can be used directly in statement is digCell, which defines the
location of a particular dialog object within the grid layout.

The row and column indexes start at 0, so the upper left cell has the index (0, 0).

The number of rows and columns is automatically extended according to the location of
dialog objects that are defined within the grid layout context, so you don't have to explicitly
define the number of rows and columns.

Example

dlgGridLayout {
dlgCell(0, 0) dlglLabel("Row 0/Col 0");
dlgCell(1l, 0) dlglLabel("Row 1/Col 0");
dlgCell(0, 1) dlgLabel("Row 0/Col 1");
dlgCell(1l, 1) dlglLabel("Row 1/Col 1");
}

dlgGroup

Function
Defines a group field.
Syntax
dlgGroup(string Title) statement

See also dlgCheckBox, dlgRadioButton, Layout Information, A Complete Example

The dlgGroup statement defines a group with the given Title.

By default a dlgGroup contains a dlgVBoxLayout, so a simple group doesn't have to worry
about the layout.

dlgGroup is mainly used to contain a set of radio buttons or check boxes, but may as well
contain any other objects in its Statement.
Radio buttons within a dlgGroup are numbered starting with 0.

Page 126

EAGLE User Language Version 6.5.0

Example

int align = 1;

dlgGroup("Alignment") {
dlgRadioButton("&Top", align);
dlgRadioButton("&Center", align);
dlgRadioButton("&Bottom", align);
}

digHBoxLayout

Function

Opens a horizontal box layout context.
Syntax

dlgHBoxLayout statement

See also dlgGridLavout, dlgVBoxLavout, Layout Information, A Complete Example

The dlgHBoxLayout statement opens a horizontal box layout context for the given
statement.

Example

dlgHBoxLayout {
dlgLabel("Box 1");
dlgLabel("Box 2");
dlgLabel("Box 3");
}

digintEdit

Function
Defines an integer entry field.
Syntax
dlgIntEdit(int &Value, int Min, int Max)

See also dlgRealEdit, dlgStringEdit, dlgl.abel, Layout Information, A Complete Example
The dlgIntEdit statement defines an integer entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be limited to these
values.

Example

int Value = 42;
dlgHBoxLayout {
dlgLabel("Enter a &Number between 0 and 99");

Page 127

EAGLE User Language Version 6.5.0

dlgIntEdit(Value, 0, 99);
}

digl.abel

Function
Defines a text label.
Syntax
dlgLabel(string Text [, int Update])

See also Layout Information, A Complete Example, dlgRedisplay()
The dlgLabel statement defines a label with the given Text.

Text can be either a string literal, as in "Hello", or a string variable.

If Text contains any HTML tags, the characters '<', '>' and '&' must be given as "&It;",
">" and "&", respectively, if they shall be displayed as such.

External hyperlinks in the Text will be opened with the appropriate application program.

If the Update parameter is not O and Text is a string variable, its contents can be
modified in the statement of, e.g., a digPushButton, and the label will be automatically
updated. This, of course, is only useful if Text is a dedicated string variable (not, e.g., the
loop variable of a for statement).

If Text contains an '&"', and the object following the label can have the keyboard focus,
the character following the ampersand will become a hotkey, and when the user hits
Alt+hotkey, the focus will go to the object that was defined immediately following the
dlgLabel. To have an actual '&' character in the text it has to be escaped.

Example

string 0S = "Windows";

dlgHBoxLayout {
dlgLabel(0S, 1);
dlgPushButton("&Change 0S") { 0S = "Linux"; }
}

digListBox

Function
Defines a list box selection field.
Syntax
dlgListBox(string array[], int &Selected) [statement]

See also dlgComboBox, digListView, dlgSelectionChanged, dlglLabel, Layout Information, A
Complete Example

Page 128

EAGLE User Language Version 6.5.0

The dlgListBox statement defines a list box selection field with the contents of the given
array.

Selected reflects the index of the selected list box entry. The first entry has index 0.

Each element of array defines the contents of one line in the list box. None of the strings
in array may be empty (if there is an empty string, all strings after and including that one
will be dropped).

The optional statement is executed whenever the user double clicks on an entry of the
dlgListBox (see dlgSelectionChanged for information on how to have the statement
called when only the selection in the list changes).

Before the statement is executed, all variables that have been used with dialog objects
are updated to their current values, and any changes made to these variables inside the
statement will be reflected in the dialog when the statement returns.

If the initial value of Selected is outside the range of the array indexes, no entry will be
selected.

Example

string Colors[] = { "red", "green", "blue", "yellow" };

int Selected = 2; // initially selects "blue"

dlgListBox(Colors, Selected) dlgMessageBox("You have selected " +
Colors[Selected]);

digListView

Function
Defines a multi column list view selection field.

Syntax
dlgListView(string Headers, string array[], int &Selected],
int &Sort]) [statement]

See also dlglistBox, dlgSelectionChanged, diglabel, Layout Information, A Complete
Example

The dlgListView statement defines a multi column list view selection field with the
contents of the given array.

Headers is the tab separated list of column headers.

Selected reflects the index of the selected list view entry in the array (the sequence in
which the entries are actually displayed may be different, because the contents of a
dlgListView can be sorted by the various columns). The first entry has index 0.

If no particular entry shall be initially selected, Selected should be initialized to - 1. If it
is set to -2, the first item according to the current sort column is made current.

Sort defines which column should be used to sort the list view. The leftmost column is
numbered 1. The sign of this parameter defines the direction in which to sort (positive

Page 129

EAGLE User Language Version 6.5.0

values sort in ascending order). If Sort is O or outside the valid number of columns, no
sorting will be done. The returned value of Sort reflects the column and sort mode
selected by the user by clicking on the list column headers. By default dlgListView sorts
by the first column, in ascending order.

Each element of array defines the contents of one line in the list view, and must contain
tab separated values. If there are fewer values in an element of array than there are
entries in the Headers string the remaining fields will be empty. If there are more values in
an element of array than there are entries in the Headers string the superfluous
elements will be silently dropped. None of the strings in array may be empty (if there is
an empty string, all strings after and including that one will be dropped).

A list entry that contains line feeds ('\n"') will be displayed in several lines accordingly.

The optional statement is executed whenever the user double clicks on an entry of the
dlgListView (see dlgSelectionChanged for information on how to have the statement
called when only the selection in the list changes).

Before the statement is executed, all variables that have been used with dialog objects
are updated to their current values, and any changes made to these variables inside the
statement will be reflected in the dialog when the statement returns.

If the initial value of Selected is outside the range of the array indexes, no entry will be
selected.

If Headers is an empty string, the first element of the array is used as the header string.
Consequently the index of the first entry is then 1.

The contents of a dlgListView can be sorted by any column by clicking on that column's
header. Columns can also be swapped by "click&dragging" a column header. Note that none
of these changes will have any effect on the contents of the array. If the contents shall be
sorted alphanumerically a numeric string[] array can be used.

Example

string Colors[] = { "red\tThe color RED", "green\tThe color GREEN", "blue\tThe
color BLUE" };

int Selected = 0; // initially selects "red"

dlgListView("Name\tDescription", Colors, Selected) dlgMessageBox("You have
selected " + Colors[Selected]);

digPushButton

Function
Defines a push button.
Syntax
dlgPushButton(string Text) statement

See also Layout Information, Dialog Functions, A Complete Example
The dlgPushButton statement defines a push button with the given Text.

Page 130

EAGLE User Language Version 6.5.0

If Text contains an '&"', the character following the ampersand will become a hotkey, and
when the user hits ALt+hotkey, the button will be selected. To have an actual '&"
character in the text it has to be escaped.

If Text starts with a '+ ' character, this button will become the default button, which will
be selected if the user hits ENTER.

If Text starts with a ' - ' character, this button will become the cancel button, which will
be selected if the user closes the dialog.

CAUTION: Make sure that the statement of such a marked cancel button contains a
call to digReject()! Otherwise the user may be unable to close the dialog at all!

To have an actual '+' or '-' character as the first character of the text it has to be

escaped.

If the user selects a dLlgPushButton, the given statement is executed.

Before the statement is executed, all variables that have been used with dialog objects
are updated to their current values, and any changes made to these variables inside the
statement will be reflected in the dialog when the statement returns.

Example

int defaultWidth = 10;
int defaultHeight = 20;
int width = 5;
int height = 7;
dlgPushButton("&Reset defaults") {
width = defaultWidth;
height = defaultHeight;
}
dlgPushButton("+&Accept") dlgAccept();
dlgPushButton("-Cancel") { if (dlgMessageBox("Are you sure?", "Yes", "No") == 0)
dlgReject(); }

digRadioButton

Function
Defines a radio button.
Syntax
dlgRadioButton(string Text, int &Selected) [statement]

See also dlgCheckBox, dlgGroup, Layout Information, A Complete Example

The dlgRadioButton statement defines a radio button with the given Text.

If Text contains an '&"', the character following the ampersand will become a hotkey, and
when the user hits ALt+hotkey, the button will be selected. To have an actual '&'
character in the text it has to be escaped.

dlgRadioButton can only be used within a dlgGroup.
All radio buttons within the same group must use the same Selected variable!

If the user selects a dLlgRadioButton, the index of that button within the dlgGroup is

Page 131

EAGLE User Language Version 6.5.0

stored in the Selected variable.

The initial value of Selected defines which radio button is initially selected. If Selected
is outside the valid range for this group, no radio button will be selected. In order to get the
correct radio button selection, Selected must be set before the first dlgRadioButton is
defined, and must not be modified between adding subsequent radio buttons. Otherwise it
is undefined which (if any) radio button will be selected.

The optional statement is executed every time the dlgRadioButton is selected.

Example

int align = 1;

dlgGroup("Alignment") {
dlgRadioButton("&Top", align);
dlgRadioButton("&Center", align);
dlgRadioButton("&Bottom", align);
}

digRealEdit

Function
Defines a real entry field.
Syntax
dlgRealEdit(real &Value, real Min, real Max)

See also dlglntEdit, dlgStringEdit, dlgl.abel, Layvout Information, A Complete Example

The dlgRealEdit statement defines a real entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be limited to these
values.

Example

real Value = 1.4142;

dlgHBoxLayout {
dlgLabel("Enter a &Number between 0 and 99");
dlgRealEdit(Value, 0.0, 99.0);
}

dlgSpacing

Function

Defines additional space in a box layout context.
Syntax

dlgSpacing(int Size)

See also dlgHBoxLayout, dlgVBoxLayout, dlgStretch, Layout Information, A Complete

Page 132

EAGLE User Language Version 6.5.0

Example

The dlgSpacing statement defines additional space in a vertical or horizontal box layout
context.

Size defines the number of pixels of the additional space.

Example

dlgVBoxLayout {
dlgLabel("Label 1");
dlgSpacing(40);
dlgLabel("Label 2");
}

dlgSpinBox

Function
Defines a spin box selection field.
Syntax
dlgSpinBox(int &Value, int Min, int Max)

See also dlgIntEdit, dlgl.abel, Layout Information, A Complete Example

The dlgSpinBox statement defines a spin box entry field with the given Value.

If Value is initially outside the range defined by Min and Max it will be limited to these
values.

Example

int Value = 42;

dlgHBoxLayout {
dlgLabel("&Select value");
dlgSpinBox(Value, 0, 99);
}

dlgStretch

Function

Defines an empty stretchable space in a box layout context.
Syntax

dlgStretch(int Factor)

See also dlgHBoxLayout, dlgVBoxLayout, dlgSpacing, Layout Information, A Complete
Example

The d1gStretch statement defines an empty stretchable space in a vertical or horizontal
box layout context.

Page 133

EAGLE User Language Version 6.5.0

Factor defines the stretch factor of the space.

Example

dlgHBoxLayout {
dlgStretch(1)
dlgPushButton
dlgPushButton

}

2"+0K") { dlgAccept(); };
("Cancel") { dlgReject(); };

digStringEdit

Function
Defines a string entry field.
Syntax
dlgStringEdit(string &Text[, string &History[][, int Size]])

See also dlgRealEdit, dlgIntEdit, digTextEdit, diglabel, Layout Information, A Complete
Example
The d1gStringEdit statement defines a one line text entry field with the given Text.

If History is given, the strings the user has entered over time are stored in that string
array. The entry field then has a button that allows the user to select from previously
entered strings. If a Size greater than zero is given, only at most that number of strings are
stored in the array. If History contains data when the dialog is newly opened, that data
will be used to initialize the history. The most recently entered user input is stored at index
0.

None of the strings in History may be empty (if there is an empty string, all strings after
and including that one will be dropped).

Example

string Name = "Linus";
dlgHBoxLayout {
dlgLabel("Enter &Name");
dlgStringEdit (Name);
}

digTabPage

Function
Defines a tab page.
Syntax
dlgTabPage(string Title) statement

See also dlgTabWidget, Layout Information, A Complete Example

Page 134

EAGLE User Language Version 6.5.0

The dlgTabPage statement defines a tab page with the given Title containing the given
statement.

If Title contains an '&', the character following the ampersand will become a hotkey,
and when the user hits Alt+hotkey, this tab page will be opened. To have an actual '&'
character in the text it has to be escaped.

Tab pages can only be used within a digTabWidget.

By default a dlgTabPage contains a dilgVBoxLayout, so a simple tab page doesn't have to
worry about the layout.

Example

dlgTabwidget {
dlgTabPage("Tab &1") {
dlgLabel("This is page 1");

}

dlgTabPage("Tab &2") {
dlgLabel("This is page 2");
}

}

digTabWidget

Function

Defines a container for tab pages.
Syntax

dlgTabWidget statement

See also dlgTabPage, Layout Information, A Complete Example

The dlgTabWidget statement defines a container for a set of tab pages.

statement must be a sequence of one or more dlgTabPage objects. There must be no
other dialog objects in this sequence.

Example

dlgTabWidget {
dlgTabPage("Tab &1") {
dlgLabel("This is page 1");

}

dlgTabPage("Tab &2") {
dlgLabel("This is page 2");
}

}

Page 135

EAGLE User Language Version 6.5.0

digTextEdit

Function

Defines a multiline text entry field.
Syntax

dlgTextEdit(string &Text)

See also dlgStringEdit, dlgTextView, dlglabel, Layout Information, A Complete Example
The dlgTextEdit statement defines a multiline text entry field with the given Text.

The lines in the Text have to be delimited by a newline character (' \n'). Any whitespace
characters at the end of the lines contained in Text will be removed, and upon return there
will be no whitespace characters at the end of the lines. Empty lines at the end of the text
will be removed entirely.

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout {

dlgLabel("&Edit the text");

dlgTextEdit(Text);

}

digTextView

Function
Defines a multiline text viewer field.
Syntax
dlgTextView(string Text)
dlgTextView(string Text, string &Link) statement

See also dlgTextEdit, diglabel, Layout Information, A Complete Example

The dlgTextView statement defines a multiline text viewer field with the given Text.
The Text may contain HTML tags.

External hyperlinks in the Text will be opened with the appropriate application program.

If Link is given and the Text contains hyperlinks, statement will be executed every time
the user clicks on a hyperlink, with the value of Link set to whatever the
tag defines as the value of href. If, after the execution of statement, the Link variable is
not empty, the default handling of hyperlinks will take place. This is also the case if Link
contains some text before dlgTextView is opened, which allows for an initial scrolling to a
given position. If a Link is given, external hyperlinks will not be opened.

Page 136

EAGLE User Language Version 6.5.0

Example

string Text = "This is some text.\nLine 2\nLine 3";
dlgVBoxLayout {

dlgLabel("&View the text");

dlgTextView(Text);

digVBoxLayout

Function

Opens a vertical box layout context.
Syntax

dlgVBoxLayout statement

See also dlgGridLayout, dlgHBoxLayout, Layout Information, A Complete Example

The dlgVBoxLayout statement opens a vertical box layout context for the given
statement.

By default a dlgDialog contains a dlgVBoxLayout, so a simple dialog doesn't have to
worry about the layout.

Example

dlgVBoxLayout {
dlgLabel("Box 1");
dlgLabel("Box 2");
dlglLabel("Box 3");
}

Layout Information

All objects within a User Language Dialog a placed inside a layout context.

Layout contexts can be either grid, horizontal or vertical.

Grid Layout Context

Objects in a grid layout context must specify the grid coordinates of the cell or cells into
which they shall be placed. To place a text label at row 5, column 2, you would write
dlgGridLayout {

dlgCell(5, 2) dlgLabel("Text");

}

If the object shall span over more than one cell you need to specify the coordinates of the

starting cell and the ending cell. To place a group that extends from row 1, column 2 up to
row 3, column 5, you would write

Page 137

EAGLE User Language Version 6.5.0

dlgGridLayout {
dlgCell(1l, 2, 3, 5) dlgGroup("Title") {
/]
}
}

Horizontal Layout Context
Objects in a horizontal layout context are placed left to right.

The special objects dlgStretch and dlgSpacing can be used to further refine the distribution
of the available space.

To define two buttons that are pushed all the way to the right edge of the dialog, you would
write

dlgHBoxLayout {
dlgStretch(1);
dlgPushButton("+0K") dlgAccept();
dlgPushButton("Cancel") dlgReject();
}

Vertical Layout Context

Objects in a vertical layout context follow the same rules as those in a horizontal layout
context, except that they are placed top to bottom.

Mixing Layout Contexts

Vertical, horizontal and grid layout contexts can be mixed to create the desired layout
structure of a dialog. See the Complete Example for a demonstration of this.

Dialog Functions

The following functions can be used with User Language Dialogs:

dlgAccept() closes the dialog and accepts its contents

dlgRedisplay() immediately redisplays the dialog after changes to any values
dlgReset() resets all dialog objects to their initial values

dlgReject() closes the dialog and rejects its contents

tells whether the current selection in a dlgListView or dlgListBox

dlgSelectionChanged() has changed

digAccept()

Function
Closes the dialog and accepts its contents.
Syntax

Page 138

EAGLE User Language Version 6.5.0

void dlgAccept([int Result]);

See also dlgReject, dlgDialog, A Complete Example

The dlgAccept function causes the dlgDialog to be closed and return after the current
statement sequence has been completed.

Any changes the user has made to the dialog values will be accepted and are copied into
the variables that have been given when the dialog objects were defined.

The optional Result is the value that will be returned by the dialog. Typically this should
be a positive integer value. If no value is given, it defaults to 1.

Note that dLlgAccept () does return to the normal program execution, so in a sequence
like

dlgPushButton("0K") {
dlgAccept();
dlgMessageBox("Accepting!");
}

the statement after dLgAccept () will still be executed!

Example

int Result = dlgDialog("Test") {
dlgPushButton("+0K") dlgAccept(42);
dlgPushButton("Cancel") dlgReject();
}

digRedisplay()

Function

Redisplays the dialog after changing values.
Syntax

void dlgRedisplay(void);

See also dlgReset, dlgDialog, A Complete Example

The dlgRedisplay function can be called to immediately refresh the digDialog after
changes have been made to the variables used when defining the dialog objects.

You only need to call dLlgRedisplay() if you want the dialog to be refreshed while still
executing program code. In the example below the status is changed to "Running..." and
dlgRedisplay () has to be called to make this change take effect before the "program
action" is performed. After the final status change to "Finished." there is no need to call
dlgRedisplay (), since all dialog objects are automatically updated after leaving the
statement.

Page 139

EAGLE User Language Version 6.5.0

Example

string Status = "Idle";
int Result = dlgDialog("Test") {
dlgLabel(Status, 1); // note the '1' to tell the label to be
updated!
dlgPushButton("+0K") dlgAccept(42);
dlgPushButton("Cancel") dlgReject();
dlgPushButton("Run") {
Status = "Running...";
dlgRedisplay();
// some program action here...
Status = "Finished.";
}
}

digReset()

Function

Resets all dialog objects to their initial values.
Syntax

void dlgReset(void);

See also dlgReject, dlgDialog, A Complete Example

The dlgReset function copies the initial values back into all dialog objects of the current
dlgDialog.
Any changes the user has made to the dialog values will be discarded.

Calling dlgReject () implies a call to dLgReset ().

Example

int Number = 1;

int Result = dlgDialog("Test") {
dlgIntEdit (Number);

dlgPushButton("+0K") dlgAccept(42);
dlgPushButton("Cancel") dlgReject();
dlgPushButton("Reset") dlgReset();
I

digReject()

Function

Closes the dialog and rejects its contents.
Syntax

void dlgReject([int Result]);

See also dlgAccept, dlgReset, digDialog, A Complete Example

Page 140

EAGLE User Language Version 6.5.0

The dlgReject function causes the dlgDialog to be closed and return after the current
statement sequence has been completed.

Any changes the user has made to the dialog values will be discarded. The variables that
have been given when the dialog objects were defined will be reset to their original values
when the dialog returns.

The optional Result is the value that will be returned by the dialog. Typically this should
be 0 or a negative integer value. If no value is given, it defaults to 0.

Note that dLlgReject () does return to the normal program execution, so in a sequence
like

dlgPushButton("Cancel") {
dlgReject();
dlgMessageBox("Rejecting!");
}

the statement after dLgReject () will still be executed!
Calling dlgReject () implies a call to dlgReset ().

Example

int Result = dlgDialog("Test") {
dlgPushButton("+0K") dlgAccept(42);
dlgPushButton("Cancel") dlgReject();
I

digSelectionChanged()

Function
Tells whether the current selection in a dlgListView or dlgListBox has changed.
Syntax
int dlgSelectionChanged(void);
Returns
The dlgSelectionChanged function returns a nonzero value if only the selection
in the list has changed.

See also dlglistView, dlgListBox

The dlgSelectionChanged function can be used in a list context to determine whether
the statement of the dlgListView or dlgListBox was called because the user double
clicked on an item, or whether only the current selection in the list has changed.

If the statement of a dlgListView or dlgListBox doesn't contain any call to
dlgSelectionChanged, that statement is only executed when the user double clicks on
an item in the list. However, if a ULP needs to react on changes to the current selection in
the list, it can call dlgSelectionChanged within the list's statement. This causes the
statement to also be called if the current selection in the list changes.

Page 141

EAGLE User Language Version 6.5.0

If a list item is initially selected when the dialog is opened and the list's statement contains
a call to dlgSelectionChanged, the statement is executed with
dlgSelectionChanged returning true in order to indicate the initial change from "no
selection" to an actual selection. Any later programmatical changes to the strings or the
selection of the list will not trigger an automatic execution of the list's statement. This is
important to remember in case the current list item controls another dialog object, for
instance a dlgTextView that shows an extended representation of the currently selected
item.

Example

string Colors[] = { "red\tThe color RED", "green\tThe color GREEN", "blue\tThe
color BLUE" };
int Selected = 0; // initially selects "red"
string MyColor;
dlgLabel (MyColor, 1);
dlgListView("Name\tDescription", Colors, Selected) {
if (dlgSelectionChanged())
MyColor = Colors[Selected];
else
dlgMessageBox("You have chosen " + Colors[Selected]);
}

Escape Character

Some characters have special meanings in button or label texts, so they need to be escaped
if they shall appear literally.

To do this you need to prepend the character with a backslash, as in
dlgLabel("Miller \\& Co.");

This will result in "Miller & Co." displayed in the dialog.

Note that there are actually two backslash characters here, since this line will first go
through the User Language parser, which will strip the first backslash.

A Complete Example

Here's a complete example of a User Language Dialog.

int hor = 1;

int ver = 1;

string fileName;

int Result = dlgDialog("Enter Parameters") {

dlgHBoxLayout {

dlgStretch(1);
dlgLabel("This is a simple dialog");
dlgStretch(1);

}
dlgHBoxLayout {

Page 142

EAGLE User Language Version 6.5.0

dlgGroup("Horizontal") {
dlgRadioButton("&Top", hor);
dlgRadioButton("&Center", hor);
dlgRadioButton("&Bottom", hor);

}

dlgGroup("Vertical") {
dlgRadioButton("&Left", ver);
dlgRadioButton("C&enter", ver);
dlgRadioButton("&Right", ver);

}
}
dlgHBoxLayout {
dlgLabel("File &name:");
dlgStringEdit(fileName);
dlgPushButton("Bro&wse") {
fileName = dlgFileOpen("Select a file", fileName);

}

}
dlgGridLayout
dlgCell(0, ©
dlgCell(1l, ©
dlgCell(0, 1
dlgCell(1, 1

{
) dlgLabel("Row 0/Col 0");
) dlgLabel("Row 1/Col 0");
) dlgLabel("Row 0/Col 1");
) dlgLabel("Row 1/Col 1");
}
dlgSpacing(10);
dlgHBoxLayout {
dlgStretch(1);
dlgPushButton("+0K") dlgAccept();
dlgPushButton("Cancel") dlgReject();
}
b

Supported HTML tags

EAGLE supports a subset of the tags used to format HTML pages. This can be used to
format the text of several User Language Dialog objects, in the #usage directive or in the
description of library objects.

Text is considered to be HTML if the first line contains a tag. If this is not the case, and you
want the text to be formatted, you need to enclose the entire text in the
<html>...</html> tag.

The following table lists all supported HTML tags and their available attributes:

Tag Description
<html>...</html> An HTML document.
The body of an HTML document. It understands the following

attribute
<html>...</html> » bgcolor - The background color, for example

bgcolor="yellow" or bgcolor="#0000FF". This
attribute works only within a dlgTextView.

Page 143

<hl>...</hl>
<h2>...</h2>
<h3>...</h3>

<p>..</p>

<center>...</cente
r>
<blockquote>...</b
lockquote >

...

...

...

<pre>...</pre>

<a>..

...
...</stron
g>

<i>..</i>
...
<u>..</u>
<big>...</big>
<small>...</small
>

<code>...</code>

<tt>..</tt>
...

EAGLE User Language Version 6.5.0

A top-level heading.

A sub-level heading.

A sub-sub-level heading.

A left-aligned paragraph. Adjust the alignment with the align
attribute. Possible values are left, right and center.

A centered paragraph.

An indented paragraph, useful for quotes.

An un-ordered list. You can also pass a type argument to define the
bullet style. The default is type=disc, other types are circle and
square.

An ordered list. You can also pass a type argument to define the
enumeration label style. The default is type="1", other types are
"a" and "A".

A list item. This tag can only be used within the context of ol or ul.
For larger chunks of code. Whitespaces in the contents are preserved.
For small bits of code, use the inline-style code.

An anchor or link. It understands the following attributes:

* href - The reference target as in You can also specify an
additional anchor within the specified target document, for
example If you
want to link to a local file that has a blank in its name, you
need to prepend the file name with file:, asin <a
href="file:/path with
blanks/target.html">....

* name - The anchor name, as in

Emphasized (same as <i>...</1i>).

Strong (same as ...).

Italic font style.

Bold font style.
Underlined font style.
A larger font size.

A smaller font size.

Indicates Code. (same as <tt>...</tt>. For larger chunks of code,
use the block-tag pre.

Typewriter font style.

Customizes the font size, family and text color. The tag understands
the following attributes:

» color - The text color, for example color="red" or

Page 144

EAGLE User Language Version 6.5.0

color="#FF0000".

» size - The logical size of the font. Logical sizes 1 to 7 are
supported. The value may either be absolute, for example
size=3, or relative like size=-2. In the latter case, the sizes
are simply added.

« face - The family of the font, for example face=times.

An image. This tag understands the following attributes:

* sSrc - The image name, for example .
The URL of the image may be external, as in .

<img...> » width - The width of the image. If the image does not fit to

the specified size, it will be scaled automatically.

* height - The height of the image.

» align - Determines where the image is placed. Per default, an
image is placed inline, just like a normal character. Specify
left or right to place the image at the respective side.

<hr> A horizonal line.

 A line break.

<nobr>...</nobr> No break. Prevents word wrap.
A table definition. The default table is frameless. Specify the boolean
attribute border in order to get a frame. Other attributes are:

» bgcolor - The background color.

e width - The table width. This is either absolute in pixels or
relative in percent of the column width, for example
width=80%.
border - The width of the table border. The default is 0 (= no
border).

» cellspacing - Additional space around the table cells. The
default is 2.

+ cellpadding - Additional space around the contents of table
cells. Default is 1.

<table>...</table>

A table row. Can only be used within table. Understands the
attribute
<tr>..</tr>
* bgcolor - The background color.

<td>..</td> A table data cell. Can only be used within tr. Understands the
attributes

» bgcolor - The background color.

Page 145

<th>...</th>

<author>...</auth

or>

<dl>...</dl>
<dt>..</dt>
<dd>...</dd>

Tag
<
>
&

ä
ö,;
ü
Ä
Ö
Ü
ß
©
°
µ

±

"

O@WCI:O::D:C.‘: o

I+ &

EAGLE User Language Version 6.5.0

* width - The cell width. This is either absolute in pixels or
relative in percent of the entire table width, for example
width=50%.

» colspan - Defines how many columns this cell spans. The
default is 1.

* rowspan - Defines how many rows this cell spans. The default
is 1.

» align - Alignment, possible values are left, right and
center. The default is left-aligned.

A table header cell. Like td but defaults to center-alignment and a
bold font.
Marks the author of this text.

A definition list.
A definition tag. Can only be used within d 1.
Definition data. Can only be used within d.

Meaning

non-breaking space

Page 146

	User Language
	Writing a ULP
	Executing a ULP
	Syntax
	Whitespace
	Comments
	Directives
	#include
	Portability note

	#require
	#usage
	Example

	Keywords
	Identifiers
	Constants
	Character Constants
	Integer Constants
	Examples

	Real Constants
	Examples

	String Constants
	Escape Sequences
	Examples

	Punctuators
	Brackets
	Parentheses
	Braces
	Comma
	Semicolon
	Colon
	Equal Sign
	Data Types
	char
	int
	real
	string
	Implementation details

	Type Conversions
	Typecast
	Object Types
	Object hierarchy of a Library:
	Object hierarchy of a Schematic:
	Change note from version 5 to version 6, compatibility

	Object hierarchy of a Board:

	UL_ARC
	Constants
	Note
	Example

	UL_AREA
	Example

	UL_ATTRIBUTE
	Constants
	Note
	Example

	UL_BOARD
	Constants
	Note
	Example

	UL_BUS
	Constants
	Example

	UL_CIRCLE
	Example

	UL_CLASS
	Note
	Example

	UL_CONTACT
	Constants
	Note
	Example

	UL_CONTACTREF
	Constants
	Note
	Example

	UL_DEVICE
	Constants
	Note
	Examples

	UL_DEVICESET
	Constants
	Note
	Example

	UL_DIMENSION
	Constants
	Note
	Example

	UL_ELEMENT
	Constants
	Note
	Examples

	UL_FRAME
	Constants
	Note
	Example

	UL_GATE
	Constants
	Note
	Example

	UL_GRID
	Constants
	Note
	Example

	UL_HOLE
	Note
	Example

	UL_INSTANCE
	Constants
	Note
	Example

	UL_JUNCTION
	Example

	UL_LABEL
	Note
	Example

	UL_LAYER
	Constants
	Example

	UL_LIBRARY
	Constants
	Note
	Example

	UL_NET
	Constants
	Note
	Example

	UL_PACKAGE
	Constants
	Note
	Example

	UL_PAD
	Constants
	Note
	Example

	UL_PART
	Constants
	Note
	Example

	UL_PIN
	Constants
	Note
	Example

	UL_PINREF
	Example

	UL_POLYGON
	Constants
	Note
	Polygon width
	Partial polygons
	Example

	UL_RECTANGLE
	Example

	UL_SCHEMATIC
	Constants
	Note
	Example

	UL_SEGMENT
	Note
	Example

	UL_SHEET
	Example

	UL_SIGNAL
	Constants
	Example

	UL_SMD
	Constants
	Note
	Example

	UL_SYMBOL
	Constants
	Note
	Example

	UL_TEXT
	Constants
	Note
	Example

	UL_VARIANTDEF
	Example

	UL_VARIANT
	Example

	UL_VIA
	Constants
	Note
	Example

	UL_WIRE
	Constants
	Wire Style
	Arcs at Wire level
	Example

	Definitions
	Constant Definitions
	Variable Definitions
	Examples

	Function Definitions
	The special function main()
	Example

	Operators
	Bitwise Operators
	Logical Operators
	Comparison Operators
	Evaluation Operators
	Arithmetic Operators
	String Operators
	Expressions
	Arithmetic Expression
	Examples

	Assignment Expression
	Examples

	String Expression
	Examples

	Comma Expression
	Example

	Conditional Expression
	Example

	Function Call
	Example

	Statements
	Compound Statement
	Expression Statement
	Control Statements
	break
	continue
	do...while
	Example

	for
	Example

	if...else
	return
	switch
	Example

	while
	Example

	Builtins
	Builtin Constants
	Builtin Variables
	Builtin Functions
	Character Functions
	is...()
	Character categories
	Example

	to...()
	File Handling Functions
	fileerror()
	Example

	fileglob()
	Note for Windows users
	Example

	Filename Functions
	Example

	Filedata Functions
	Example

	File Input Functions
	fileread()
	Example

	Mathematical Functions
	Error Messages

	Absolute, Maximum and Minimum Functions
	Example

	Rounding Functions
	Example

	Trigonometric Functions
	Constants
	Note
	Example

	Exponential Functions
	Example

	Miscellaneous Functions
	Configuration Parameters
	Example

	country()
	Example

	exit()
	Constants

	fdlsignature()
	language()
	Example

	lookup()
	Example

	palette()
	Constants

	sort()
	Sorting a single array
	Sorting a set of arrays

	status()
	system()
	Input/Output redirection
	Background execution
	Example

	Unit Conversions
	Example

	Network Functions
	neterror()
	Example

	netget()
	Example

	netpost()
	Example

	Printing Functions
	printf()
	Format string
	Format specifiers
	Conversion type characters
	Flag characters
	Width specifiers
	Precision specifiers
	Default precision values
	How precision specification (.n) affects conversion
	Binary zero characters
	Example

	sprintf()
	Format string
	Binary zero characters
	Example

	String Functions
	strchr()
	Example

	strjoin()
	Example

	strlen()
	Example

	strlwr()
	Example

	strrchr()
	Example

	strrstr()
	Example

	strsplit()
	Example

	strstr()
	Example

	strsub()
	Example

	strtod()
	Example

	strtol()
	Example

	strupr()
	Example

	strxstr()
	Example

	Time Functions
	time()
	Example

	timems()
	Example

	Time Conversions
	Example

	Object Functions
	clrgroup()
	Example

	ingroup()
	Identifying the context menu object
	Example

	setgroup()
	Example

	setvariant()
	Example

	variant()
	Example

	XML Functions
	xmlattribute(), xmlattributes()
	Example

	xmlelement(), xmlelements()
	Example

	xmltags()
	Example

	xmltext()
	Example

	Builtin Statements
	board()
	Check if there is a board
	Accessing board from a schematic
	Example

	deviceset()
	Check if there is a device set
	Example

	library()
	Check if there is a library
	Example

	output()
	File Modes
	Nested Output statements
	Example

	package()
	Check if there is a package
	Example

	schematic()
	Check if there is a schematic
	Accessing schematic from a board
	Access the current Sheet
	Example

	sheet()
	Check if there is a sheet
	Example

	symbol()
	Check if there is a symbol
	Example

	Dialogs
	Predefined Dialogs
	dlgDirectory()
	Example

	dlgFileOpen(), dlgFileSave()
	Example

	dlgMessageBox()
	Example

	Dialog Objects
	dlgCell
	Example

	dlgCheckBox
	Example

	dlgComboBox
	Example

	dlgDialog
	Examples

	dlgGridLayout
	Example

	dlgGroup
	Example

	dlgHBoxLayout
	Example

	dlgIntEdit
	Example

	dlgLabel
	Example

	dlgListBox
	Example

	dlgListView
	Example

	dlgPushButton
	Example

	dlgRadioButton
	Example

	dlgRealEdit
	Example

	dlgSpacing
	Example

	dlgSpinBox
	Example

	dlgStretch
	Example

	dlgStringEdit
	Example

	dlgTabPage
	Example

	dlgTabWidget
	Example

	dlgTextEdit
	Example

	dlgTextView
	Example

	dlgVBoxLayout
	Example

	Layout Information
	Grid Layout Context
	Horizontal Layout Context
	Vertical Layout Context
	Mixing Layout Contexts

	Dialog Functions
	dlgAccept()
	Example

	dlgRedisplay()
	Example

	dlgReset()
	Example

	dlgReject()
	Example

	dlgSelectionChanged()
	Example

	Escape Character
	A Complete Example
	Supported HTML tags

